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Abstract: This paper investigates the application of prospect theory in the context of portfolio optimization and presents
a model based on the mean absolute deviation and on Prospect Theory. By analyzing historical returns from as-
sets of three critical sectors traded on B3 (Brazilian Stock Exchange) and over an eight-year period, a prospect
optimization approach was implemented and its results were compared to those obtained from the Conditional
Value at Risk (CVaR) approach. An additional application was held regarding one of the most relevant sector
of assets in terms of contribution to the S&P500’s composition with the purpose to test the new model under
different market conditions. Such results revealed the effectiveness of prospect theory in optimizing portfolios
since those results were considered similar to the CVaR’s, but at higher returns. Both models were compared
through different portfolio performance metrics and, notably, the prospect model exhibited competitive results
in most cases. However, the study also identified opportunities for further refinements. Overall conclusions
herein suggests the promise of prospect theory in addressing the needs of decision makers in portfolio manage-
ment, delivering a singular approach that balances the possibility of gains and losses under different scenarios.

1 INTRODUCTION

In the early 1950s, (Markowitz, 1952) contradicted
the thesis that investors should maximize or anticipate
expected returns and stated that investors should con-
sider the expected return as something desirable and
the variance as something undesirable. Markowitz de-
veloped an optimization model to minimize the port-
folio risk, considering the variance of portfolio returns
as the risk measure, subjected to an expected return,
which resulted in a quadratic optimization model.
Moreover, Markowitz presented the concept of ef-
ficient frontier for portfolios, and his contributions
are considered the basis of Modern Portfolio Theory
(MPT).

Since Markowitz’s contribution, subsequent re-
searches have been published with the purpose of de-
veloping new approaches for portfolios or reducing
the computational cost in obtaining the solution for
the optimization problem.

A few decades later, (Konno and Yamazaki, 1991)
analyzed Markowitz’s model and replaced the vari-
ance - the second moment of probability distribution
of portfolio returns, by the mean absolute deviation

a https://orcid.org/0000-0003-0288-2644
b https://orcid.org/0009-0005-9435-1948

(MAD) - the first moment of probability distribution
of portfolio returns, with the intent of reducing the
computational time of the quadratic model.

The variance and the mean absolute deviation are
statistical measures traditionally applied in the con-
text of portfolio problems. However, these measures
cannot identify the anomalies in the probability distri-
bution of portfolio returns nor the extent of potential
losses in a given portfolio. Thus, in the mid-1990s,
the concept of Value at Risk (VaR) (Group of Thirty,
1993) was proposed in the JP Morgan G30 publica-
tion.

The VaR is defined by (Jorion, 2006) as the maxi-
mum loss of a portfolio under ordinary market condi-
tions and at a given confidence level. VaR is therefore
related to the percentiles of the probability distribu-
tion of the losses at a predetermined confidence level.
Recognized as a metric for risk, VaR has become a
widely useful tool for the financial market and also an
important regulatory measure.

Despite being widely disseminated, VaR has been
considered unsuitable when losses do not follow a
normal distribution, which occurs in most cases. Of-
ten, the probability distributions of returns exhibit
”heavy tails”, making VaR inefficient for identifying
extreme risks. In that context, (Rockafellar and Urya-
sev, 2002) stated that due to the fact that VaR does not
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evaluate losses that exceed the predetermined confi-
dence level, it may show an optimistic tendency rather
than a conservative one, which should prevail in risk
management.

In 2000’s a new risk measure called Conditional
Value at Risk (CVaR) was proposed by (Rockafellar
and Uryasev, 2000). CVaR is the average of the ex-
pected returns that exceed VaR’s for a given confi-
dence level. CVaR consists of the expectancy of the
tail values of the probability distribution that repre-
sent the worst-case return scenarios (Rockafellar and
Uryasev, 2000). Accordingly, CVaR is able to mea-
sure the ”tail losses” under a more robust approach.
Additionally, CVaR exhibits superior properties com-
pared to VaR, since (Artzner et al., 1999) stated that
CVaR can be considered as a coherent risk measure by
having a group of properties which includes subaddi-
tivity: CVaRα(R1 +R2) ≤ CVaRα(R1)+CVaRα(R2)
- that is a property that VaR does not meet.

The objective functions comprehended in op-
timization problems originated from MPT can be
placed within the concept of utility functions, espe-
cially since the predominance of Utility Theory as the
main method of decision-making under uncertainty at
that time. Utility Theory is based on the assumption
of the rational investor, and has served as the primary
lens through which the behavior of economic agents
has been interpreted. However, an alternative method
has been disseminated in decision-making analysis
since (Kahneman and Tversky, 1979). That paper in-
troduced Prospect Theory, fundamentally altering the
decision-making analysis by demonstrating that peo-
ple weight losses more heavily than gains in general
situations, contradicting the assumption of the ratio-
nal investor.

Prospect Theory diverges from Utility Theory by
considering that decisions are affected by other bi-
ases instead of the assumption taken in the con-
cept of rational investor. (Kahneman and Tversky,
1979) posited that the value function in Prospect The-
ory is characterized by a deviation from a reference
point, exhibiting concavity for gains and convexity
for losses and having greater weight on the convex
part than on the concave one. Further refinements by
(Kahneman and Tversky, 1992) incorporated nonlin-
ear preferences, a concept of loss aversion and a cu-
mulative function which allows applications for con-
tinuous variables.

