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The generation of synthetic medical data has gained significant attention due to privacy concerns and the lim-
ited availability of real medical datasets. Various methods and techniques have been employed across domains
to address these challenges, especially for tabular data. This study presents a comparative analysis of mul-
tiple generative models and privacy concerns. In addition, we propose the WLSTM-GAN model, which is
evaluated with and without privacy constraints specifically for three medical tabular datasets. Our model is de-
signed to handle both categorical and continuous features independently, incorporating a single generator with
two specialized LSTM networks, as well as two distinct discriminators tailored for continuous and categorical
data. We demonstrate that LSTM-based architectures can be effectively adapted for tabular data generation,
with our WLSTM-GAN outperforming several existing models in fidelity and privacy preservation.

1 INTRODUCTION

In recent years, various medical fields have under-
gone significant advancements; however, the emer-
gency medical sector, particularly in prehospital care,
still requires further updates and development (Pil-
iuk and Tomforde, 2023). Prehospital environments
frequently present numerous challenges and prob-
lems that must be addressed within a limited time-
frame. Various emergency medical cases arise, re-
quiring prompt attention from healthcare providers,
including nurses and medical personnel (Kabir et al.,
2024).

A particular instance of this is the telenotary. An
Al system can support this by suggesting diagnoses
and measures (Kabir and Tomforde, 2024). Train-
ing such an Al requires sophisticated medical data.
Consider a scenario of emergency medical data with
thirty-one unique diseases selected for analysis. Each
case is associated with specific vital measurements
and symptoms. Generating synthetic data that closely
resembles real-world data could significantly enhance
the accuracy of disease prediction or medication clas-
sification models.
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For the generation of synthetic data, this paper
compares several approaches: Generative Adversar-
ial Networks (GAN) (Goodfellow et al., 2014), CT-
GAN (Xu et al., 2019b), DP-CTGAN (Fang et al.,
2022), PETE-GAN (Jordon et al., 2018), PATE-
CTGAN (Rosenblatt et al., 2020), TabFairGAN (Ra-
jabi and Garibay, 2021), CopulaGAN (Rustad, 2022),
CTabGAN+ (Zhao et al., 2022), our proposed Wasser-
stein LSTM-GAN (WLSTM-GAN) and including a
variant with with differential privacy (DP) WLSTM-
GAN. We further evaluate our approach using three
medical datasets concerning specific healthcare ap-
plications, alongside the widely used adult dataset.
Our primary objective is to generate synthetic data for
medical applications.

The structure of this paper is organised as follows.
Section 2 provides a review of the latest methods and
data generation techniques. Section 3 describes the
models employed in the study, with a detailed expla-
nation of the proposed model, including data prepro-
cessing steps, model architecture, and training pro-
cedures. Section 4 outlines the experimental frame-
work, including the descriptions of the datasets and
the evaluation metrics. Section 5 presents a compara-
tive analysis of the models, along with a brief discus-
sion. Finally, Section 6 concludes the study with key
observations and final remarks.
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2 BACKGROUND: SYNTHETIC
DATA GENERATION

Over the past several years, synthetic data gener-
ation has gained prominence over other scientific
methodologies, including scientific and commercial
domains (Surendra and Mohan, 2017). This rise in
popularity is attributed to its advantages, including
availability, scalability, improved data quality, and di-
versity. Over the past decade, deep learning models
have become increasingly prominent for generating
synthetic data. Deep learning is a specialised machine
learning subarea that focuses on developing and per-
forming complex learning tasks. Notable models in-
clude autoencoder (AE), GAN, autoregressive (AR),
and diffusion models (DM).

AEs are an unsupervised learning technique well-
suited for capturing complex, non-linear relationships
within data. In non-linear domains, a prominent ap-
proach involves leveraging neural network architec-
tures (Baldi, 2011). An autoencoder consists of an
encoder and decoder connected by a bottleneck. The
encoder compresses the input to transform it into a
low-dimensional latent space, reconstructing the low-
dimensional data representation back to the original
input shape (Bank et al., 2021). The AE framework
has several generative extensions, including varia-
tional (An and Cho, 2015), adversarial (Makhzani
etal., 2016), Bayesian (Yong and Brintrup, 2022), and
diffusion AEs. The aforementioned extended mod-
els are capable of generating new samples. Mean
and standard deviation parameters characterize the la-
tent space of the variational autoencoder, and the de-
coder learns the statistical distribution of the input
data (Berahmand et al., 2024). However, VAE in-
creases complexity and training time, with a notable
challenge in producing high-quality samples. GAN
offers a new approach to enhancing synthetic data
generation to address this challenge. GAN is an un-
supervised learning approach where two neural net-
works, generator and discriminator, interact. The gen-
erator produces synthetic data by sampling from ran-
dom noise, and the discriminator assesses whether the
data is authentic or generated data (Goodfellow et al.,
2014). On the other hand, it increases the network
complexity and creates a high chance of mode col-
lapse. To solve the mode collapse problem, unrolled
GAN (Metz et al., 2017) and Wasserstein GAN (Ar-
jovsky et al., 2017) have been proposed. GAN are
capable of handling diverse data modalities, includ-
ing image (Goodfellow et al., 2014), text (Yu et al.,
2017), audio (Donahue et al., 2019), and tabular (Xu
et al., 2019a) data.

