
Action-Based Intrinsic Reward Design for Cooperative Behavior
Acquisition in Multi-Agent Reinforcement Learning

Iori Takeuchi1 and Keiki Takadama2,3 a

1Department of Informatics, University of Electro-Communications, Tokyo, Japan
2Information Technology Center, The University of Tokyo, Tokyo, Japan

3Department of Information & Communication Engineering, The University of Tokyo, Tokyo, Japan

Keywords: Intrinsic Rewards, Multi-Agent System, Reinforcement Learning, Cooperative Behavior.

Abstract: In recent years, research has been conducted in multi-agent reinforcement learning that aims at efficient agent

exploration in complex environments by using intrinsic rewards. However, such intrinsic rewards may inhibit

the learning of behaviors necessary for acquiring cooperative behavior, and may not be able to solve the task

of the environment. In this paper, we propose two types of internal reward designs to promote agents’ learning

of cooperative behaviors in multi-agent reinforcement learning. One is to use the average of the values of

the actions selected by all agents to promote the learning of actions necessary for cooperative behavior but

difficult to increase in value. The other is to provide an individual intrinsic reward when the value of the

action selected by each agent is lower than the average of the values of all the actions at the time, aiming to

escape from the local solution. The results of the experiment with StarCraft II scenario 6h vs 8z showed that

by adding the proposed intrinsic reward to the intrinsic reward that encourages agents to explore unexplored

areas, cooperative behavior can be obtained in more cases than before.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton and Barto,

1999) is a method of machine learning in which an

agent repeatedly interacts with its environment to

learn strategies that adapt to the environment and are

used for risk management (Paragliola et al., 2018) and

itinerary planning optimization (Chen et al., 2020)

(Coronato et al., 2021). In addition, Multi-Agent Re-

inforcement Learning (MARL), a type of RL in which

multiple agents exist in the same environment, aims

to acquire cooperative behavior in complex environ-

ments by having the agents learn policies simultane-

ously. However, in many MARL environments, the

agents cannot learn policies that take into account

other agents using only the rewards they receive from

the environment, making it difficult to acquire coop-

erative behavior. Against this background, research

on MARL that applies intrinsic rewards has been pro-

gressing in recent years. Intrinsic rewards are re-

wards given by the agent’s reward function. Rewards

received from the environment in contrast to intrin-

sic rewards are called extrinsic rewards. In previous

a https://orcid.org/0009-0007-0916-5505

studies, intrinsic rewards applied to MARL are often

designed to improve the agent’s exploration ability.

Exploiting POlicy Discrepancy for Efficient Explo-

ration (EXPODE) (Zhang and Yu, 2023) is one of the

MARL methods that applies intrinsic rewards, and the

intrinsic rewards of EXPODE are designed to encour-

age agents to explore unexplored areas. Specifically,

in EXPODE, an agent learns a different policy simul-

taneously in addition to the policy it learns through

interactions with the environment, and the prediction

error of the value function of that policy is given as

an intrinsic reward. This gives agents high rewards

according to how infrequently they reach a state in

the environment, and is expected to enable efficient

exploration even in environments with a vast state-

action space, leading to the acquisition of effective co-

operative behavior. However, intrinsic rewards used

in EXPODE to improve the agents’ exploration ca-

pabilities are not directly designed to acquire cooper-

ative behavior, and there is a problem that the num-

ber of times the agents select actions necessary to ac-

quire cooperative behavior for exploration is reduced,

which stagnates learning and hinders the acquisition

of cooperative behavior.

Considering this problem, this paper proposes two

632
Takeuchi, I. and Takadama, K.
Action-Based Intrinsic Reward Design for Cooperative Behavior Acquisition in Multi-Agent Reinforcement Learning.
DOI: 10.5220/0013320300003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 1, pages 632-639
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



types of intrinsic reward designs to acquire coopera-

tive behavior. In the first intrinsic reward design, the

average of the values corresponding to the actions se-

lected by all agents respectively is used as the collec-

tive intrinsic reward for all agents. The second design

is more limited and aims to provide intrinsic rewards.

The value of the selected action for each agent is com-

pared with the average value of all actions at that time,

and if the value of the selected action is lower than the

average, an individual intrinsic reward is given to each

agent. To verify the effectiveness of the proposed in-

trinsic reward, we applied the proposed intrinsic re-

ward as an extension of the conventional method EX-

PODE and conducted experiments using the StarCraft

II (Vinyals et al., 2017) scenario 6h vs 8z as an envi-

ronment.