Other researches in the literature have tested the
effectiveness of Prospect Theory in explaining in-
vestor behavior, as well as in explaining portfolio re-
turns or even in understanding market tendencies.

Subsequent researches have extensively tested the
applicability of Prospect Theory in explaining in-

vestor behavior and portfolio returns across various
market sectors. For instance, (Benartzi and Thaler,
1995) examined the equity premium puzzle — why
American stocks outperformed bonds throughout the
20th century — by presenting two main arguments.
The first argument is based on Prospect Theory, as-
serting that investors are more sensitive to losses than
to gains. In other words, investors tend to treat the
possibility of losses more severely and seek greater
possibilities of gains. The second argument addresses
a distinct concept known as ”myopic loss aversion”,
which means that people tend to show more con-
cern about their portfolios in a short-period and do
not show the same concern for long-term results.
The paper presented a piecewise linear optimization
model accordingly and the results defined a period
of investor’s indifference towards their portfolios that
proper justified the “equity premium puzzle” from the
authors’ perspective.

Further studies, such as those by (Benartzi and
Thaler, 1995) and (Barberis et al., 2001) have demon-
strated that asset prices that were influenced by loss
aversion were closely aligned with historical data
while showed minimal correlation with consumption
growth. The broad dissemination of Prospect Theory
influenced (Barberis and Thaler, 2003) to critique and
highlight the theoretical distinctions between rational
and non-rational investor profiles, identifying chal-
lenges in arbitrage limits and noting a lack of practical
applications at that time.

A few years later, (De Giorgi et al., 2010) argued
that the financial market would not need to adopt the
equilibrium hypotheses if agents had heterogeneous
preferences in accordance with Cumulative Prospect
Theory (Kahneman and Tversky, 1992). The paper
contradicted traditional financial models in which this
concept of equilibrium was fundamental.

Specifically in portfolio problems, Prospect The-
ory has been applied as an alternative approach to
explain returns, risk and the overall decision-making
by investors in different scenarios. (Best and Grauer,
2016) proposed a multi-period problem for maximiz-
ing returns, in which the concept of loss aversion was
applied and the loss aversion coefficient from (Kahne-
man and Tversky, 1992) was used in a portfolio with
different assets and rates. The paper also considers
the concept of kink, that is the non-differentiable seg-
ment that connects the gain-curve to the loss-curve of
the Prospect Theory’s value function. Relevant op-
portunities in optimization have arisen regarding the
concept of kink. There has been particular interest in
this application, specially by the fact it has been quite
challenging. (Best and Zhang, 2011) and (Best et al.,
2014) are examples of this application.
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(Best and Grauer, 2017) compared three port-
folio optimization approaches—power utility, mean-
variance, and prospect theory—analyzing static and
dynamic contexts with varying borrowing and lend-
ing rates. The paper showed that the prospect theory
model performed well for risk aversion coefficients
between 2 and 2.25, but results were considered in-
consistent otherwise. The power utility and mean-
variance models performed reasonably for risk-averse
investors, though less risk-averse ones relied heavily
on borrowing.

(Wang et al., 2021) applied Prospect Theory to
analyze the behavior of Chinese investors during an
external regulatory shock. The study concluded that
Prospect Theory had a strong predictive power to ex-
plain stock returns, particularly for small-cap compa-
nies, with the theory effectively explaining investor
decision-making.

(Zhong et al., 2022) proposed the ”Three-way de-
cision model”, an optimization approach based on
Prospect Theory that addresses challenges of time and
monetary variables. The model delivered three out-
comes as options to the investor: ”accept”, ”reject”,
or ”not accept nor reject”, and it aimed to maximize
monetary value while the variable time was also taken
into account. Finally, some improvements were sug-
gested, particularly when treating monetary outcomes
and time as independent variables, which does not
necessarily happen. The authors also noted that cer-
tain model parameters require refinement.

Fostering the discussion of decision-making under
risk, Prospect Theory has been increasingly applied
to different fields with diverse objectives. This pa-
per therefore seeks to contribute to further advancing
by leveraging Prospect Theory as a decision-making
method through a particular application to portfolio
problems. This approach consists in a new optimiza-
tion model developed from the mean absolute devi-
ation (Konno and Yamazaki, 1991) in addition with
concepts from Prospect Theory.

Studies in literature that consider Prospect The-
ory in the context of portfolio optimization, have pro-
vided comparisons with the classic Portfolio Theory
(Markowitz, 1952), that is the case of (Pfiffelmann
et al., 2016). However, a few applications were pre-
sented regarding other risk measures. Therefore, this
paper provides a comparison of the new optimization
model proposed along with Conditional Value at Risk
(CVaR) (Rockafellar and Uryasev, 2000), under dif-
ferent confidence levels.

The methodology herein provides a contribution
to portfolio optimization, specially on the applica-
tion of prospect theory as a framework for decision-
making under risk, justified by the development of a

new optimization model which is compared against
the traditional CVaR model. Additionally, the mathe-
matical approach developed utilizes two linearization
techniques, the first one is based on (Júdice et al.,
2003), where auxiliary variables were applied on the
model and the second one, was presented in (Asghari
et al., 2022) since the function has non-linear terms
comprehended in the piecewise function.