Synthetic data is utilized across a diverse range
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of sectors, including automotive and robotics, bank-
ing and finance, agriculture, eCommerce (Nadamoto
et al., 2023), healthcare (Pezoulas et al., 2024), com-
puter vision, audio processing, education (Vie et al.,
2022), risk management, and manufacturing (Werda
et al., 2024), among others (Berahmand et al., 2024).

3 APPROACH TO SYNTHETIC
DATA GENERATION USING
GANS

3.1 Data Generation Models

GAN. A GAN is structured by generator and discrim-
inator models interacting through adversarial train-
ing. However, random noise serves as input to the
generator and produces synthetic data, while the dis-
criminator is trained to distinguish between real and
synthetic data generated by the generator, outputting
a probability score for each. The generator param-
eters are updated based on the discriminator’s feed-
back. As a result, the generator produces more real-
istic synthetic data, while the discriminator enhances
distinguishing between actual and synthetic data dur-
ing training. Figure 1 depicts the architecture of the
GAN model (Goodfellow et al., 2014).
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Figure 1: Generative adversarial network architecture.

sample

CTGAN. Conditional tabular generative adversarial
network (CTGAN) represents an extension of the
Wasserstein GAN approach, particularly emphasising
tabular-format synthetic data generation. CT-GAN
proposed mode-specific normalization, particularly
for continuous data types, addressing multimodal and
non-gaussian distribution through mim-max normal-
ization of the data range of [-1, 1]. Multivariate Gaus-
sian distributions were employed before input into the
GAN feed due to the diverse distributions among nu-
merical features. The generator represents the con-
ditional distribution of rows based on specific column
values, hence termed a Conditional Generator, and the
model a Conditional GAN (Xu et al., 2019b).
DP-CTGAN. Differentially private CTGAN (DP-
CTGAN) represents an updated version of CTGAN.
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Managing privacy loss from the generator or discrim-
inator becomes increasingly complex, leading to a
measurable degree of privacy leakage. In response to
these issues, noise is applied solely to the discrimina-
tor and its parameter count is reduced to simplify the
model. This leads to improved convergence and facil-
itates the estimation of privacy loss while the genera-
tor produces high-quality synthetic data with privacy
protection (Fang et al., 2022).

PETE-GAN and PATE-CTGAN. PETE-GAN, an
abbreviation for private aggregation of teacher ensem-
bles, leverages differential privacy to produce syn-
thetic data. The proposed network architecture fea-
tures a singular generator alongside two separate dis-
criminator blocks. The generator accepts the random
noise as input and interfaces exclusively with the ini-
tial discriminator block referred to as the teacher dis-
criminator. This block incorporates multiple discrim-
inator units that classify the original and the gener-
ated data. The subsequent aggregation of the clas-
sifiers’ votes determines the teachers’ output. The
resulting outputs from the student discriminator are
essential for safeguarding the privacy of the orig-
inal data (Jordon et al., 2018). PATE-CTGAN is
an ensemble model approach with private aggrega-
tion of teacher ensembles and conditional tabular gan,
named Quail-ified Architecture to Improve Learning
(QUAIL). A teacher ensemble of GANSs is trained on
non-overlapping subsets of the real data, where each
“teacher” model captures distinctive patterns from
its respective data subset to generate synthetic sam-
ples (Rosenblatt et al., 2020).

TabFairGAN. TabFairGAN offers a new strategy to
create synthetic tabular data using WGAN with fair-
ness concerns by minimizing bias associated with
sensitive attributes. This ensures that sensitive vari-
ables are processed fairly and equitably. Sensitive
attributes, often treated as categorical features, can
include binary or ordinal characteristics. The train-
ing of this network consists of two sequential phases:
initially, synthetic data is generated, while the sec-
ond phase introduces a fairness module, which allows
the generator to refine its bias correction or learn the
bias (Rajabi and Garibay, 2021).

