
Tile-Based Games for Object-Oriented Programming Learning: A
Modular Base Code Approach

João-Paulo Barros1,2 a

1Polytechnic Institute of Beja, 7800- 295 Beja, Portugal
2Center of Technology and Systems (UNINOVA-CTS) and Associated Lab of Intelligent Systems (LASI),

2829-516 Caparica, Portugal

Keywords: Programming Assignment, Active-Learning, Programming Project, CS1, OOP, Pedagogy, Education.

Abstract: Object-oriented programming (OOP) courses pose significant challenges for students mastering numerous
interrelated concepts. Creating engaging assessment tasks aligned with course objectives is also crucial for
instructors. This paper addresses students’ challenges in learning object-oriented programming (OOP) and
instructors designing effective assessments. A new approach to OOP assessments using scaffolded, tile-based
game projects is presented. It uses a modular base code that students use and expands upon in increasingly
complex games. This structure allows for applying and assessing core OOP concepts throughout the project.
A specific implementation of this approach, using a particular tile-based game, is detailed. Student perceptions
were positive regarding the tile-based game projects, suggesting that this approach is engaging and effective
for learning OOP. The provided base code serves as a practical example for instructors. The work offers
instructors a concrete and adaptable method for assessing OOP competencies in a way that promotes deep
learning and is less susceptible to issues with AI assistance in student work. Scaffolded game projects, built
upon a common base code, can improve student engagement and facilitate a more rigorous and confident
evaluation of their OOP skills.

1 INTRODUCTION

A fundamental focus of programming courses is the
completion of programming assignments. These
should lead students to achieve or even surpass the
intended learning outcomes. To that end, assignments
must be engaging, including significant and aligned
content and objectives.

Games, due to their obvious appeal to most stu-
dents, are a topic often explored when teaching in-
troductory programming (e.g., (Becker and Quille,
2019; Bayliss and Strout, 2006; Cliburn and Miller,
2008b; Sung, 2009; Martins et al., 2019)) and even
as a means to start learning about programming (e.g.,
(Vahldick et al., 2014; Livovský and Porubän, 2014)).
Additionally, games are a topic students already know
and have practised to some degree.

This paper proposes using tile-based games
(sometimes named grid-based games) in a scaffold-
ing approach, from very simple to more demanding
games, towards completing a half-to-one-semester-
long object-oriented programming project. To that

a https://orcid.org/0000-0002-0097-9883

end, we present a base code template that can eas-
ily be tailored to program a large family of tile-based
and traditional physical board games. Hence, teach-
ers can use it to generate games with a similar struc-
ture. Students can then use some games as learn-
ing examples, and others can be presented as assign-
ments. As an example of a concrete application of the
base code, we then present a specific programming
project, already proposed elsewhere (Barros, 2024),
as a particular case for using the presented base code.
More specifically, this paper includes a presentation
of the base code template and a specific instance of
the Sokoban game and its application in an object-
oriented programming course. It also presents the
results of a student survey to collect students’ per-
ceptions and opinions and briefly compares student
grades in the project and a final computer-based exam
of the same course. It also provides information al-
lowing the replication of the programming project and
several lessons learned.

In the following section, we present the motiva-
tion. Section 3 presents related work, and Section
4 presents the structure and behaviour of the base

792
Barros, J.-P.
Tile-Based Games for Object-Oriented Programming Learning: A Modular Base Code Approach.
DOI: 10.5220/0013346100003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 792-799
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

code template that can be tailored to different game
assignments. Section 5 presents the Sokoban game
assignment and the base code given to students built
from the code template. Section 6 presents the results
of a student survey and a comparison between stu-
dents’ grades in the programming project and a final
computer-based exam. Finally, Section 7 concludes.

2 MOTIVATION

Controlled environments, like oral or written individ-
ual examinations, provide limited learning opportu-
nities for students. However, they are less prone to
cheating and give a precise, even if not complete,
measure of individual performance. Differently, it is
well-known that people learn by doing and preferably
in a less controlled environment (e.g., (Biggs et al.,
2022)). Programming projects, typically conducted
totally or mostly outside classes, have these charac-
teristics. Their time and context are closer to the
real world compared to in-class assignments or tra-
ditional exams, and this, along with the absence of a
strict and short time limit, increases student motiva-
tion and opportunities for deep learning. However, to
be effective, programming assignments also need to
be aligned with course objectives, namely to provide
justified adequate opportunities to apply the course
contents while being able to engage students. Object-
oriented programming courses are challenging with
regard to those objectives, as numerous contents need
to be justifiably present in the programming project to
make it aligned, engaging, and having the right level
of difficulty.