The paper is structured, as: Section 2 presents the
new optimization model and elaborates the methodol-
ogy. Section 3 provides an analytical comparison of
the portfolio models, presents the results and elabo-
rates an argumentative discussion about these results.
Section 4 provides concluding remarks and identifies
potential opportunities for further researches.

2 PORTFOLIO OPTIMIZATION
MODEL

In this paper, a new approach is presented based on
Prospect Theory and on the mean absolute deviation,
that was linearized in accordance with (Júdice et al.,
2003). Firstly, a new risk measure is introduced where
potential losses grow non-linearly by being weighted
by two different coefficients. For potential portfolio
gains, just one coefficient is applied.

Consider positive real numbers ζ, β1 . . .βI with
0 < ζ ≤ β1 ≤ β2 ≤ . . .≤ βI . Let w ∈Rn be the portfo-
lio composition with u ∈ R. The proposed risk mea-
sure is an extension of MAD, given as:

f (u,w) =

{
ζu if u+ ≥ 0
βiu if di−1 ≤ u− ≤ di i ∈ {1 . . . I}

(1)
with:

d0 ≤ d1 ≤ d2 < dI as negative real numbers

As posited in Prospect Theory, the investor gen-
erally weights losses more heavily than gains and
therefore, the risk measure should reproduce this re-
lation. Moreover, the risk measure emulates two sce-
narios for potential losses, one more severe so that it
is weighted more heavily than the another. This con-
dition produces a piecewise linear function compre-
hended by two functions with different slopes.

Assume u= u+−u− , u+ ≥ 0 and u− ≥ 0. Due
to the complementary conditions u+ ·u− = 0 and ci =
−di i ∈ {1 . . . I}, f (u,w) can be rewritten as:
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f (u,w) =

{
ζu+ if u+ ≥ 0
βiu− if ci−1 ≤−u− ≤ ci i ∈ {1 . . . I}

(2)

As observed, f (u,w) is a piecewise linear function
with c0 ≤ c1 ≤ c2 ≤ cI being the breakpoints for the
function.

Let consider:

g(u−) =
{

βiu− if ci−1 ≤−u− ≤ ci i ∈ {1 . . . I}
(3)

Adopting the approach of (Asghari et al., 2022),
consider Yi ∈ {0,1} i ∈ {1 . . . I} so that ∑

I
i Yi = 1 and

zYi = Yi ·g(u−) be the auxiliary variables. It is easy to
verify that:

f (u,w) =
I

∑
i

zYi +ζ ·u+ (4)

subject to:

I

∑
i=1

ci−1Yi ≤ u−t ≤
I

∑
i=1

ciYi (5)

I

∑
i=1

Yi = 1 (6)

g(u−t )− (1−Yi)M ≤ zYi ∀t ∈ {1 . . .T} (7)

g(u−t )+(1−Y1)M ≥ zY1 ∀t ∈ {1 . . .T} (8)

−YiM ≤ zYi ≤ YiM ∀t ∈ {1 . . .T} (9)

Yi ∈ {0,1}, j = 1 . . .n (10)

zYi ∈ R (11)

Based on this framework, let introduce the param-
eter V ∗ as the breakpoint of the function g(u−) and,
in theoretical terms, the kink as postulated by Prospect
Theory.

Let t ∈ {1, . . . ,T} denote the time horizon and let
revisit (Júdice et al., 2003), where the mean abso-
lute deviation (MAD) model was linearized as φ(u) =
∑

T
t=1
(
u+t +u−t

)
. By the complementary condition

u+ · u− = 0, and through the relation in u+t − u−t =
∑

n
j=1(R

t
j − R j)w j, ∀t ∈ {1, . . . ,T}, a fundamental

part of the constraints set in the reformulated opti-
mization model is defined.

Let M be a sufficiently large number to bound the
auxiliary variables zYi =Yi ·g(u−). This adjustment is

necessary since g(u−) has been reallocated to the con-
straint set, while zYi remains in the objective function,
according to the process of linearization.

Consequently, the reformulated optimization
model, introducing a new risk measure in the objec-
tive function, is now expressed as follows:

Minimize(w,u,z)Ψ(u,z) =
T

∑
t=1

(ζu+t )+
T

∑
t=1

I

∑
i=1

(ztYi)

(12)
subject to:

w =

w ∈ Rn

∣∣∣∣∣∣∣
n

∑
j=1

w j = 1;
n

∑
j=1

R jw j ≥ R0;

w j ≥ 0, ∀ j ∈ {1 . . .n}

 (13)

V ∗Y2 ≤ u−t ≤V ∗Y1 +MY2 (14)

I

∑
Yi=1

Yi = 1 (15)

g(u−t )− (1−Yi)M ≤ zYi ∀t ∈ {1 . . .T} (16)

g(u−t )+(1−Yi)M ≥ zYi ∀t ∈ {1 . . .T} (17)

−YiM ≤ zYi ≤ YiM ∀t ∈ {1 . . .T} (18)

u+t −u−t =
n

∑
j=1

(Rt
j −R j)w j ∀t . . .T (19)

M ∈ R, zYi ∈ R

Yi ∈ {0,1}, j = 1 . . .10

u+t ,u
−
t ≥ 0

0 < ζ < β1 < β2, t ∈ {1 . . .T}
Where:

Rt
j is the historical return of asset j with j = 1 . . .n

in the period t with t = 1 . . .T .
w j is the percentage allocated to asset j.
R j is the average return of asset j.
R0 is the minimum return required by the investor.
M is a sufficiently large real number.
Y1,Y2, . . .YI are binary variables responsible for

the assignment of the expressions in g(u−t ).
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i corresponds to the set of equations of the piece-
wise linear function with i = 1 . . . I and, in this case,
with I = 2.

ztYi are the auxiliary variables.
V ∗ is a parameter based on the idea of the kink

arising from Prospect Theory and its value denote in
which expression of g(u−t ) the variable u−t lies on.