CTabGAN+. CTabGAN+ is the updated version of
CTabGAN that integrates several advancements, in-
cluding a refined model architecture, enhanced sup-
port for different data types, and improved mecha-
nisms for addressing missing values. CTabGAN+
demonstrates enhanced proficiency in addressing
skewed distributions while featuring a more com-
plex architectural design compared to its predeces-
sor. CTabGAN+ employs a semi-supervised frame-
work with a Wasserstein loss, which promotes more

Fully connected

Real Data

Categorical ‘

Figure 2: Wasserstein LSTM-GAN model architecture.

stable training and mitigates mode collapse. CTab-
GAN+ integrates differential privacy through stochas-
tic gradient descent to safeguard data privacy (Zhao
et al., 2022).

3.2 WLSTM-GAN

This study introduces two unique WLSTM-GAN
frameworks employing Wasserstein loss, resulting in
stable training and prevention of mode collapse. Ad-
ditionally, models manage categorical and continuous
features in distinct ways. The WLSTM-GAN(DP)
s designed to address privacy issues using differen-
tial privacy. Both models incorporated long short-
term memory (LSTM) networks solely for the gen-
erator, whereas fully connected layers are employed
for two discriminators in both frameworks. In con-
trast, two separate discriminators process continuous
and categorical features independently, sourcing in-
puts from real and generated data. Both networks
adopt the Wasserstein loss and gradient penalty mech-
anism to promote training stability. Furthermore, we
integrated differential privacy via stochastic gradi-
ent descent (DP-SGD) in the second model, ensuring
stricter privacy protections during data synthesis.

3.3 Data Preparation

Let the dataset be represented by the variable X,
which represents X; = (x1,x3,...,xy) consisting of N
instances. x; is a d-dimensional vector and each in-
stance x; contains d attributes and express as x; =
(Xi1,Xi2, .-, Xig). Here x;; refers to the j-th attributes of
the i-th observation. The attributes x;; are categorized
as continuous X,,, C X and categorical X.,; C X fea-
tures. A denoising LSTM autoencoder (Kabir and
Tomforde, 2024) was utilized to input complete miss-
ing values in the continuous features, while the mode
method was employed for the categorical features.
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3.4 Model Architecture and Training

The WLSTM-GAN mechanism includes one gen-
erator G and two separate discriminators D, and
D¢y . In addition, generators and discriminators play
a unique role. The G network is structured by LSTM
layers and one fully connected (FC) output layer.
Random noise is introduced as Zco, ~ N(0,1) and
Zcat ~ N(0,1) that signify continuous and categori-
cal noise variables, respectively. The LSTM output is
expressed as:

heon, €eon = LSTMcon (Zcon)

LSTMyy =
out { heat, Ccat = LSTMy (ant)

LSTM hidden layers are connected with FC layers,
which represent synthetic continuous X.,, and cate-
gorical X o data.

A

FC. . — Xcon = Weontcon + beon
out —
‘ Xeat = Weathcat + beat

In the above expression, w, h, and b are denoted as
weights, hidden state, and bias, respectively. So, the
generator’s input and output should be:

G(chn)q(zcad = LSTMZin — LSTMyy — FCip — FCoy¢

G(Zeon). (Zea) = Koons Keat

Both discriminators are built on several fully con-
nected layers with non-linear activations (Leaky
ReLU). D.,, accepts real continuous features Xeal(con)
and synthetically generated features X.o,, which were
generated by G and discriminates between them. On
the other hand, the same process is performed for cat-
egorical features.

We designed the WLSTM-GAN, which requires a
sophisticated training approach and stabilizes training
using the Wasserstein loss with gradient penalty. The
loss is defined as:

Lp = ]Echal [D(Xrezﬂ)] - E}? [D(X)}
Here, Lp represent the loss function of the discrimi-
nator. Ex_, [D(Xiea1)] and E¢[D(X)] are the expected
values of D(Xeq) and D(X) over real and generated
data. Implementing the gradient penalty enforces
the Lipschitz continuity condition on the discrimi-
nator by penalizing any variations from the desired
gradient norm of 1. The interpolated sample X,
the loss function for the gradient penalty Lgp, the
weight controlling hyperparameter Agp, the expected
value over the sampled points Ey, , the discrimina-
tion function D(X;,, ), applied to the interpolated data,
and the deviation from the desired Lipschitz condition
(IVx, D(Xin)||2 — 1 are defined as follows:

Lep = h6rEx,, | (Vi D(Xine)[|2 — 1)2}
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4 EXPERIMENTAL DESIGN

4.1 Data Description

We use the following three open tabular data sets to
compare the generative model sets from the medi-
cal domain: the emergency medical dataset, cardio
dataset !, diabetes dataset 2 and one common adult
dataset 3. All models, including ours, were trained on
the adult dataset to ensure consistency in comparison.
Our emergency medical dataset represents a propri-
etary collection of real-world medical data from Ger-
many. Due to privacy concerns, it is not yet publicly
available, though a partially anonymized version will
be released soon.