This paper is structured as follows: Section 2

presents the problem formulation and related work.

Section 3 presents the proposed method. Section 4

presents experiments and their results. Finally, Sec-

tion 5 concludes this paper.

2 RELATED WORKS

2.1 Dec-POMDP

In this research, we consider a problem formulated

by Decentralized Partially Observable Markov Deci-

sion Process (Dec-POMDP) (Oliehoek et al., 2016).

In Dec-POMDP, a problem is defined as a tuple

(I,S,A,P,R,Z,O,γ). I is a set of agents i, s ∈ S is

a set of true states of the environment, and A is a

set of agent actions. When agent i selects action ai,

a = (a1,a2, . . . ,ai) is represented as the joint action

of all agents. At this time, the next state of agents is

determined by transition function P(s′|s,a). In addi-

tion, each agent obtains individual observations oi ∈ Z

using observation function O(s,a). Each agent has its

behavioral observation history τi ∈ T ≡ (Z×A)∗, and

acts according to policy πi(ai|τi) based on that history.

Agents obtain extrinsic rewards r using a collective

reward function R(s,a). γ ∈ [0,1] is the discount rate,

and agents learn policies to maximize the expected

discounted reward ∑T
t=0 γtrt , , where T is the length

of the episode.

2.2 Deep Reinforcement Learning

2.2.1 Deep Q-Network

Deep Q-Network (DQN) (Mnih et al., 2015) is a deep

reinforcement learning algorithm that expresses an

action-value function using a neural network based

on a parameter θ. In DQN, the history of actions and

state transitions is stored in a replay buffer, and learn-

ing is performed by sampling several histories from

the replay buffer. θ is learned to minimize the squared

TD error:

L(θ) = [y−Q(s,a;θ)]2, (1)

where Q(s,a;θ) is the action value represented by

the network of parameters θ for state s and action a.

y = r + γmax′a Q(s′,a′;θ−). θ− is the parameter of

the target network, which is periodically copied from

θ and kept constant for several iterations.

2.2.2 Deep Recurrent Q-Network

Deep Recurrent Q-Network (DRQN) (Hausknecht

and Stone, 2015) is a deep reinforcement learning al-

gorithm that uses a recurrent neural network to adapt

to a partially observable environment. In addition,

DRQN promotes learning that considers longer-term

time series by using a collective action observation

history of one episode as a sample during learning.

2.3 Multi-Agent Deep Reinforcement

Learning

2.3.1 Centralized Training with Decentralized

Execution

In recent years, MARL has often used Central-

ized Training with Decentralized Execution (CTDE)

(Oliehoek et al., 2008) to approach partially observ-

able environments. In CTDE, agents act based on

their local observations and action values during the

execution process, and in the training process, agents

learn using global information by sharing the true

state of the environment and the action values of all

agents. As a result, CTDE realizes the interaction

between agents and the environment that takes par-

tial observability into account and the optimization of

policies using global information.

2.3.2 QMIX

QMIX (Rashid et al., 2018) is a MARL algorithm

based on CTDE. In QMIX, each agent has an individ-

ual action value Qi, and in the execution process, each

agent selects an action using its action value Qi. In

the learning process, several samples of one episode’s

history obtained in the execution process are taken

from the replay buffer, and the joint action value Qtot

is calculated from the individual action value Qi using

a mixing network, and learning is performed to mini-

mize the following loss function. The weights of the

Action-Based Intrinsic Reward Design for Cooperative Behavior Acquisition in Multi-Agent Reinforcement Learning

633



Mixing Network are trained by a hypernetwork (Ha

et al., 2016) that uses the true state as input. In addi-

tion, the individual action value Qi is also updated by

backpropagating the error arising from this loss func-

tion to the network that expresses the individual value

function Qi:

L(θ) = [ytot −Qtot(τ ,a,s;θ)]2, (2)

where ytot = r+ γmax
a
′ Qtot(τ

′,a′,s′;θ−). θ, θ− are

parameters of the network, and the target network, re-

spectively, as in the equation 1.

