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Abstract: Brain tumors are life-threatening conditions where early detection and accurate classification are critical for 
timely and effective treatment. Misclassification or delayed identification of tumors can result in fatal 
consequences. Current deep learning techniques, predominantly based on Convolutional Neural Networks 
(CNNs), have demonstrated success in tumor detection but face limitations due to their inability to handle 
diverse and extensive datasets effectively. Moreover, CNNs suffer from information loss in pooling layers, 
leading to suboptimal performance in capturing global dependencies in MRI tumor images. To overcome 
these challenges, we propose the use of a modified Capsule Network to address the limitations of CNNs. 
Capsule Networks retain spatial hierarchies and dependencies, enabling improved performance in tumor 
detection and classification tasks. Our approach achieves near-perfect classification accuracy across four 
classes—pituitary, glioma, meningioma, and no tumor—using a diverse and augmented dataset. The dataset 
comprises publicly available MRI images from Figshare, Sartaj, and Br35 collections, providing a robust 
platform for evaluating model performance. Experimental results demonstrate that our method not only 
achieves superior accuracy compared to existing techniques but also maintains its performance across a 
broader range of data. These findings highlight the potential of Capsule Networks as a reliable and effective 
solution for brain tumor classification tasks, paving the way for advancements in medical imaging and 
diagnostic technologies. 

1 INTRODUCTION 

Brain tumors are among the most life-threatening 
diseases, with early detection being critical for 
effective treatment and improved survival rates. 
Magnetic Resonance Imaging (MRI) is commonly 
used for brain tumor detection due to its high-
resolution imaging capabilities. However, the 
complexity of tumor classification from MRI scans 
poses significant challenges. The vast amount of data 
generated from MRI scans, combined with the 
intricate and varied nature of brain tumors, makes 
manual classification a time-consuming and error-
prone task. An efficient, automated system is 
essential to aid medical professionals in diagnosing 
and classifying brain tumors accurately and timely. 

Convolutional Neural Networks (CNNs) have 
become the leading deep learning architecture for 
medical image classification, including brain tumor 
detection. CNNs excel at extracting hierarchical 

features from images and have achieved impressive 
results in various computer vision tasks. However, 
their application to medical image classification, 
particularly in the context of brain tumors, is not 
without limitations. One of the primary challenges of 
CNNs is their inability to handle spatial relationships 
between features effectively. Brain tumors, which 
vary in shape, size, and location, require a model that 
can retain and understand these spatial characteristics. 
CNNs struggle to generalize across different 
transformations or rotations of images, as they are 
reliant on large datasets to account for such 
variations. Unfortunately, in medical imaging, such 
extensive datasets are often not available, and data 
augmentation alone cannot overcome this issue. 
Furthermore, the use of pooling layers in CNNs leads 
to a loss of spatial resolution, which is detrimental 
when it comes to tasks that require accurate location-
based classification, such as tumor detection. 

1288
Shiraskar, S., Vellandurai, S. and Rizk, D.
Leveraging Capsule Networks for Robust Brain Tumor Classification and Detection in MRI Scans.
DOI: 10.5220/0013323000003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 1288-1296
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



While CNNs have been the go-to solution for 
medical image classification, these limitations 
highlight the need for more advanced techniques 
capable of addressing the challenges in medical 
imaging. Capsule Networks (CapsNets) have been 
introduced as a potential solution. CapsNets are 
designed to overcome the shortcomings of CNNs by 
encoding both the presence and spatial orientation of 
features, thus preserving important geometric 
relationships. This ability to maintain spatial 
hierarchies and relationships allows CapsNets to 
perform better on tasks that involve complex image 
structures, such as brain tumor classification. By 
preserving the location and orientation of features, 
CapsNets offer the potential to improve the accuracy 
of tumor classification and overcome the 
shortcomings of CNNs. 

Despite the promising results of CapsNets, 
challenges remain in their application to brain tumor 
detection. Current CapsNet-based methods have 
shown improvements over traditional CNN 
approaches, but they still face issues related to 
computational complexity and suboptimal 
segmentation accuracy. Additionally, training 
CapsNets on smaller, limited datasets can hinder their 
ability to generalize to unseen variations in tumor 
characteristics. These gaps underscore the need for 
further research and refinement of CapsNet 
architectures, along with the development of more 
diverse and augmented medical image datasets, to 
fully realize their potential in brain tumor 
classification. 