Observe that this is a mixed-integer programming
model in which the number of binary variables does
not depend on the number of observations of the time
series.

In the model, the Equation (12) is the objec-
tive function that minimizes the total portfolio risk,
weighting differently gains and losses. Equation (13)
is the set of constraints defined in Markowitz’s model.
Equation (14) represents the domain of u−t , i.e., the
lower and upper limits for u−t in each expression, re-
spectively. Equation (15) ensures the characteristic of
the variables as binary type. Equations (16) to (18)
establish a lower and upper bound for ztYi . Equation
(19) establishes an exact relationship between the dif-
ference of returns above and below the average.

The prospect model composed by a new risk mea-
sure turned the piecewise linear function into a lin-
ear function and consequently the model into a Linear
Programming (LP) problem which is less complex in
terms of computational time.

2.1 Portfolio Assessment

The performance of each portfolio optimization
model is measured through the set of metrics based
on (Ramos et al., 2023). These metrics are described
as follows.

The volatility of the portfolio returns can be mea-
sured through the standard deviation. With respect to
the negative deviations, that comprehends the portfo-
lio returns below the expected returns, the metric used
is the semi-deviation. These metrics can be expressed
as follows:

σ =
√

E [(R−E[R])2] (20)

Sd− =
√

E[((R−E[R])−)2] (21)

Where: E[R] is the expected return of the portfo-
lio.

While standard deviation σ denotes the portfolio
risk, semi-deviation denotes only the deviations be-
low the expected returns of the portfolio (Ramos et al.,
2023).

The traditional VaR is used considering the histor-
ical returns, or in other words, it considers the non-
parametric approach.

VaRα(w) =−Qα

(
n

∑
j=1

R jw j

)
(22)

The significance level considered is 95%, quite
common in the literature.

The widely known Sharpe Ratio consists of the
excess-return ratio per the standard deviation and
measures the portfolio performance.

Sharpe =
E[R− r f ]

σ
(23)

Where: r f is the risk-free rate.

In (Sortino and Satchell, 2001) , the standard de-
viation contained in the Sharpe Ratio’s formula is re-
placed by the Semi Deviation Sd−, comprehending
therefore the negative deviations.

Sortino =
E[R− r f ]

Sd− (24)

The STARR Ratio is another metric utilized and
it is the expected excess of portfolio returns per the
CVaR of the excess of portfolio returns. STARR Ratio
also derives from Sharpe Ratio, but takes into account
the reward for each CVaR’s value and is therefore
considered a tail-risk-reward (Ramos et al., 2023). An
example of such approach can be found in (Mainik
et al., 2015).

STARR =
E[R− r f ]

CVaRα(R− r f )
(25)

For the methodology of Systematic Risk, an ap-
proach similar to (Ramos et al., 2023) is adopted
where a coefficient β is used and obtained through
the Ordinary Least Squares (OLS) Regression, such
as follows:

E[R] = r f +β(E[B]− r f )+ ε (26)
where:
r f is the risk-free rate.
(E[B]− r f ) is the excess return (market risk pre-

mium), where E[B] is the benchmark return (IBOV in-
dex for the Brazilian study and S&P500 for the Amer-
ican study, both presented herein).

β is the coefficient of the regression or in better
words, the sensibility of the portfolio to the market
risk premium.

ε is an error considered.

Additionally, β’s results represent the sensibility
of the portfolio returns to the market risk premium
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so that returns above and below the expected mar-
ket returns are commonly called bull or bear mar-
ket and therefore, were called β(+) and β(−), respec-
tively. The Brazilian benchmark index adopted was
the IBOV for the Brazilian application and S&P500
for the American’s.

3 RESULTS

3.1 Data and Application

The application of the methodology previously dis-
cussed considered three pivotal sectors from the
Brazilian Stock Exchange (Brasil, Bolsa, Balcão -
(B3, 2025)). These sectors were: Oil & Gas, Finan-
cial/Banking, and Electricity sector. A total of 27 as-
sets were chosen, comprising 7 from the Oil & Gas
and 10 from each of the remaining sectors. The selec-
tion criteria prioritized assets with historical returns
that cover all time horizon and focused on prominent
Brazilian companies. Observe in Table 1 the set of
assets belonging to each of the sectors considered.

These sectors also were selected due to their sub-
stantial influence on the fluctuations of IBOV. This in-
dex is also utilized as a reference in one of the metrics
previously detailed.

Analogously, an additional application was held
to test the methodology proposed herein under dif-
ferent market conditions. Therefore, an important
sector from the American stock market was selected
to run both models under the same method, criteria
and period. The sector selected was Technology with
10 stocks from the most valuable companies open in
Nasdaq (American Exchange), as shown in Table 2.