In this case, the joint action value and the indi-

vidual action value have the relationship shown in the

following formula.

argmax
a

Qtot(τ ,a) =











argmax
a1

Q1(τ1,a1)

...

argmax
ai

Qi(τi,ai)











. (3)

Equation (3) shows that when each agent selects the

action with the highest individual action value based

on its action observation history, the joint action value

also takes the highest value. To satisfy the relation-

ship in equation (3), QMIX imposes the constraints

expressed in the following equation (4) through the

Mixing Network.

∂Qtot

∂Qi

≥ 0, ∀i ∈ I. (4)

2.4 Intrinsic Rewards for MARL

2.4.1 Exploiting Policy Discrepancy for Efficient

Exploration

EXploiting POlicy Discrepancy for Efficient Explo-

ration (EXPODE) (Zhang and Yu, 2023) is a MARL

algorithm that improves the efficiency of learning in

an environment with a huge observed action space by

encouraging agents to explore unexplored areas with

intrinsic rewards. EXPODE consists of three compo-

nents called Exploiter, Explorer, and Predictor.

Exploiter learns the policy for agent-environment

interaction. It extends QMIX based on the Double

Q-Learning (Hasselt, 2010) approach and is config-

ured to have two networks similar to QMIX. This al-

lows the Exploiter to output two joint action values

for one sample during the training process. Applying

the smaller two joint values to update the policy pre-

vents overestimation of the value. The loss function

of Exploiter is as shown in the equation (5).

Lexploiter(θk) = [yexploiter −Qtot(τ ,a,s;θk)]
2
, (5)

where yexploiter = rext + αrEXPODEint +

γmink′=1,2 Q
θ′

k′
tot (τ

′,a′,s′;θ′
k′
). rext is the extrin-

sic reward, rEXPODEint is the intrinsic reward, and α
is a hyperparameter related to the intrinsic reward. k

and k′ indicate that there are two learning networks

and two target networks, respectively, and the joint

action value with the smallest value is adopted during

learning.

Explorer is a component with the same structure

as Exploiter and learns the policy used to calculate

intrinsic rewards. The process of policy update is the

same as that of Exploiter. The individual action value

of each agent included in the network that outputs the

larger value of the two joint action values output by

Explorer is passed to Predictor for the calculation of

intrinsic rewards. The loss function of Explorer is as

shown in the equation (6).

Lexplorer(φk) = [yexplorer −Qtot(τ ,a,s;φk)]
2
, (6)

where yexplorer = rext + γmink′=1,2 Q
φ′

k′
tot (τ

′,a′,s′;φ′
k′
).

Predictor calculates the intrinsic reward using the

individual action value given by Explorer. Predictor

consists of a network for each agent that expresses the

individual action value included in Expitter and Ex-

plorer and outputs the individual action value for each

agent from one sample. In addition, Predictor cal-

culates the intrinsic reward rEXPODEint using the fol-

lowing equation (7) from the individual action value

given by the Explorer and the individual action value

output by Predictor.

rEXPODEint
i = ‖Q

ψ
i (τ

′
i, ·)− max

k′=1,2
Q

φ′
k′

i (τ′i, ·)‖
2
. (7)

The intrinsic reward of each agent is summarized as

follows:

Lpredictor(ψ) = rEXPODEint =
1

I

I

∑
i=1

rint
i (8)

EXPODE calculates the intrinsic reward based on

the frequency of the agent’s achievement in a differ-

ent policy than the one used to select an action in the

environment. This is expected to lead to exploration

in more diverse directions than if a single policy was

used.

3 PROPOSED METHOD

From the previous chapter, EXPODE is expected to

acquire cooperative behavior in a task with a huge

state action space using intrinsic rewards that encour-

age agents to explore various areas. However, such

inherent rewards may inhibit the learning of measures

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

634



by prioritizing the exploration of unexplored regions

over the utilization of actions required for coopera-

tive behavior and may lead to the teaching of mea-

sures that are stuck in local solutions. In this chapter,

we propose two types of intrinsic reward designs to

acquire cooperative behavior, based on the issues of

inherent rewards in EXPODE described above.