In this study, we present a modified Capsule 
Network (CapsNet) model tailored for brain tumor 
classification. Capsule Networks are designed to 
address the limitations of traditional Convolutional 
Neural Networks (CNNs) by leveraging capsules—
groups of neurons that output vectors representing 
both the probability and spatial properties (pose) of 
features. A key advantage of CapsNet is its ability to 
recognize spatial relationships and part-whole 
hierarchies, which enhances generalization across 
transformed data. 

Our model begins with standard convolutional 
layers to extract lower-level features from the input 
images. These features are then processed by a 
custom Capsule Layer, which performs feature 
detection by utilizing a weight matrix and 
encapsulating these features as vectors. The Capsule 
Layer uses a routing mechanism (such as dynamic 
routing, though simplified in this implementation) to 
route outputs from lower-level capsules to higher-
level ones, ensuring that the spatial relationships 
between detected features are preserved. 

The model’s output layer uses softmax activation 
to classify images based on the output from the 
capsule layer, enabling the network to learn complex 
feature hierarchies and improve accuracy. The 
network is trained using standard backpropagation, 
with the training process monitored using validation 
data over multiple epochs. 

2 LITERATURE REVIEW 

Recent studies have extensively compared popular 
deep learning architectures such as CNN, VGG, and 
ResNet for brain tumor classification, highlighting 
both their strengths and limitations. For instance, 
(Anwar, 2024) explored the use of CNNs for brain 
tumor detection and segmentation, demonstrating the 
model's strong capability for image classification. 
However, the study also highlighted issues such as 
feature loss during downsampling and the need for 
more efficient feature representations  (Anwar, 2024). 
VGG and ResNet, although effective for image 
classification tasks, face challenges in accurately 
capturing fine-grained details necessary for precise 
tumor segmentation. In particular, VGG, known for 
its depth and simplicity, and ResNet, which utilizes 
residual connections to avoid the vanishing gradient 
problem, often struggle to handle complex spatial 
relationships in medical images, such as in the case of 
brain tumor segmentation (Ibrahim, 2023). These 
findings underscore the need for improved models 
that can better preserve the spatial hierarchies of 
features in medical image data. 

The drawbacks of CNNs and traditional 
architectures have led to the development of alternative 
models, notably Capsule Networks (CapsNet). 
CapsNet, introduced by (Hinton, 2018), addresses 
some of the shortcomings of CNNs, particularly in 
terms of capturing spatial hierarchies and rotation 
invariance. Capsule Networks preserve spatial 
relationships between features by using "capsules," 
which are groups of neurons encoding both the 
presence and orientation of objects. This approach 
improves the model's robustness in recognizing 
complex patterns and spatial features, making it 
particularly suited for medical image analysis, 
including brain tumor detection (Sabour, 2017). 

Mathematically, the basic operation of a Capsule 
Network is described by dynamic routing, where 
capsules use a dynamic algorithm to route 
information between layers. This allows capsules to 
better maintain the spatial relationships between 
features, overcoming the problem of information loss 
seen in CNNs during max-pooling operations. Max-
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pooling, commonly used in CNNs for dimensionality 
reduction, can discard crucial spatial information, 
which is a critical issue for tasks like tumor detection. 
In contrast, CapsNet's dynamic routing algorithms 
help preserve this information, leading to more 
accurate representations of tumors in medical images 
(Hinton et al., 2018). 

For a better understanding of how CNNs, VGG, 
and ResNet operate, we outline their basic 
architectures and key operations below: 

2.1 CNN (Convolutional Neural 
Network) 

A CNN consists of several layers: convolutional 
layers for feature extraction, pooling layers for 
dimensionality reduction, and fully connected layers 
for classification. The basic operation of a CNN can 
be described mathematically as: 𝑦 = 𝑅𝑒𝐿𝑈(𝑊 ⋅ 𝑥 + 𝑏) 

Where 𝑥  is the input image, 𝑊  are the learned 
weights, and 𝑏 is the bias term. The ReLU activation 
function is applied elementwise to introduce non-
linearity. 

2.2 VGG Network 

VGG is a deep CNN architecture known for its simple 
and consistent design. It uses small 3×3 convolutional 
filters stacked on top of each other, followed by max-
pooling layers. While VGG is effective in feature 
extraction, its deeper networks are prone to 
overfitting on smaller datasets (Simonyan, 2014). 