The analysis for both studies spans approximately
eight years, from January 2015 to December 2023,
justified not only for its duration but also for encom-
passing the COVID-19 pandemic, a period of consid-
erable volatility to the portfolio returns. This time
horizon with some instability is critical for testing the
robustness of the proposed portfolio model.

In order to consider a balanced temporal dynam-
ics, the eight-years period was subdivided into mov-
ing windows, as proposed by (Best and Grauer, 2016).
This approach facilitates the identification of trends
and documents performance variations across these
periods within the time horizon. Each window spans
the same number of 319 days, ensuring consistency in
temporal analysis.

The application is conducted for two portfolio op-
timization problems: the CVaR optimization model
and the newly prospect optimization model, derived
from mean absolute deviation (MAD) and Prospect

Table 1: Companies By Sector - B3-Brazil.

Code Electricity
CPLE3 Cia Paranaense De Energia-Copel
CMIG3 Cia Energética De Minas Gerais-

Cemig
ELET3 Centrais Elet Bras S.A-Eletrobras
CPFE3 Cpfl Energia S.A
LIGT3 Light S.A.
EQTL3 Equatorial Energia S.A
EGIE3 Engie Brasil Energia S.A
ENGI11 Energisa S.A.
CSLC3 Centrais Elet De Santa Catarina S.A
TAEE11 Transmissora Aliança de En. Elétrica

S.A
Code Banking/Financial
BPAN4 Banco Pan S.A
BEES3 Banestes S.A-Banco do E. do E.

Santo
BRSR6 Banrisul S.A-Banco do E. do R. G.

Do Sul
BBDC4 Banco Bradesco S.A
BBAS3 Banco Brasil S.A
BAZA3 Banco Amazônia S.A
ITUB4 Itaú Unibanco Holding S.A
BMEB4 Banco Mercantil Do Brasil S.A
BNBR3 Banco Nordeste Do Brasil S.A
SANB11 Bco Santander (Brasil) S.A
Code Oil & Gas
ENAT3 Enauta Participações S.A
RPMG3 Refinaria De Petróleos Manguinhos

S.A.
PETR3 Petróleo Brasileiro S.A - Petrobras
PRIO3 Petro Rio S.A
UGPA3 Ultrapar Participações S.A
LUPA3 Lupatech S.A
OSXB3 Osx Brasil S.A

Theory. The CVaR problem is assessed across a few
confidence levels, whereas the prospect optimization
model is assessed under different weighting parame-
ters.

Each optimization model and sector was analyzed
with respect to risk, return, and with respect to the
portfolio assessment metrics described herein. The
time horizon was divided into seven moving windows
across the three selected sectors.

The CVaR is evaluated under a few confidence
levels, that are 90%, 95% and 99% whereas the
prospect model was evaluated under a group of a few
parameters, based on Prospect Theory and being sub-
divided into 9 problems, as shown on the next table.

The variations in the coefficients of the Prospect
Optimization Model were designed to assess the
model under different gains and losses scenarios, con-
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Table 2: Companies By Sector - Nasdaq-USA.

Code Technology
AAPL Apple Inc.
MSFT Microsoft Corporation.
NVDA NVIDIA Corporation.
AMZN Amazon.com Inc.
GOOGL Alphabet Inc.
META Meta Platforms Inc.
TSLA Tesla Inc.
AVGO Broadcom Inc.
CSCO Cisco Systems, Inc.
ADBE Adobe Inc.

Table 3: Parameters for each Prospect model.

Prospect Model ζ β1 β2
Prospect 1.1 1.10 0.50 1.25
Prospect 1.2 1.10 0.50 2.25
Prospect 1.3 1.10 0.50 3.25
Prospect 2.1 1.10 1.50 1.25
Prospect 2.2 1.10 1.50 2.25
Prospect 2.3 1.10 1.50 3.25
Prospect 3.1 1.10 2.50 1.25
Prospect 3.2 1.10 2.50 2.25
Prospect 3.3 1.10 2.50 3.25

trasting with CVaR performance, and both of their
performances evaluated by the defined portfolio met-
rics.

The parameter V ∗, which is based on the idea of
the kink, was quantified as an average of the CVaR’s
results.

The results for the metrics mentioned are pre-
sented along three tables specifically for each sector,
but considering the whole time series. The full pe-
riod was applied for a matter of enough data to calcu-
late the portfolio performance metrics and to organize
a reasonable comparison. Each metric is compared
separately in each column of each table. Therefore,
colors in green represent positive results to a specific
metric in a column from each table. Colors in red
mean negative results. Colors in yellow mean inter-
mediate results. Occasional column with only yel-
low results means that the results are too close to each
other so that they are all considered intermediate.

3.2 Discussion

The performance of the models for the Brazilian case
is exhibited in Table 4, which contains results for the
electricity sector and in Tables 5 and 6, which con-
tain results for the Financial and the Oil & Gas sector,
respectively.