3.1 Collective Intrinsic Reward Design

for all Agents

In MARL, cooperative behavior is a combination of

actions performed by multiple agents over a certain

period, and acquiring cooperative behavior requires

repeated execution of the primitive actions that con-

stitute it to increase their action values. However, in

environments where the acquisition of complex coop-

erative behavior is required, the actions necessary for

cooperative behavior may not always directly lead to

the acquisition of external rewards. In environments

formulated with Dec-POMDP, a collective reward is

given to all agents, so even actions that do not yield

external rewards for a single agent can earn some ex-

ternal reward. However, since agents generally try

to acquire more rewards, they may increase the value

of actions that yield immediate external rewards and

learn local policies that fail to acquire cooperative be-

havior. In such cases, EXPODE gives a lot of intrin-

sic rewards during initial state transitions, so it can

increase the value of actions that do not temporarily

yield external rewards. However, the intrinsic reward

obtained by repeating transitions decreases, so if the

agent cannot find the effectiveness of the action and

increase its value by then, it will fall into a local so-

lution. As an approach to this problem, Equation (9)

shows the proposed formula for calculating intrinsic

rewards rcollectiveint .

rcollectiveint = e(
1
I ∑I

i=1 Qi(τi,ai)). (9)

From the equation (9), the proposed intrinsic re-

ward uses the average of the individual action values

corresponding to the actions selected by the agent. In

other words, the proposed intrinsic reward is given

taking into consideration the value of not only the

agent’s actions as a whole but also the actions selected

by other agents at the same time. This helps to avoid

learning local policies and aims to acquire coopera-

tive behavior by providing rewards that also consider

the value of actions chosen by other agents when the

value of actions necessary for acquiring cooperative

behavior is difficult to increase.

3.2 Individual Intrinsic Rewards for

Each Agent

The intrinsic reward proposed in section 3.1 is in-

tended to promote learning of actions necessary for

some agents’ cooperative behavior but difficult to

value. However, since this intrinsic reward is given

for every action that an agent chooses, it may promote

learning of actions that are more likely to increase in

value. In this case, if intrinsic rewards are given to

behaviors that are difficult to increase in value, no

value reversal occurs, and the possibility arises that

the agent may not escape from the local solution.

Therefore, in this section, we propose an intrinsic

reward given to each agent according to the value of

that agent’s chosen action. Specifically, each agent

compares the value corresponding to its own selected

action at each step with the average of the values of

all actions in that state. If the value of the chosen ac-

tion is lower than the value of all actions, an intrinsic

reward is given using that average. The formula for

calculating the intrinsic reward rindividualint is shown

in equation (10).

rindividualint
i = e(

1
A ∑A

a Qi(τi,ai)). (10)

To give this individual intrinsic reward only to the

corresponding agent, a phase to update each agent’s

Q-Network is added to the EXPODE component, Ex-

poiter. The loss function used to train the Q-Network

of each agent is shown in equation (11). This is done

just before the learning by loss function of Expoiter

shown in equation (5).

Lindividual(θki
) = [yindividual −Qi(τi,ai;θki

)]2, (11)

where yindividual = 1
I
(rext + αrEXPODEint) +

αrindividualint
i + γmink′=1,2 Q

θ′
k′i

i (τ′i,a
′
i;θ′

k′i
). As a result,

the total Exploiter loss function in this method is

revised to the following equation (12).

Lexploiter(θ) = Lexploiter(θ)+
I

∑
i=1

Lexploiter(θi). (12)

4 EXPERIMENT

4.1 StarCraft II

In this study, we conduct experiments to verify the ef-

fectiveness of the proposed method and use StarCraft

II as the environment. StarCraft II is a real-time strat-

egy game provided by Blizzard Entertainment, and in

Action-Based Intrinsic Reward Design for Cooperative Behavior Acquisition in Multi-Agent Reinforcement Learning

635



recent years it has been used as an environment for

the MARL algorithm by a benchmark called SMAC

(Samvelyan et al., 2019). Several scenarios are avail-

able in StarCraft II, and in this study, we conduct ex-

periments using a scenario called 6h vs 8z.

Figure 1: Agent’s initial position in 6h vs 8z (red: ally,
blue: enemy).

The initial state of 6h vs 8z is shown in the Figure

1. 6h vs 8z is a scenario in which six ally agents (red

circles in the Figure 1) aim to acquire a strategy to

defeat eight enemy agents (blue circles in the Figure

1). The enemies are controlled by NPCs in the game.

One episode is defined as one trial from the start to

the end of the scenario, and one step is defined as the

unit time of an episode in which all agents, enemy

and ally, act once. The end condition of 6h vs 8z is

when the ally’s victory or defeat conditions are met.