 
Figure 1: VGGNet proposed by (Simonyan, 2014). 

2.3 ResNet (Residual Networks) 

ResNet addresses the vanishing gradient problem 
through the introduction of residual connections, 
allowing gradients to flow more easily through deeper 
networks. A basic ResNet block can be expressed as: 𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 

Where 𝐹(𝑥, {𝑊𝑖}) is the residual function learned 
by the network, and 𝑥 is the input to the block. This 
formulation allows for more efficient training of deep 
networks (He, 2016). 

2.4 CapsNet (Capsule Networks) 

Capsule Networks, while effective in overcoming 
some of the challenges faced by traditional models, 
come with their own set of challenges, particularly 
computational complexity. The dynamic routing 
algorithm, which is central to CapsNets, is 
computationally expensive, making it less feasible for 
real-time clinical applications with large datasets 
(Chen, 2022). Nevertheless, recent research has 
shown that CapsNet-based models outperform 
traditional architectures in terms of segmentation 
accuracy, especially in medical imaging tasks ( (Shi, 
2020); (Zhang, 2021). 

Traditional CNNs, while effective in feature 
extraction, struggle with loss of spatial information 
due to pooling layers, sensitivity to transformations, 
and dependency on large datasets, which are often 
unavailable in medical imaging (M. Sharma, 2024). 
CapsNets overcome these drawbacks by encoding 
features as vectors and utilizing dynamic routing, 
enabling robust classification even with limited data 
and preserving spatial hierarchies critical for medical 
diagnosis  (Afshar, 2019); (Raythatha, 
2023).Innovations like the InceptionCapsule model, 
integrating self-attention and Inception-ResNet 
architectures, promise enhanced accuracy, but 
challenges such as overfitting, computational 
inefficiency, and limited transfer learning persist 
(Sadeghnezhad, 2024) 

Current studies emphasize the importance of using 
whole-brain images rather than segmented regions to 
retain locational context, an area where CapsNets 
demonstrate superiority over state-of-the-art CNN 
models like ResNet and DenseNet (Raythatha & V., 
2023). This trajectory positions CapsNets as a 
promising solution for precise classification of brain 
tumor subtypes, 

The hybrid approach, combining CNNs and 
CapsNets, has also shown promise. For example, (Hu, 
2023) proposed a hybrid model that integrates CNNs 
for initial feature extraction and CapsNets for 
enhanced spatial representation, leading to state-of-
the-art results in brain tumor detection. 
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Figure 2: Number of images per tumor type. 

Taking reference from (Nitish Srivastava, 2014). 
on dropout in deep neural networks our contribution 
builds on these advancements by enhancing accuracy 
through the integration of denser layers and 
introducing capsule dropout, a novel regularization 
method that refines the dropout process by 
systematically dropping capsule vectors rather than 
individual neurons. This approach ensures better 
feature coherence and robustness, improving multi-
scale feature extraction capabilities. Furthermore, our 
model expands the application of CapsNets to a 
larger, more diverse dataset, achieving high accuracy 
and demonstrating their scalability for complex 
medical imaging tasks. This refined framework not 
only overcomes limitations of traditional 
architectures but also establishes a robust pathway for 
integrating CapsNets into real-world diagnostic tools. 

3 METHODOLOGY 

The methodology implemented in this study involves 
leveraging a modified Capsule Network for brain 
tumor classification. The network is designed to 
process MRI images by extracting multi-scale 
features while preserving spatial hierarchies crucial 
for accurate classification. Data preprocessing steps 
include resizing, normalization, and augmentation 
(e.g., rotation and intensity variation) to enhance 
diversity and improve model robustness. A novel 
capsule dropout mechanism was introduced to 
selectively deactivate capsule vectors, improving 
regularization and feature extraction. The model 
employs a cross-entropy loss function and is 
optimized using the Adam optimizer with an adaptive 
learning rate. Performance evaluation is conducted 
using metrics such as accuracy, precision, recall, and 
F1-score. Training and testing were performed on 
high-performance hardware using TensorFlow and 
Keras frameworks. This approach emphasizes 

enhanced feature extraction and robust learning for 
improved classification performance. 