Table 1: All datasets description.

Datasets TS | TF | Con | Cat | Bi
Emergency | 25k | 30 8 22 | 0
Adult 32K | 15 6 7 2
Cardio 70k | 12 5 2 5
Diabetes 70k | 22 4 3 15

Table 1 summarizes the characteristics of the
datasets, including total samples (TS), total features
(TF) and feature types (continuous, categorical, and
binary) they contain.

4.2 Model Configuration

Optimizing hyperparameters plays a critical role in
model tuning. This study incorporates three models:
a generator with two LSTM networks, each associ-
ated with a fully connected layer. In addition, two
discriminator models are employed to handle contin-
uous and categorical data, respectively. To simplify
model complexity, we fix the hyperparameters of the
discriminators, excluding the learning rate.

Hyperparameter optimization was conducted us-
ing the Ray Tune Python library, with selected hy-
perparameters summarized in Table 2. These include
learning rate (0.000001 to 0.01), batch size (16 to
512), and the generator model’s LSTM hidden lay-
ers (0 to 4) and units (50 to 300). The LSTM output
connects to a fully connected (FC) layer with hidden
units ranging from 50 to 300. For the discriminator
models, hidden layer configurations span 1 to 3 lay-
ers, with units ranging from 16 to 200.

Thttps://www.kaggle.com/datasets/sulianova/
cardiovascular-disease-dataset (last accessed 2025-01-
12)

Zhttps://www.kaggle.com/datasets/alexteboul/diabetes-
health-indicators-dataset (last accessed 2025-01-12)

3https://archive.ics.uci.edu/dataset/2/adult ~ (last ac-
cessed 2025-01-12)
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Table 2: Model hyperparameters and hyperparameter range.

Hyperparameters value range
Learning rate 0.000001 <n <0.01

Batch size 16 <n <512

Istm hidden layers 0<n<3

Istm hidden units 50 <n <300
FC units 50 <n <300

Dis. hidden layers 1<n<3

Dis. hidden units 16 <n <200

4.3 Evaluation Metrics

Kolmogorov-Smirnov (K-S) & Total Variation Dis-
tance (TVD) Test. The K-S (Jiang and Li, 2024)
test is a nonparametric method widely employed in
statistical analysis to compare cumulative distribution
functions (CDFs) (Lautrup et al., 2024). The K-S test
is employed for continuous data, while Total Variation
Distance (TVD) (Lautrup et al., 2024) is applied to
categorical features. TVD assesses distribution shape
and location similarity using probability mass func-
tions f; and f,, independent of category order be-
tween populations. The TVD function is defined as
follows:

TVD(fi. /) = 5 LI~ /o0

Column Shape and Column Pair Trends. Column
shape is a statistical methodology used to analyse the
distribution of each column in generated datasets and
compare it with the distribution observed in actual
data. Column pair trends (sdm, 2023) investigate the
correlation between original and generated continu-
ous features using Pearson or Spearman coefficients.
The contingency similarity between the real and syn-
thetic categorical features is measured using the to-
tal variation distance and Cramer’s V (Lautrup et al.,
2024).

Data Validity. Data validity involves verifying that
the generated data maintains uniqueness and that
continuous features remain within the minimum and
maximum ranges established by the original dataset.
For categorical attributes, validity checks confirm
that all generated categories correspond accurately to
those in the original data (sdm, 2023).

NNDR & DCR. A quantitative measure evaluates the
pointwise distance between synthetic and real sam-
ples by determining each synthetic sample’s nearest-
neighbor distance to real samples, comparing it
against the distance to the subsequent nearest neigh-
bor (Lautrup et al., 2024). A higher value indicates
better performance, although it may imply a more
significant potential privacy risk (Ooko et al., 2021).
The DCR metric assesses the ratio of two median dis-

tances: the median of the distances from synthetic
samples to their nearest real counterparts and the me-
dian of distances among real samples to their closest
neighboring real samples. This ratio provides insight
into how closely synthetic data mirrors real data in lo-
cal structure, with implications for privacy depending
on the degree of alignment between the two distribu-
tions (Zhao et al., 2021).

S RESULTS AND ANALYSIS

This section describes our experimental setup for
evaluating model performance on medical datasets,
considering both data fidelity and data privacy con-
straints.