The ally’s victory condition is when all enemies are

incapacitated, and the defeat condition is when all al-

lies are incapacitated or 150 steps have passed. In

6h vs 8z, allies have less physical strength and less

damage per attack than enemies, but they can attack

from a certain distance even when they are not adja-

cent to the enemy. Also, enemies have more physical

strength and more damage per attack than allies, but

they can only attack allies adjacent to them. From

the above, allies in 6h vs 8z need to learn cooperative

behavior that can efficiently defeat the enemy under

the constraints of these characteristics and numerical

disadvantage.

In this study, the agent obtains only positive ex-

trinsic rewards from the environment for each step.

There are three extrinsic rewards: damage dealt to the

enemy, defeating the enemy (10 points), and winning

for allies (200 points). The total value of these re-

wards is normalized to be in the range of 0 to 20. In

all comparison methods, intrinsic rewards are given

for each step, just like extrinsic rewards, but are not

included in the normalization.

4.2 Experiment Setup

There are three comparison methods: EXPODE, the

proposed intrinsic reward for the whole agent plus the

EXPODE Exploiter (EXPODE+collective), and the

proposed intrinsic reward for each agent plus the EX-

PODE Exploiter (EXPODE+ individual). For each

method, α is set to 0.01. The winning rate of the al-

lies at the time of evaluation is used as the evaluation

index of the measure to be acquired. Each evaluation

is performed in 32 episodes. The training length is

2,100,000 steps. We use ε-greedy for action selec-

tion, where ε is 1 at the beginning of the experiment

and decreases linearly to reach a minimum value of

0.02 at 400,000steps. The learning rate is 0.0005 and

the discount rate is 0.99. Note that these parameters

are the same for all methods.

4.3 Result

Figure 2: Test win rate of each method in 6h vs 8z.

Figure 2 shows the win rate of the allies during the

training of each method in 6h vs 8z. The values in

Figure 2 are the 30 seed average of the win rate at each

measure evaluation. From Figure 2, it can be seen

that the win rate for all methods increases from about

700,000 steps. In addition, EXPODE+collective has

a higher win rate than EXPODE, indicating that the

learning process continues to progress. On the other

hand, EXPODE+individual has exceeded the win rate

of EXPODE since about 1,500,000 steps, and finally,

the win rate has remained at the same level as that

of EXPODE+collective. From this, we can say that

adding the proposed intrinsic reward to EXPODE

improves the learning performance of EXPODE in

6h vs 8z and enables it to acquire more effective co-

operative behavior.

Figure 3 shows the distribution of win rates at the

last evaluation for 30 seeds for each method. The

crosses in Figure 3 indicate average values. Table 1

compares the win rate at the final evaluation for each

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

636



Table 1: Distribution of the number of seeds with large and small test win rates of the policies at the final evaluation.

> EXPODE = EXPODE < EXPODE

collective intrinsic reward 17 2 11

individual intrinsic reward 18 0 12

Figure 3: Distribution of test win rates at the final evaluation
of each method.

method for each seed and summarizes the relation-

ship between the win rate at the final evaluation and

the win rate at the final evaluation for each method.

From Figure 3 and Table 1, EXPODE+collective has

a higher win rate than EXPODE in many of the se-

lections, and more than half of the selections finally

obtain a strategy with a win rate of more than 50%.

EXPODE+individual also has a higher win rate in

many seeds compared to EXPODE. In addition, EX-

PODE+individual has a much smaller interquartile

range than the other two methods, and it is found that

EXPODE+individual obtains measures with a win

rate of 40-60% in many of the seeds. From the above,

it can be said that the proposed intrinsic reward can

achieve a more stable acquisition of cooperative be-

havior than EXPODE in many cases.

4.4 Discussion

4.4.1 Cooperative Behavior

The actions of the episode are shown. (a) is EX-

PODE, (b) is EXPODE+collective, and (c) is EX-

PODE+individual. Table 2 shows the flow of the

episode in snapshots at four important time points.

The leftmost Figure in Table 2 is the state at the start

of the episode, and as the step progresses, the state

moves to the right Figure, and finally reaches the state

at the end of the episode shown in the rightmost Fig-

ure.