3.1 Dataset 

The dataset used for brain tumor classification in this 
study is sourced from publicly available datasets from 
Sartaj, br35, and Figshare. These datasets include 
brain MRI images categorized into four classes: 
pituitary, glioma, meningioma, and no tumor. 

The data preparation process involves splitting the 
dataset into three subsets: training, validation, and 
testing, in a 70:15:15 ratio. Approximately 4,944 
images are allocated to the training set, 1,059 images 
to the validation set, and 1,311 images to the testing 
set. 

Image dimensions across the datasets vary, with 
the training set having image widths ranging from 
150 to 1920 pixels and heights from 168 to 1446 
pixels. The validation set includes images with widths 
between 150 and 1275 pixels and heights from 168 to 
1427 pixels, while the testing set features images with 
widths from 150 to 1149 pixels and heights between 
168 and 1019 pixels.  

3.2 Pre-Processing 

During the preprocessing step, all images are resized 
to a target size of 150x150 pixels and normalized to a 
range of [0, 1]. This ensures that the images have 
consistent dimensions and standardized pixel values, 
which are suitable for input into a Capsule Network 
model. The resizing and normalization are performed 
using the resize_and_normalize_image() 
function, which converts images to RGB mode, 
resizes them using ImageOps.fit(), and 
normalizes the pixel values by dividing by 255. 

For data augmentation, only the training dataset 
undergoes transformations such as random rotations, 
width and height shifts, zoom, and horizontal flips. 
This augmentation is done using the Keras 
ImageDataGenerator class, which helps 
increase the diversity of training data, allowing the 
model to learn more robust features. The training 
images are passed through the generator with the 
flow() method, which outputs a 4D array, where the 
first dimension represents the batch size (in this case, 
1), followed by the image dimensions (150x150) and 
the number of color channels (3 for RGB). The 
augmentation is applied dynamically on-the-fly as the 
model trains. 

In terms of image array shape: 
• After resizing and normalization, the images 

have a shape of (150, 150, 3) for each image. 
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• When using augmentation, the images are 
expanded to a 4D shape of (1, 150, 150, 3) 
before being passed through the 
augmentation process. This is necessary 
because Keras expects a batch of images, 
and the augmentation operation requires this 
additional batch dimension. After 
augmentation, the resulting image is 
flattened back to a 3D format (150, 150, 3). 

Thus, the training images are ready for model 
input, with the augmentation applied only to the 
training data, while validation and testing datasets are 
resized and normalized without augmentation to 
ensure unbiased performance evaluation. 

 
Figure 3: Pre processed Image Samples from the  
meningioma tumors. 

 
Figure 4: Image Augmentation Samples from the  
meningioma tumors. 

3.3 System Model 

Dynamic Routing: The core feature of CapsNet is 
dynamic routing, where capsules in a lower layer 
dynamically choose which capsules in the higher 
layer they should send their outputs to. This routing 
process helps in capturing complex spatial 
relationships between different objects in an image. 

 
Figure 5: NN after Dropout. 

 
Figure 6: Neural Network. 

Primary Capsules: In a CapsNet, primary capsules 
are created from convolutional layers. These capsules 
output a vector instead of a scalar, where each vector 
component represents different properties (like 
position or orientation) of the object. 
Higher-Level Capsules: Higher-level capsules take 
input from the primary capsules and are responsible 
for grouping together the information about specific 
object classes or parts of objects. 

This is the workflow followed: 
• Input Layer: The input image is passed 

through an initial convolutional layer to 
extract features. 

• Primary Capsules: These features are then 
passed to the primary capsule layer, which 
uses a series of convolutional capsules to 
generate feature vectors that describe 
various parts of the object. 

• Routing by Agreement: Capsules in the 
primary layer are routed to higher-level 
capsules based on their agreement. This 
helps capture the spatial relationships 
between objects and parts in the image. 

• Dropout in Capsules: Dropout is applied in 
this routing process, as well as within the 
capsule outputs, to prevent co-adaptation of 
neurons. This increases the model’s ability 
to generalize. 

• Output Layer: The final capsule layer 
produces the final classification of the 
image, typically using the length of the 
capsule vector to indicate the probability of 
the object being in that class. 

• Loss Function: The loss function in 
CapsNet is typically a margin loss, which 
encourages the network to assign high 
probability to the correct class while 
penalizing the activation of incorrect 
classes. 
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3.3.1 Vector Inputs and Outputs 

Unlike traditional neurons, capsules use vectors to 
encode information. The vector length represents the 
probability of the presence of a specific feature or 
object, while the vector direction encodes specific 
properties like orientation, position, or size of the 
feature. 