Several studies with different kinds of games con-
clude that students prefer game assignments (e.g.,
(Bayliss and Strout, 2006; Cliburn and Miller, 2008b;
Sung, 2009; Martins et al., 2019)).In particular, in-
terviews with students in (Cliburn and Miller, 2008b)
revealed that ”all students, whether they were regu-
lar game players or not, liked the idea of providing
games as assignments.” The authors also concluded
that games should have as much structure as possible;
well-known games are preferable and should have
a graphical element. Other studies also concluded
that CS1 students preferred more structured, less
open-ended assignments (Cliburn and Miller, 2008a;
Cliburn et al., 2010). Differently, another work pre-
sented board games as open-ended first-year projects.
The students’ feedback was positive, and the authors
concluded that the project motivated them to under-
stand basic computer science concepts and see be-
yond the notion that computer science is just pro-
gramming (Bezakova et al., 2013). Additionally, an-

other study concluded that assignments with graphi-
cal user interfaces are perceived as more challenging
and realistic (Ball et al., 2018).

Based on our experience with several course edi-
tions, tile-based and board games provide a suitable
basis for engaging and aligned programming projects
for introductory object-oriented and GUI program-
ming courses. More specifically, they offer a perfect
fit to apply some simple GUI construction and GUI-
based interaction, an application of the model-view-
controller pattern, abstraction, encapsulation, infor-
mation hiding, modularity, inheritance, interface im-
plementation, dynamic binding and polymorphism.

The following section presents a base code eas-
ily tailored to a large set of simple tile-based board
games, for example, Tic-Tac-Toe, Connect Four, Fif-
teen, Minesweeper, Mastermind, Checkers, Chess,
and others. The objective is to use the program as
a user interface builder and rule checker, not to en-
able the computer to play the game. If one wants the
computer to be able to play, then there is a vast differ-
ence between those games, and the problem becomes
suitable to AI courses or the use of suitable game en-
gines to support the game logic. Here, we intend the
developed programs to incorporate the game logic to
forbid illegal moves by the human player, to apply the
game rules (e.g., scoring points), and to detect the end
of the game.

3 RELATED WORK

The quest for aligned and engaging assignments is
continuous, as significantly testified by numerous ar-
ticles and sessions, most notably the nifty assign-
ments project (Stanford, 2024), which has been col-
lecting short, exciting assignments. As stated in the
project, ”The most important aspect of a Nifty As-
signment is that students love it, and it teaches some-
thing many teachers want to cover.”.

Available libraries facilitate graphical game pro-
gramming (e.g., (Roberts et al., 2008)), but no code
base template for tile-based or board games exists
to our knowledge. In (Chen and Cheng, 2007), a
semester-long project for game development using
the C++ language is presented. The objectives include
learning object-oriented concepts and event-driven
programming using application programming inter-
faces. However, the games to be developed have sig-
nificant multimedia and interaction components, and
a specifically tailored library is used. Drake and Sung
also propose a specifically tailored library, presented
as a simpler alternative to the Java Task Force library
(Roberts et al., 2008), to develop a list of thirty-two

Tile-Based Games for Object-Oriented Programming Learning: A Modular Base Code Approach

793

board, card, and dice games for teaching program-
ming in CS1 and CS2 (Drake and Sung, 2011).