From Table 2, it can be seen that in this episode,

the policy with EXPODE results in the defeat of

the allied agent, whereas EXPODE+collective and

EXPODE+individual result in victory. Furthermore,

comparing the actions of the allied agent when win-

ning and losing, the following differences in actions

can be confirmed in each Event: (1) Episode start

- Encounter: With EXPODE, the ally encounters

the enemy at the same location as the initial po-

sition, whereas with EXPODE+collective and EX-

PODE+individual, the ally transitions backward or

to the left or right to encounter the enemy. Also, at

this time, with EXPODE and EXPODE+collective,

the ally’s attacks are concentrated on a single enemy,

and one enemy is incapacitated at the time of en-

counter. With EXPODE+individual, one enemy has

not been incapacitated at the time of encounter, but

since the health of one of the four enemies heading

towards the ally is extremely low, it can be seen that a

similar concentrated attack is being carried out. (2)

Encounter - One ally is unable to fight: With EX-

PODE, the numerical disadvantage of allies continues

at this point, whereas with EXPODE+collective, the

number of allies and enemies is 5 to 5, and it can be

seen that the numerical disadvantage against the ene-

mies has been resolved by the allies’ attacks since the

time of encounter. Also, with EXPODE+individual,

the numerical disadvantage has not been resolved as

with EXPODE, but it can be seen that several ene-

mies are located away from the allies. This is because

one of the two agents that were divided at the time

of the Encounter attracted several enemies, and in

the meantime, the remaining allies and enemies were

fighting in a numerically equal situation. As a re-

sult, it is considered that even though the allies in EX-

PODE+individual were unable to resolve the numer-

ical disadvantage at this point, they were ultimately

able to win due to the advantage gained in the pre-

vious battles. From the above, the characteristics of

cooperative behavior at the time of victory that can be

acquired through the proposed intrinsic reward can be

summarized as follows. (1) State transitions to keep

a distance from the enemy and concentrated attacks

on specific enemies. (2) Attacks to eliminate numer-

ical inferiority. Furthermore, comparing the actions

of EXPODE+collective and EXPODE+individual af-

ter (2), it is considered that these cooperative behav-

iors are largely dependent on the cooperative behav-

iors taken in (1). Therefore, in cooperative behavior

in 6h vs 8z, it is considered that an important point is

what kind of formation is used to keep a distance from

the enemy while continuing concentrated attacks at

the start of the episode.

Action-Based Intrinsic Reward Design for Cooperative Behavior Acquisition in Multi-Agent Reinforcement Learning

637



Table 2: Example of behavior in one episode of 6h vs 8z (a: EXPODE, b: EXPODE+collective, c: EXPODE+individual).

(a)

(b)

(c)

Event Episode start Encounter One ally is unable to fight Episode finish

4.4.2 Acquiring Cooperative Behavior Through

Intrinsic Rewards

Figure 4: State transition probability for each agent in EX-
PODE from 1 to 10 steps.

Figure 5: State transition probability for each agent in EX-
PODE+collective from 1 to 10 steps.

Figure 6: State transition probability for each agent in EX-
PODE+individual from 1 to 10 steps.

Figures 4, 5, and 6 respectively show the probabil-

ity of each agent transitioning states between 1 and

10 steps in the execution process between each eval-

uation point during learning of each method with a

certain seed. Figure 4 shows that in EXPODE, the

state transition probability of any agent does not in-

crease after 400,000 learning steps, where the value

of ε reaches the minimum value and action selec-

tion becomes most dependent on individual action

value. On the other hand, Figure 5 shows that in

EXPODE+collective, the state transition probabil-

ity of the agents increases even after 400,000 learn-

ing steps. From this, it is considered that in EX-

PODE+collective, the proposed intrinsic reward in-

creases the value of actions necessary for cooperative

behavior, and as a result, the number of times they

are selected can be increased. Also, from Figure 6,

it can be seen that in EXPODE+individual, the state

transition probability does not increase after 400,000

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

638



learning steps, but the state transition probability of

the agents is higher than that of the other methods.

This is thought to be because the cooperative behav-

ior that can be acquired by EXPODE+individual is

significantly different from that of the other methods,

but since the high probability is maintained even after

400,000 learning steps, it is considered that the value

of state transitions is sufficiently increased by the pro-

posed intrinsic reward.