The Table 4 exhibited properties of higher risk for
prospect models with exception to CVaR 90%. No-

tably, the standard deviation σ and the semi-deviation
Sd(−) are higher along this period demonstrating
higher volatility of portfolio returns. When recheck-
ing the data, it was concluded that there were con-
siderable losses within that period, and it was con-
firmed through the analysis of the index of electric-
ity of this sector (B3-IEE, 2025). The exception oc-
curred for VaR, in which prospect model achieved low
risk. With respect to the reward-risk metrics, Sharpe,
Sortino and STARR, CVaR’s models produced a bet-
ter relation to risk-return. With respect to the betas,
which represent the portfolio’s sensitivity in tracking
the market premium risk, the findings were not par-
ticularly significant, with stand out to the prospect
model. It is important to note that, according to
(Ramos et al., 2023), betas below 1 indicate periods
of market downturn, which suggests that the results
highlighted in green reflect a lower sensitivity of the
portfolios in following this trend.

Table 5 presents very similar returns between the
two models, with a marginally notable performance
by the CVaR 99% model in terms of accumulated re-
turn. Regarding the risk metrics σ and SD(−), the
CVaR models stood out, except for the CVaR 99%,
which exhibited higher risk values. As for the metric
VaR, the prospect model was prominent, repeating the
relation observed in the previous table. Concerning
the risk-return reward measures, the CVaR model out-
performed across all three indices—Sharpe, Sortino,
and Starr. For the betas, the prospect model stood out
in both the benchmark and the bull market, whereas
the CVaR model excelled in the bear market.

The Table 6 revealed a different relationship for
the models in some performance metrics compared
to the previous tables. The results for accumulated
return, standard deviation, and the Sharpe ratio were
superior for the prospect model. However, for the re-
maining metrics in the table, including the betas at the
end of the columns, the CVaR model achieved supe-
rior results.

Additionally to the main case herein, an appli-
cation was held to the American market and an im-
portant sector, which is the Technology, was selected
to test the model under different market conditions.
Such results are exhibited in Table 7 that showed su-
perior results for the prospect model.

Notably, the prospect model achieved better re-
sults in Table 7 in terms of returns, all risk-return re-
ward metrics and in betas. On the other hand, it may
be considered more volatile considering the results of
Sd(−) and VaR’s. It’s also important to notice that
despite CVaR has been superior in a few metrics, It
lost its superiority in the risk-return reward metrics,
result that was observed in last three Tables regard-
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Table 4: Performance Metrics for Electricity Sector.

Electricity Sector with 10 assets

Risk Cum. Ret. Avrg. Ret σ Sd(-) VaR Sharpe Sortino STARR β β(+) β(−)

CVaR 90% 0.660043 0.000296 0.004005 0.003093 0.005198 0.074487 0.096447 0.021228 0.063460 0.021962 0.034169
CVaR 95% 0.721675 0.000323 0.003750 0.002445 0.005553 0.086910 0.133334 0.024408 0.058796 0.031897 0.017675
CVaR 99% 0.716388 0.000321 0.004031 0.002544 0.006466 0.080274 0.127206 0.023626 0.063441 0.034894 0.029544
Prospect 1.1 0.674502 0.000302 0.005146 0.004577 0.004899 0.059230 0.066595 0.019269 0.044670 0.013594 0.009173
Prospect 1.2 0.675335 0.000302 0.005186 0.004619 0.004904 0.058848 0.066068 0.019247 0.044737 0.014486 0.010847
Prospect 1.3 0.670603 0.000300 0.005161 0.004593 0.004855 0.058719 0.065979 0.019129 0.044491 0.013958 0.008974
Prospect 2.1 0.679653 0.000304 0.005282 0.004714 0.004759 0.058144 0.065154 0.019197 0.044561 0.009642 0.009642
Prospect 2.2 0.675522 0.000303 0.005286 0.004713 0.004878 0.057745 0.064772 0.019102 0.044797 0.012970 0.010225
Prospect 2.3 0.671259 0.000301 0.005193 0.004618 0.004844 0.058412 0.065689 0.019117 0.044337 0.013861 0.009103
Prospect 3.1 0.675058 0.000302 0.005234 0.004673 0.004826 0.058287 0.065288 0.019173 0.044373 0.013902 0.009264
Prospect 3.2 0.675102 0.000302 0.005254 0.004685 0.004814 0.058065 0.065116 0.019164 0.044457 0.013718 0.009633
Prospect 3.3 0.671439 0.000301 0.005202 0.004628 0.004840 0.058337 0.065574 0.019119 0.044684 0.014160 0.011265

Average 0.680548 0.000305 0.004894 0.004158 0.005070 0.063955 0.078935 0.020148 0.048900 0.017420 0.014126
Minimum 0.660043 0.000296 0.003750 0.002445 0.004759 0.057745 0.064772 0.019102 0.044337 0.009642 0.008974
Maximum 0.721675 0.000323 0.005286 0.004714 0.006466 0.086910 0.133334 0.024408 0.063460 0.034894 0.034169

Table 5: Performance Metrics for Banking / Financial Sector.