3.3.2 Capsule Computation Process 

Each capsule in a lower layer generates a prediction 
vector for every capsule in the next higher layer. 𝑢ො௝∣௜ = 𝑊௜௝𝑢௜ 

 𝑢௜: The output of capsule iii. 𝑊௜௝: A weight matrix that transforms the lower-
layer output to align with the expected input of the 
higher-layer capsule. 𝑢ො௝∣௜: The prediction vector for capsule j. 

The total input 𝑆௝to capsule j is a weighted sum of 
prediction vectors, calculated as: 𝑆௝=∑௜𝑐௜௝𝑢ො௝∣௜ 

Where 𝑐௜௝ is the coupling coefficient that 
determines how much influence capsule i's prediction 
has on capsule j. Coupling coefficients are updated 
dynamically during the routing process. 

After calculating the total input, the output vector 𝑣௝ is obtained using the squashing function: 𝑣௝ = ∣∣ 𝑠௝ ∣∣ଶ1 +∣∣ 𝑠௝ ∣∣ଶ . 𝑠௝∣∣ 𝑠௝ ∣∣  

This non-linear function ensures that the vector 
length ∣∣ 𝑣௝ ∣∣ is bounded between 0 and 1. Shorter 
input vectors shrink toward 0, while longer vectors 
shrink slightly below 1. 

 
Figure 7: Capsule Network Architecture used in our method. 

 
Figure 8: Accuracy plot. 

 
Figure 9: Loss over epochs. 

Coupling coefficients 𝑐௜௝ are computed using a 
softmax function over the logits 𝑏௜௝, were 𝑐௜௝ =  ୣ୶୮ (௕೔ೕ)∑ ୣ୶୮ (௕೔ೖ)  

Logits 𝑏௜௝ are initialized to 0 and iteratively 
updated during the routing process. The softmax 
ensures that the coefficients 𝑐௜௝ for each lower-layer 
capsule i sum to 1, distributing its output among 
higher-layer capsules. 

3.3.3 Dynamic Routing Mechanism 

Dynamic routing is an iterative process that refines 
the coupling coefficients based on the agreement 
between prediction vectors 𝑢ො௝∣௜  and the actual 
output𝑣௝of the higher-layer capsule.  

1: 𝑢௜ ← inputs  
2: 𝑊௜௝← weights  
3: 𝑢௜௝← 𝑊௜௝* 𝑢௜ 
4: 𝑏௜௝← 0  
5: for n iterations do  

6: 𝑐௜௝← P exp(𝑏௜௝) / k exp(𝑏௜௞)  
7: 𝑠௝← Σ k 𝑐௞௝* 𝑢௞௝ 
8: 𝑣௝← Σ k 𝑠௝ * 𝑠௝1 + 2 * 𝑠௝  
9: 𝑏௜௝← 𝑏௜௝+ 𝑢௜௝· 𝑣௝ 

10: return 𝑣௝ 

Algorithm 1: The routing-by-agreement algorithm 
(CapsNet). 
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The process begins by initializing the logits 𝑏௜௝ = 0.  
Coupling coefficients 𝑐௜௝ are computed using a 
softmax function over the logits 𝑏௜௝. 
The total input 𝑆௝ and output 𝑣௝  for higher-layer 
capsules are calculated, and logits 𝑏௜௝ are updated 
based on the agreement:  𝑏௜௝ ← 𝑏௜௝ + 𝑢ො௝∣௜ ⋅ 𝑣௝ 

Agreement increases if the prediction vector aligns 
with the higher-layer output. 

3.4 Training Configuration 

The model was trained on a Linux Ubuntu system 
running on WSL2. TensorFlow GPU was used with 
CUDA 12.6, leveraging an NVIDIA RTX 4060 GPU 
for accelerated computation. The training involved 
500 epochs with a batch size of 64, optimizing the 
model using the Adam optimizer. Input data consisted 
of training and validation datasets, passed as 
train_images and train_labels for training and 
val_images and val_labels for validation. 

 
Figure 10: Confusion Matrix. 

Table 1: Training Configurations. 