4 A BASE CODE TEMPLATE FOR
BOARD GAMES

Visualization is widely recognized as an important
learning tool in programming (e.g. (Lian et al.,
2022)). In particular, the concepts of ”class” and ”ob-
ject” and their relations are pretty tricky for students
to grasp and have been the object of several ped-
agogical tools (Kölling, 2015), most notably BlueJ
(Michael Kölling and Rosenberg, 2003). GUI pro-
gramming provides a constructive way to create and
visualize objects and their actions. Additionally, tile-
based games are engaging for most students and can
have a simple graphical interface that novice stu-
dents can build. GUI programming is also an impor-
tant topic in a computer science curriculum (Force,
2020). The base code template that we propose is
a variation of the well-known model-view-controller
(MVC)(Krasner and Pope, 1988) (see Fig. 1). How-
ever, regarding the code structure, the controller and
the view parts are in the same package we named gui.
This base code template provides a basis for creat-
ing code for different programming projects for tile-
based games. When starting the program, one ob-
ject in the gui package (an instance of a class imple-
menting the View interface) creates the GameModel
singleton (in the model package) passing a reference
of itself to it. This way, the model stores a refer-
ence to the object of type View. Then, the code
in the gui package creates the board user interface
(the view) and defines the event handlers (the con-
troller), becoming ready to handle user actions. It is
important to note that the reference in the model is
a reference to an object of type View, a (Java) inter-
face so that the model package has no compilation-
dependencies to the View type classes. Also, more
than one class implementing the View interface can
exist. In that case, the model will have one reference
to each respective View type object. All View classes
are forced to implement the View (Java) interface so
that the model object can send its messages to the
View type objects. As in the original MVC (e.g. Fig.
3 in (Krasner and Pope, 1988)), the message-sending
and dependency updating follows the sequence user-
¿controller-¿model-¿view and the view can query the
model to update itself as the model provides a public
interface (as a set of public methods) to that end.

For each user action in the gui (for example, a
mouse click) the controller sends a message to the
GameModel singleton. The latter updates the game

GameBoard

«interface»
View

«singleton»
GameModel

JavaFX
gui

model

«uses»

Figure 1: Class diagram for the basic board game structure.

state and then calls a method in the View interface
to update what the user sees in the view. Each update
the model needs to do in the view corresponds to a
method in the View interface and is implemented in
the View implementing class. As stated, the view can
query the model to update itself.

Finally, it is interesting to note that the base code
can easily be used for more challenging projects in
more advanced courses, namely the implementation
of solvers (e.g., (Li et al., 2014)) or the creation
of new puzzle (maps) (e.g., (De Kegel and Haahr,
2020)).

5 SCAFFOLDING ACTIVITIES

All the students who used the proposed code base
had already completed an introductory programming
course in Java. The code base was used in the follow-
up programming course on object-oriented program-
ming. From the very beginning of the semester, the
students were introduced to the template in Fig. 1 and
used it to develop a program to allow two human play-
ers to play Tic-Tac-Toe (”noughts and crosses”) us-
ing the computer as the board. The program enforced
the rule of alternating the players (either drawing a
”cross” or a ”nought”) and checking for draws or win-
ning states. This slow step-by-step development took
four weeks, with three hours of lab classes each week.
As an additional example, students were also given a
complete program for the game ”Fifteen,” which also
used the base code template. Then, after three more
weeks of applying test-driven programming (for the
”model” code) and inheritance, always in programs
using the given template, they started the autonomous
development of the Sokoban final project, which we
present in the following sections.

6 THE SOKOBAN ASSIGNMENT
AND ITS APPLICATION

Starting from the presented base code template, we
now report on applying a half-semester programming

CSEDU 2025 - 17th International Conference on Computer Supported Education

794

project for implementing the Sokoban game as pro-
posed in (Barros, 2024). Sokoban is a classical com-
puter game created by Hiroyuki Imabayashi, in 1981,
initially released the following year (Dor and Zwick,
1999; Wikipedia contributors, 2022). It has been
praised as ”the quintessential ”block-pushing” game”
(Wolf, 2008). Regarding the user interface and the
interaction, it has a board (a ”map”) made of ”tiles”
in a grid. The player character is subject to the game
rules, namely how it can move. It is usually classi-
fied as a one-player puzzle game, as the player has to
figure out how to push a set of boxes to specific posi-
tions in the grid (map). The player can only push one
box to the adjacent position if that position is free.
There can be ”walls”, which are positions the player
or the boxes cannot occupy, and positions marked as
the final boxes’ positions. The game is played in a
sequence of levels of increased difficulty, which cor-
respond to different maps (puzzles). There are numer-
ous maps on the internet, which is a helpful bonus as
they cannot be random to guarantee a solution. As a
significant example, the website https://sokoban.info/
provides ”more than 7500 levels”.

As intended for all assignments using the base
code template presented in the previous section, the
Sokoban base code was created in two steps: (1)
starting from the template, a working solution for the
Sokoban game was created, then (2) the Sokoban as-
signment base code was created by removing some
code from the working solution. Both steps are crit-
ical to adjust the difficulty as more code or depen-
dencies will increase the difficulty for students to un-
derstand the given code, and less code will provide
insufficient scaffolding. Also, to better clarify the in-
tended requirements, a video with the game playing
using the working solution was presented to students.
The same two steps should be followed to create the
base code for other board game projects.