5 CONCLUSIONS

This paper proposed two types of intrinsic rewards

aimed at acquiring cooperative behavior. One uti-

lizes the average value of actions selected by agents

at each step, aiming to further increase the value of

actions necessary for cooperative behavior, and the

other aims to avoid local solutions by giving indi-

vidual rewards to each agent when they meet certain

conditions. In addition, we conducted experiments to

verify the effectiveness in 6h vs 8z, a StarCraft II sce-

nario, by adding the proposed intrinsic reward design

to a conventional method (EXPODE) with an intrin-

sic reward design that promotes agents’ exploration

of unexplored regions. As a result, we confirmed that

by applying the proposed intrinsic reward, EXPODE

can learn policies with a higher win rate for allies in

many cases compared to before application, and can

stably acquire cooperative behavior. Furthermore, we

confirmed that applying the proposed intrinsic reward

can increase the probability of selecting actions nec-

essary for cooperative behavior in 6h vs 8z compared

to the conventional method, contributing to the learn-

ing of cooperative behavior.Future work includes ex-

periments using other scenarios of StarCraft II to ver-

ify the generality of the effect of the proposed intrin-

sic reward design.

REFERENCES

Chen, S., Chen, B.-H., Chen, Z., and Wu, Y. (2020).
Itinerary planning via deep reinforcement learning. In
Proceedings of the 2020 International Conference on
Multimedia Retrieval, ICMR ’20, page 286–290, New
York, NY, USA. Association for Computing Machin-
ery.

Coronato, A., Di Napoli, C., Paragliola, G., and Serino,
L. (2021). Intelligent planning of onshore touristic
itineraries for cruise passengers in a smart city. In
2021 17th International Conference on Intelligent En-
vironments (IE), pages 1–7.

Ha, D., Dai, A. M., and Le, Q. V. (2016). Hypernetworks.
CoRR, abs/1609.09106.

Hasselt, H. (2010). Double q-learning. In Lafferty, J.,
Williams, C., Shawe-Taylor, J., Zemel, R., and Cu-
lotta, A., editors, Advances in Neural Information
Processing Systems, volume 23. Curran Associates,
Inc.

Hausknecht, M. and Stone, P. (2015). Deep recurrent q-
learning for partially observable mdps. In 2015 aaai
fall symposium series.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. na-
ture, 518(7540):529–533.

Oliehoek, F. A., Amato, C., et al. (2016). A concise
introduction to decentralized POMDPs, volume 1.
Springer.

Oliehoek, F. A., Spaan, M. T., and Vlassis, N. (2008). Opti-
mal and approximate q-value functions for decentral-
ized pomdps. Journal of Artificial Intelligence Re-
search, 32:289–353.

Paragliola, G., Coronato, A., Naeem, M., and De Pietro,
G. (2018). A reinforcement learning-based approach
for the risk management of e-health environments: A
case study. In 2018 14th International Conference on
Signal-Image Technology & Internet-Based Systems
(SITIS), pages 711–716.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Fo-
erster, J., and Whiteson, S. (2018). QMIX: Monotonic
value function factorisation for deep multi-agent rein-
forcement learning. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4295–4304. PMLR.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G. J., Hung, C., Torr, P. H. S.,
Foerster, J. N., and Whiteson, S. (2019). The starcraft
multi-agent challenge. CoRR, abs/1902.04043.

Sutton, R. S. and Barto, A. G. (1999). Reinforcement learn-
ing: An introduction. Robotica, 17(2):229–235.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezh-
nevets, A. S., Yeo, M., Makhzani, A., Küttler, H.,
Agapiou, J. P., Schrittwieser, J., Quan, J., Gaffney, S.,
Petersen, S., Simonyan, K., Schaul, T., van Hasselt,
H., Silver, D., Lillicrap, T. P., Calderone, K., Keet,
P., Brunasso, A., Lawrence, D., Ekermo, A., Repp, J.,
and Tsing, R. (2017). Starcraft II: A new challenge
for reinforcement learning. CoRR, abs/1708.04782.

Zhang, Y. and Yu, C. (2023). Expode: Exploiting policy dis-
crepancy for efficient exploration in multi-agent rein-
forcement learning. In Proceedings of the 2023 Inter-
national Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS ’23, page 58–66, Richland,
SC. International Foundation for Autonomous Agents
and Multiagent Systems.

Action-Based Intrinsic Reward Design for Cooperative Behavior Acquisition in Multi-Agent Reinforcement Learning

639