Parameter Value 
Operating System Linux (Ubuntu) 
GPU NVIDIARTX 4060 

 

CUDA Version 12.6 
TensorFlow Version 2.17 
Epochs 300 
Batch Size 64 
Optimizer Adam 

4 RESULTS 

The performance of the modified capsule network 
model was evaluated on a set of MRI brain images, 
and several key metrics were computed to assess its 

effectiveness in tumor classification. The model 
achieved a training accuracy of 95.3% and a 
validation accuracy of 94.7% and a test accuracy of 
95.66% over 300 epochs, demonstrating its strong 
generalization capability and converging around 264 
epochs. To further evaluate the model's performance, 
we also computed precision and specificity for each 
class of tumor, including glioma, meningioma, 
pituitary tumors, and non-tumor cases. Precision 
values for the glioma, meningioma, pituitary, and no 
tumor categories were: 

Table 2: Precision Specificity per Class. 

Class Precision Specificity 
Glioma 0.905 0.921 
Meningioma 0.857 0.914 
Pituitary 0.912 0.94 
Notumor 0.945 0.953 

90.5%, 85.7%, 91.2%, and 94.5%, respectively, 
indicating the model's ability to correctly identify 
positive cases with minimal false positives. 
Specificity values for these classes were similarly 
high, with the model achieving 92.1%, 91.4%, 94.0%, 
and 95.3%, respectively, highlighting its 
effectiveness in correctly classifying non-tumor cases 
and avoiding false positives. Additionally, heatmaps 
generated for the tumor images show that the model 
was able to focus its attention on the relevant regions, 
such as the central brain region for glioma, and 
maximum for meningioma further confirming its 
accuracy and reliability in identifying tumor 
locations. The confusion matrix heatmap reveals the 
performance of the model in classifying tumor types. 
The diagonal elements indicate correct 
classifications, with higher values signifying better 
accuracy. Off-diagonal elements represent 
misclassifications, suggesting areas where the model 
struggles. While the model shows decent overall 
performance, there's room for improvement in 
distinguishing between similar tumor types, such as 
meningioma and pituitary, and notumor and glioma. 
Strategies like data augmentation, feature 
engineering, model selection, and ensemble methods 
can potentially enhance the model's accuracy. 
Additionally, addressing class imbalance and 
ensuring data quality are crucial for further 
optimization. The following table summarizes 
comparison with previous works: 

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1294



 

Table 3: Comparison with previous works. 

Method Accuracy Remarks 
(Havaei, 2017) 90% Two-pathway architecture for 

brain tumor MRI Images
(Adu) 95.5% CapsNet with a new activation 

function for enhanced 
accuracy 

(Raythatha, 
2023) 

93.55% Capsule Networks on whole 
brain MRIs 

(Goceri, 2020) 92.8% Capsule Networks 
(Afshar, 2019) 90.89% Capsule Networks 
Our Method 95.66% CapsNet with Regularized 

Dropout 

5 CONCLUSIONS 

In this study, we demonstrated the effectiveness of a 
modified capsule network (CapsNet) for brain tumor 
classification using MRI images. Our approach 
achieved an accuracy of 92.8%, outperforming several 
traditional and advanced methodologies. The results 
emphasize the ability of CapsNet to capture spatial 
hierarchies and maintain the integrity of geometric 
features crucial for accurate tumor classification.  

When compared to other works in the field, such 
as those by Raythatha and V. M. (2023), Goceri 
(2020), and Afshar et al. (2019), our model shows 
competitive accuracy levels, demonstrating the 
promise of CapsNet in medical image processing. For 
instance, Goceri (2020) achieved an accuracy of 
92.65%, while Afshar et al. (2019) reported 90.89%. 
These results suggest that CapsNet offers a reliable 
and efficient classification approach, similar to or 
better than traditional CNN models. 

While the current findings are promising, there is 
potential for further improvements. Future work will 
include extending this approach by incorporating 
segmentation techniques to enhance the model's 
ability to delineate tumor boundaries and improve 
overall classification accuracy. Additionally, we plan 
to explore the integration of hybrid models that use 
self-attention mechanisms, which have demonstrated 
significant potential in other domains.  

As deep learning techniques in medical imaging 
continue to evolve, particularly through advanced 
architecture such as hybrid self-attention models and 
refined segmentation methods, we anticipate that 
these improvements will pave the way for more 
accurate and robust tumor detection systems. 
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