Figure 2 shows the diagram for the base code
given to students for the Sokoban project. A set of
game-specific classes and methods were added to the
template while maintaining the described MVC be-
haviour. However, most classes were incomplete (the
ones in light grey in Fig. 2) or missing (the ones in
dark grey in Fig. 2). Two packages, each one for a
different view, were given: guitext and guiimages.
However, only guitext, the simpler one, with no im-
ages, was complete. Students had to implement the
graphical one with the board images and a menu to get
a GUI-based and text-based one-player game. Both
shared the same model code. This validated the ob-
jective of having two views for two Sokoban games.

7 RESULTS

After the project concluded, students were invited to
complete a survey. We also compared students’ pass
and fail rates in the project with the final computer-
based exam grades.

7.1 Student Survey

After the project submission, all thirty-four students
who submitted their project were invited to fill out a
short questionnaire. We got twenty-five answers: six-
teen were first-time students, and nine were repeating
students. In an online questionnaire, they were asked
to grade several aspects. Eight questions used a se-
mantic differential scale from 1 to 10, and six were
open questions. The questions and the respective an-
swers are presented next.

Next, we used stacked bar charts to present the
survey results for the answers, using a semantic dif-
ferential scale from one to ten. We separated the re-
sults between first-time and repeating students. For
the open-ended questions, we presented all the an-
swers for each student except for one repeating and
one novice student complaining about how the grad-
ing was assigned.

As seen in Fig. 3a, students found the project
slightly tricky, and repeating students found it slightly
more difficult for all colleagues in general but not so
much for themselves (see Fig. 3b.

As shown in Fig 4a, only one student did not enjoy
the project subject: twenty out of twenty-five gave it
eight or more out of ten. This is aligned with other
studies that have already been cited regarding using
games in programming. The enjoyment level was also
positive for all except one, although slightly less than
the subject preference (see Fig. 4b).

When asked to point out their likes and dislikes,
the repeating student’s single dislike was the de-
tail of the requirements. The novice students had
largely positive opinions, with a few complaints about
some requirements, time, and self-motivation details.
Question: Tell us briefly why you liked it or did not
like it:

The opinions of the six repeating students who an-
swered were the following:

• ”I found the game quite interesting, as well as the
whole structure. ”

• ”I don’t have anything negative to say, perhaps
each requirement should be more explicit.”

• ”I think it’s fun to remake a game because I be-
lieve it’s something that most students enjoy, and
it may also have been the reason they joined the
course in the first place.”

Tile-Based Games for Object-Oriented Programming Learning: A Modular Base Code Approach

795

JavaFX

SokobanBoardText SokobanBoardImages

«interface»
SokobanView

+update(
 MessageToUI messageToUI): void

BoxKeeper

«abstract»
MobileElement

SokobanGameModel

StartJavaFXGUIText StartJavaFXGUIImages

BoardModel

«enumeration»
PositionContent
WALL
FREE
END

«test»
SokobanModelTest

Level

«enumeration»
Direction

LEFT
RIGHT
UP
DOWN

guiimages

«enumeration»
ImageType

KEEPER
BOX
BOXEND
WALL
END
FREE

guitext

model

«uses»

1
«uses»

«uses»

«uses»

Figure 2: Class diagram for Sokoban base code.

1 2 3 4 5 6 7 8 9 10

0

5

10

0 0
1 1

3

7 7

5

0
1

0 0 0 0

2 2

6
5

0
1

First time
Repeating

(a) Results for the assertion ”How would you rate the level
of difficulty of the project for yourself?.” 1-very easy, 10-
very difficult.

1 2 3 4 5 6 7 8 9 10

0

5

10

0 0 0 0

2

5

10

7

1
00 0 0 0

1

3

6
5

1
0

First time
Repeating

(b) Results for the assertion ”How would you rate the dif-
ficulty of the work for your classmates in general?.” 1-very
easy, 10-very difficult.

Figure 3: Perceived difficulty of the project.

• ”It’s an existing game that uses the logic of a game
that we all know, and if you interpret the logic
well, it becomes easier to do.”

1 2 3 4 5 6 7 8 9 10

0

5

10

0 0
1

0

2
1 1

6
5

9

0 0
1

0
1 1 1

2

4

6

First time
Repeating

(a) Results for the assertion ”How do you classify the sub-
ject of the work (the Sokoban game)?” 1-I did not like it at
all, 10-I liked it very much.