Banking / Financial Sector with 10 assets

Risk Cum. Ret. Avrg. Ret σ Sd(-) VaR Sharpe Sortino STARR β β(+) β(−)

CVaR 90% 0.6749598 0.0003023 0.0044868 0.0032494 0.0064019 0.0679822 0.0938703 0.0200801 0.123820 0.101417 0.081619
CVaR 95% 0.6759288 0.0003027 0.0045429 0.0032063 0.0065380 0.0672376 0.0952662 0.0200886 0.131423 0.106065 0.085652
CVaR 99% 0.6923757 0.0003101 0.0048577 0.0033469 0.0073117 0.0643964 0.0934663 0.0202511 0.136302 0.131051 0.131051
Prospect 1.1 0.6749052 0.0003022 0.0045383 0.0036612 0.0063434 0.0672044 0.0833051 0.0192861 0.120924 0.083417 0.122114
Prospect 1.2 0.6749052 0.0003022 0.0045408 0.0036617 0.0063840 0.0671671 0.0832939 0.0192926 0.121436 0.091364 0.109767
Prospect 1.3 0.6749052 0.0003022 0.0045401 0.0036680 0.0063258 0.0671783 0.0831497 0.0192946 0.120832 0.083619 0.122911
Prospect 2.1 0.6749052 0.0003022 0.0045358 0.0036593 0.0063818 0.0672409 0.0833469 0.0193093 0.122353 0.084633 0.096643
Prospect 2.2 0.6749052 0.0003022 0.0045357 0.0036539 0.0063761 0.0672424 0.0834720 0.0193022 0.122592 0.091526 0.098825
Prospect 2.3 0.6749052 0.0003022 0.0045382 0.0036652 0.0063537 0.0672064 0.0832134 0.0193072 0.121781 0.085380 0.096273
Prospect 3.1 0.6749052 0.0003022 0.0045415 0.0036686 0.0063279 0.0671571 0.0831374 0.0192895 0.120903 0.083235 0.095485
Prospect 3.2 0.6749052 0.0003022 0.0045403 0.0036658 0.0063827 0.0671743 0.0831990 0.0192909 0.120822 0.084256 0.095347
Prospect 3.3 0.6749052 0.0003022 0.0045411 0.0036734 0.0063378 0.0671634 0.0830276 0.0193008 0.122256 0.090480 0.087357

Average 0.676451 0.000303 0.004562 0.003565 0.006455 0.067029 0.085979 0.019508 0.123787 0.093037 0.101920
Minimum 0.674905 0.000302 0.004487 0.003206 0.006326 0.064396 0.083028 0.019286 0.120822 0.083235 0.081619
Maximum 0.692376 0.000310 0.004858 0.003673 0.007312 0.067982 0.095266 0.020251 0.136302 0.131051 0.131051

Table 6: Performance Metrics for Oil & Gas Sector.

Oil & Gas Sector with 7 assets.

Risk Cum. Ret. Avrg. Ret σ Sd(-) VaR Sharpe Sortino STARR β β(+) β(−)

CVaR 90% 0.6641466 0.0002974 0.0091415 0.0066263 0.0122230 0.0328367 0.0453010 0.0132606 0.308324 0.181852 0.466155
CVaR 95% 0.6573600 0.0002944 0.0091305 0.0065635 0.0122558 0.0325433 0.0452713 0.0131186 0.315649 0.190211 0.463402
CVaR 99% 0.6572365 0.0002943 0.0109428 0.0071091 0.0136906 0.0271487 0.0417893 0.0121112 0.317266 0.201762 0.458171
Prospect 1.1 0.6669770 0.0002987 0.0088806 0.0070480 0.0124028 0.0339440 0.0427702 0.0128963 0.339118 0.223844 0.579172
Prospect 1.2 0.6824364 0.0003056 0.0088822 0.0070543 0.0123860 0.0347175 0.0437133 0.0131909 0.338976 0.223784 0.576523
Prospect 1.3 0.6743679 0.0003020 0.0088779 0.0070511 0.0123787 0.0343271 0.0432208 0.0130430 0.339160 0.223198 0.577457
Prospect 2.1 0.6808568 0.0003049 0.0088809 0.0070452 0.0124080 0.0346429 0.0436695 0.0131690 0.338882 0.222711 0.575979
Prospect 2.2 0.6824364 0.0003056 0.0088829 0.0070409 0.0123409 0.0347145 0.0437968 0.0131996 0.338450 0.222083 0.577830
Prospect 2.3 0.6742435 0.0003019 0.0088805 0.0070465 0.0124059 0.0343110 0.0432409 0.0130474 0.339153 0.222908 0.577640
Prospect 3.1 0.6723612 0.0003011 0.0088903 0.0071144 0.0123583 0.0341783 0.0427098 0.0129719 0.340836 0.226336 0.577777
Prospect 3.2 0.6723612 0.0003011 0.0088808 0.0070555 0.0123709 0.0342150 0.0430663 0.0129987 0.338825 0.223488 0.574337
Prospect 3.3 0.6739684 0.0003018 0.0088798 0.0070591 0.0124090 0.0342997 0.0431463 0.0130376 0.339567 0.224591 0.578087

Average 0.671563 0.000301 0.009096 0.006984 0.012469 0.033490 0.043475 0.013004 0.332850 0.215564 0.548544
Minimum 0.657236 0.000294 0.008878 0.006563 0.012223 0.027149 0.041789 0.012111 0.308324 0.181852 0.458171
Maximum 0.682436 0.000306 0.010943 0.007114 0.013691 0.034717 0.045301 0.013261 0.340836 0.226336 0.579172

Table 7: Performance Metrics for Technology Sector - Nasdaq-USA.

Technology Sector with 10 assets.

Risk Cum. Ret. Avrg. Ret σ Sd(-) VaR Sharpe Sortino STARR β β(+) β(−)

CVaR 90% 1.029705 0.000461 0.005352 0.003718 0.008104 0.060200 0.086651 0.002834 0.001390 -0.000772 0.001539
CVaR 95% 1.033281 0.000463 0.005450 0.003757 0.008420 0.059408 0.086177 0.002849 0.001055 -0.000936 0.000915
CVaR 99% 1.024239 0.000459 0.005610 0.003863 0.009021 0.056996 0.082763 0.002808 0.001798 -0.000760 0.001108
Prospect 1.1 1.062510 0.000476 0.005289 0.003889 0.008359 0.063689 0.086619 0.002960 0.001670 -0.000437 0.000803
Prospect 1.2 1.060851 0.000475 0.005290 0.003877 0.008400 0.063537 0.086693 0.002955 0.001644 -0.000470 0.001762
Prospect 1.3 1.060538 0.000475 0.005288 0.003882 0.008376 0.063530 0.086539 0.002953 0.001646 0.000705 0.000904
Prospect 2.1 1.062882 0.000476 0.005299 0.003898 0.008434 0.063605 0.086466 0.002962 0.001629 -0.000466 0.001744
Prospect 2.2 1.061604 0.000475 0.005291 0.003879 0.008406 0.063585 0.086745 0.002958 0.001609 -0.000499 0.001719
Prospect 2.3 1.063218 0.000476 0.005291 0.003883 0.008428 0.063728 0.086829 0.002964 0.001649 -0.000453 0.001760
Prospect 3.1 1.062743 0.000476 0.005298 0.003904 0.008413 0.063602 0.086323 0.002961 0.001692 -0.000417 0.000828
Prospect 3.2 1.063239 0.000476 0.005295 0.003891 0.008310 0.063676 0.086662 0.002964 0.001581 -0.000510 0.001698
Prospect 3.3 1.061254 0.000475 0.005288 0.003875 0.008442 0.063597 0.086779 0.002956 0.001652 -0.000455 0.001765

Average 1.053839 0.000472 0.005337 0.003860 0.008426 0.062429 0.086270 0.002927 0.001585 -0.000456 0.001379
Minimum 1.024239 0.000459 0.005288 0.003718 0.008104 0.056996 0.082763 0.002808 0.001055 -0.000936 0.000803
Maximum 1.063239 0.000476 0.005610 0.003904 0.009021 0.063728 0.086829 0.002964 0.001798 0.000705 0.001765
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ing the Brazilian study. These findings suggest that
the prospect model has tendency to seek more gains
in profitable markets, getting therefore a better perfor-
mance, but also under higher volatility. When the sce-
nario is characterized by losses it may be quite conser-
vative, changing this feature. This can be justified by
the fact that the stocks in Technology sector have de-
livered higher returns and have been quite profitable
during the time horizon considered, or over almost 8
years. Differently from Brazilian sectors that had re-
turns nearly 30% less over the same time horizon.

In some of the results, it is possible to notice that
the prospect model exhibited a propriety of higher
volatility as observed in (Pfiffelmann et al., 2016).
This feature can be observed through Table 4 and par-
tially in Table 5 and 7.

Finally, both models were considered suitable for
this application and the prospect model delivered re-
sults suitable and comparable to CVaR’s in many in-
stances. It’s possible to infer that in some occasions
discussed, prospect model delivered more volatility
and very similar results in all sectors, specially in the
financial sector for Brazilian study (Table 5) and for
the American study in Table 7. On the other hand,
CVaR delivered a better relation of reward return-risk
in all Brazilian sectors.

Next section presents overall conclusions and sug-
gests opportunities to continue this study.

4 CONCLUSIONS

This paper has elucidated the significant potential of
utilizing prospect theory in the context of portfolio
optimization. By the interpretation of the results from
the proposed prospect model, an alignment with the
outcomes of a traditional optimization model was ob-
served in many instances.

The primary advantage of integrating prospect
theory into portfolio optimization lies in its ability
to assign different weightings to gains and losses,
thereby accommodating specific needs of the decision
makers. This approach also enables the weighting
for losses in distinct segments, thus allowing simulate
different scenarios.

The results of this paper were analyzed using port-
folios composed of assets from three different sec-
tors for Brazilian case and one more sector within
the American case. This approach was crucial for
evaluating both models when selecting assets under
distinct conditions, thereby avoiding undesirable bi-
ases. The alignment of these results demonstrated the
consistency of the new model as an alternative tool
for decision-making analysis under uncertainty in the

context of investments. This was the primary goal of
this paper, that is, to provide an alternative mathemat-
ical model with a level of efficiency comparable to
well-established mathematical approaches in the spe-
cialized literature.

While the proposed model exhibited similarities
to CVaR’s in most of instances, it also demonstrated
inconsistencies in some of the results. These find-
ings underscore the necessity for further refinements.
Future researches should focus on calibrating all pa-
rameters, particularly the break-point of the func-
tion based on the idea of the kink). Besides future
researches could propose more break-points for the
functions testing different parameters for the betas.
This would increase the number of binary variables
and might provide opportunities of refinements.

In conclusion, the application of prospect theory
to portfolio optimization problems holds promise, but
it also presents challenges that require attention and
ongoing refinement to fully achieve its potential.
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B3 (2025). Índice bovespa (ibovespa b3). B3 - Brasil,
Bolsa, Balcão.
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