1 2 3 4 5 6 7 8 9 10

0

5

10

0 0
1

0

2

4

6
7

3
2

0 0
1

0
1

3 3
4

3

1

First time
Repeating

(b) Results for the assertion ”How do you rate your en-
joyment of doing the project?” 1-I did not like doing this
project at all, 10-I very much enjoyed doing this project.

Figure 4: Subject and project enjoyment.

• ”The fact that it’s a game with the possibility of
movement.”

The opinions of the twelve novice students who an-
swered were the following:

CSEDU 2025 - 17th International Conference on Computer Supported Education

796

• ”I really liked it because it was a game I didn’t
know and I became a fan of it”;

• ”I prefer to do the work from scratch, without a
base code.”

• ”It was difficult to do it using GitHub as I had
almost no previous experience with it.”

• ”I think the work was accessible. Personally, I
enjoyed working on it because there were more
complex parts that posed some challenges, and I
enjoyed having to brainstorm like that. In other
words, I think there was a balance; for those who
wanted to get a minimum score of 10, I think peo-
ple could do it without too much difficulty, but for
those who wanted to go further, there were some
challenges, so I think it makes total sense!”

• ”In a way, it was a big puzzle with pieces to insert.
It was hard, and I lost my hair, but the feeling of
completing it was good. Maybe in the instructions
you should include more details about what you
can and can’t do. Some of my colleagues and I
were wondering if it was possible to change the
basic code in a way that wasn’t too extensive.”;

• ”Despite being a simple game, it contains a lot of
content from what was taught in class, and it is
possible to put into practice various parts of the
code given throughout the guides.”

• ”The theme of the work as a whole was strange
because I’m not used to it.”

• ”I have no motivation.”

• ”The work was really interesting, and I feel I
learned a lot during its creation; the biggest dif-
ficulty was the intensity of the hours needed to do
it.”

• ”The theme of the work makes it more interesting
to be involved in, as you can see your progress as
you test the game with new features.”

• ”The challenge of improving the game’s code and
features.”

• ”A little more time would have helped, as would
having had some more practice before starting the
work.”

Students preferred to have a base code not only to
get the job done (see Fig. 5a) but also to learn more
(see Fig. 5b). However, 16 in 25 found it difficult to
understand, which we see as unsurprising, as it was
the largest piece of code they had ever encountered.

When asked about the base code, some students
gave their opinion: Question: ”If you wish, please
leave your opinion on the base code (e.g., defects
and/or virtues)”. The opinions were the following:

1 2 3 4 5 6 7 8 9 10

0

5

10

1
0 0 0

1
2

8 8

2
3

1
0 0 0

1 1

6

4

0

3

First time
Repeating

(a) Results for the assertion ”How do you rate the contribu-
tion of having a base code to GET the job done?” 1-It made
it much harder to do the project, 10-It made it much simpler
to do the project.

1 2 3 4 5 6 7 8 9 10

0

5

10

1
0 0 0

2

5

3

6

3

5

1
0 0 0

2 2
3 3

1

4

First time
Repeating

(b) Results for the assertion ”How would you rate the use-
fulness of having a base code to LEARN more when doing
the project” 1-I did not learn anything due to the base code,
10-I learned a lot more because of the base code.

Figure 5: Base code usefulness.

1 2 3 4 5 6 7 8 9 10

0

5

10

0

2

4

9

1

4 4

1
0 00

2 2

5

1

3 3

0 0 0

First time
Repeating

Figure 6: Results for the assertion ”How difficult was it to
UNDERSTAND the base code?” 1-Very difficult to under-
stand, 10-Very easy to understand.

• ”I thought that the base code was very well pre-
sented and explained, which helped solve the
work.”

• ”As the base code had a lot of classes and meth-
ods, it took a lot of time to understand the code. I
hope that in the next ones, there will be a summa-
rized explanation of the base code.”

Tile-Based Games for Object-Oriented Programming Learning: A Modular Base Code Approach

797

The novices that answered also largely complained
about an insufficient previous explanation of the base
code in class.

• ”I don’t know if, for future work, I wouldn’t give
the students more freedom to create a project of
their own from scratch instead of taking a base;
it’s different. Of course, the complexity would
also have to be readjusted.”

• ”The hardest part was internalizing and under-
standing the base code, but despite that, I think
it was well composed.”

• ” I think the base code should have been explained
a bit over the course of the semester.”

• ”Initially, it was more difficult to understand the
whole structure of the code due to its complexity
and incompleteness.”

• ”It would have been very useful if the base code
had been explained in class; we spent much time
reading the base code, jumping from class to class
until we understood where the functions were
pulled from.”

As optional replies, students were asked about
what should be added (suggestions), stopped (nega-
tive), and continued (positive). The suggestions were
the following:

• ”I’d say handing in the assignment earlier, and
monitoring the work more in class, not just at the
end of the semester. ” (repeating student)

• ”More time for presentations” (repeating student)

• ” Have topics outside the world of games, for
example, more commercial programs.” (repeating
student)

• ”Having more time for presentations. I think a
project like this, even a long one, should have
more opportunity to be defended. Otherwise, we
just focus on the negative points.”

• ”Instead of just one delivery, it would be a good
idea to do it over the semester and add one or more
features each time.”

• ”Explanation of the basic code”

• ”Just work, not tests.”

• ”Explaining the base code in a dedicated class
would greatly help. We asked the teachers ques-
tions in class, and that was fundamental. A class
dedicated to the code would have advanced our
work by several hours.”

• ”explaining the base code in class.”

Regarding negative points, one repeating student
asked for more detailed information about the grading

to be assigned to each requirement, and one novice
student would have preferred no base code.

Regarding positive points, one repeating student
stated, ”I think that giving a base code helps a lot in
solving a final project.” Another student liked using
the MVC pattern. Among the novice students, the
statement and the existence of the base code were un-
derlined by two students as they helped them under-
stand how the project should work and how it should
be built. One student considered they had plenty of
time to complete the project.

7.2 Student Grading and Outcomes

After completing the programming project, students
had to complete a computer-based test consisting of
brief programming tasks based on a base code simi-
lar to the Tic-Tac-Toe game they had studied in class.
The similar base code allowed the desired alignment
between assessment and learning outcomes and be-
tween the project and the exam. In the exam, stu-
dents were asked to add two functionalities and the
respective test code to the given and known base code.
All students who failed the programming project also
failed the exam, and 68% of students who passed the
project also passed the exam. In the individual oral
examination, the 32% students who failed the exam
managed to answer the questions about the submitted
code. This demonstrates the need for the short exam
to effectively filter out students who manage to ex-
plain the submitted group work without knowing how
to do it. This is often due to excessive reliance on the
work of the other group elements. Even so, if suf-
ficient human resources are available, an alternative
approach would be to conduct a longer oral examina-
tion, which would imply significantly more time.

8 CONCLUSIONS

The base code template provides flexible support
for programming projects for tile-based games with
a GUI programming component in object-oriented
courses. The template was already tested for the
games Tic-Tac-Toe and Fifteen as part of a scaf-
folding approach. The same template was also
applied to the Sokoban game as a final graded
project. The students’ perceptions and feedback
were very favourable. The base code template
and the Sokoban project base code are available at
https://github.com/jpmprb/SokobanBase2023. In fu-
ture work, we will apply this template to additional
games, enabling students to write code and engage
with more interactive learning experiences. This

CSEDU 2025 - 17th International Conference on Computer Supported Education

798

hands-on approach is expected to promote improved
problem-solving skills and increased retention of key
concepts.

ACKNOWLEDGEMENTS

This work was financed by Portuguese Agency FCT
– Fundação para a Ciência e Tecnologia, in the frame-
work of project CTS/00066

REFERENCES

Ball, R., DuHadway, L., Hilton, S., and Rague, B. (2018).
Gui-based vs. text-based assignments in cs1. In
Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE ’18, page
1017–1022, New York, NY, USA. Association for
Computing Machinery.

Barros, J. P. (2024). Sokoban: An assignment for an object-
oriented and gui programming course. In Proceed-
ings of the 55th ACM Technical Symposium on Com-
puter Science Education V. 2, SIGCSE 2024, page
1564–1565, New York, NY, USA. Association for
Computing Machinery.

Bayliss, J. D. and Strout, S. (2006). Games as a ”flavor”
of CS1. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’06, page 500–504, New York, NY, USA. Association
for Computing Machinery.

Becker, B. A. and Quille, K. (2019). 50 years of cs1 at
sigcse: A review of the evolution of introductory pro-
gramming education research. In Proceedings of the
50th ACM Technical Symposium on Computer Science
Education, SIGCSE ’19, page 338–344, New York,
NY, USA. Association for Computing Machinery.

Bezakova, I., Heliotis, J. E., and Strout, S. P. (2013). Board
game strategies in introductory computer science. In
Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE ’13, page
17–22, New York, NY, USA. Association for Com-
puting Machinery.

Biggs, J., Tang, C., and Kennedy, G. (2022). Teaching
for Quality Learning at University. Open University
Press, 5th edition.

Chen, W.-K. and Cheng, Y. C. (2007). Teaching
object-oriented programming laboratory with com-
puter game programming. IEEE Transactions on Ed-
ucation, 50(3):197–203.

Cliburn, D. C. and Miller, S. (2008a). Games, stories, or
something more traditional: the types of assignments
college students prefer. SIGCSE Bull., 40(1):138–142.

Cliburn, D. C. and Miller, S. M. (2008b). What makes a
”good” game programming assignment? J. Comput.
Sci. Coll., 23(4):201–207.

Cliburn, D. C., Miller, S. M., and Bowring, E. (2010). Stu-
dent preferences between open-ended and structured
game assignments in cs1. In 2010 IEEE Frontiers in
Education Conference (FIE), pages F2H–1–F2H–5.

De Kegel, B. and Haahr, M. (2020). Procedural puzzle
generation: A survey. IEEE Transactions on Games,
12(1):21–40.

Dor, D. and Zwick, U. (1999). Sokoban and other mo-
tion planning problems. Computational Geometry,
13(4):215–228.

Drake, P. and Sung, K. (2011). Teaching introductory pro-
gramming with popular board games. In Proceedings
of the 42nd ACM Technical Symposium on Computer
Science Education, SIGCSE ’11, page 619–624, New
York, NY, USA. Association for Computing Machin-
ery.

Force, C. T. (2020). Computing Curricula 2020: Paradigms
for Global Computing Education. Association for
Computing Machinery, New York, NY, USA.

Kölling, M. (2015). Lessons from the design of three ed-
ucational programming environments. International
Journal People-Oriented Program., 4(1):5–32.

Krasner, G. E. and Pope, S. T. (1988). A cookbook
for using the model-view controller user interface
paradigm in smalltalk-80. J. Object Oriented Pro-
gram., 1(3):26–49.

Li, Z., O’Brien, L., Flint, S., and Sankaranarayana, R.
(2014). Object-oriented sokoban solver: A serious
game project for ooad and ai education. In 2014
IEEE Frontiers in Education Conference (FIE) Pro-
ceedings, pages 1–4.

Lian, V., Varoy, E., and Giacaman, N. (2022). Learning
object-oriented programming concepts through visual
analogies. IEEE Transactions on Learning Technolo-
gies, 15(1):78–92.

Livovský, J. and Porubän, J. (2014). Learning object-
oriented paradigm by playing computer games: con-
cepts first approach. Open Computer Science,
4(3):171–182.

Martins, V. F., Eliseo, M. A., Omar, N., Castro, M. L. A.,
and Corrêa, A. G. D. (2019). Using game develop-
ment to teach programming. In Handbook of Research
on Immersive Digital Games in Educational Environ-
ments, pages 450–485. IGI Global.

Michael Kölling, Bruce Quig, A. P. and Rosenberg, J.
(2003). The bluej system and its pedagogy. Computer
Science Education, 13(4):249–268.

Roberts, E., Bruce, K., Cutler, R., Cross, J., Grissom, S.,
Klee, K., Rodger, S., Trees, F., Utting, I., and Yellin,
F. (2008). ACM Java Task Force. [Online; accessed
18-January-2024].

Stanford (2024). Nifty assignments. [Online; accessed 17-
January-2024].

Sung, K. (2009). Computer games and traditional cs
courses. Commun. ACM, 52(12):74–78.

Vahldick, A., Mendes, A. J., and Marcelino, M. J. (2014).
A review of games designed to improve introduc-
tory computer programming competencies. In 2014
IEEE Frontiers in Education Conference (FIE) Pro-
ceedings, pages 1–7.

Wikipedia contributors (2022). Sokoban — Wikipedia,
the free encyclopedia. [Online; accessed 13-October-
2022].

Wolf, M. J., editor (2008). The video game explosion: a
history from Pong to Playstation®and beyond. Green-
wood Press.

Tile-Based Games for Object-Oriented Programming Learning: A Modular Base Code Approach

799