5.1 Comparative Analysis of Models

Data Fidelity. In tables 3 and 4 from the appendix,
across the four datasets—Adult, Cardio, Emergency
Medical, and Diabetes—TabFairGAN and WLSTM-
GAN demonstrate exceptional performance, consis-
tently achieving high scores in all three metrics. Tab-
FairGAN exhibits particularly robust results in the Di-
abetes dataset, achieving near-perfect scores (CS =
0.983, CPT = 0.965, DV = 0.99), while WLSTM-
GAN also behaves very well in all datasets. These
results underscore their ability to accurately replicate
statistical distributions, maintain feature correlations,
and ensure data validity. In comparison, CTGAN and
Copula GAN also perform well, particularly in CPT
and DV metrics, where they achieve scores above
0.75 and close to 1.00, respectively, across most
datasets. However, their CS scores are slightly lower
than those of TabFairGAN and WLSTM-GAN, in-
dicating potential limitations in fully replicating the
column-wise statistical characteristics of the original
data. PATE-GAN and PATE-ctGAN, while showing
strong data validity (DV up to 1.00), struggle with col-
umn pair trends, with PATE-GAN having the lowest
CPT scores between datasets (e.g., CPT = 0.028 for
the Adult dataset). These models may not adequately
capture inter-column dependencies, even when indi-
vidual column distributions and data validity are pre-
served.

Traditional GAN models display notable weak-
nesses across all metrics, particularly in DV, where
scores remain below 0.16. This underscores signif-
icant challenges in maintaining the uniqueness and
consistency of generated data. The performance of
DPctGAN and DP WLSTM-GAN, though stronger
than traditional GANs, remains intermediate, with
DV scores approaching 1.00 but lower CS and CPT
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scores compared to the top-performing models. These
findings collectively underscore the importance of
balanced performance across CS, CPT, and DV met-
rics in synthetic data generation. Models such as Tab-
FairGAN and WLSTM-GAN, which excel in all three
areas, are particularly well-suited for applications re-
quiring high fidelity to the original data’s statistical
properties and interdependencies.

Data Privacy. The newRowSynthesis metric quan-
tifies the number of rows in the synthetic dataset
that are exact duplicates of the original data. A
value of 1 indicates that no rows from the original
dataset have been replicated in the synthetic data. The
PATE-GAN, PATE-ctGAN, WLSTM-GAN, and DP
WLSTM-GAN models consistently achieve a height
value of 1 across all four datasets, demonstrating no
duplication. In contrast, the TabFairGAN and CTab-
GAN+ models exhibit some degree of data dupli-
cation, as their scores are consistently near, but not
equal to one. The DCR (Distance to Closest Record)
and NNDR (Nearest Neighbor Distance Ratio) met-
rics compute specific measures for both the original
and synthetic datasets. DCR evaluates the median
distance to the closest record, while NNDR assesses
the ratio of distances to the nearest neighbor. When
the values for these metrics are similar between the
original and synthetic datasets, it suggests a high like-
lihood of replicating the original data, thereby com-
promising data privacy. The degree of divergence
between the artificial and original data is controlled
by the model parameter delta. In this context, the
PATE-GAN, PATE-ctGAN, DP WLSTM-GAN, and
CTGAN models demonstrate greater privacy preser-
vation, generating synthetic datasets that effectively
protect the original data.

5.2 Discussion

Across multiple datasets (Adult, Emergency Medical,
Cardio, and Diabetes), TabFairGAN, WLSTM-GAN,
and CTabGAN+ consistently demonstrate strong data
generation capabilities, achieving high scores in met-
rics assessing distributional fidelity, column shape
and inter-variable relationships, which are essential
for generating reliable synthetic data. Specifically,
these models excel in column shape and trend repli-
cation, maintaining high data validity, thus closely ap-
proximating original datasets in univariate and multi-
variate dependencies. Our proposed model also domi-
nates some of the available models. In privacy evalua-
tions, however, models such as GAN and PATE-GAN
often show elevated metrics in DCR and NNDR, sug-
gesting higher re-identification risks. At the same
time, TabFairGAN, CTabGAN+, and CopulaGAN
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typically exhibit lower DCR values, indicating more
robust privacy protection. The results suggest that
while TabFairGAN, WLSTM-GAN, and CTabGAN+
offer promising options for high-fidelity data genera-
tion, privacy safeguards, particularly in models such
as GAN and PATE-GAN, require further refinement
to ensure secure and privacy-compliant synthetic data
applications, especially in sensitive domains. Incor-
porating noise into the WLSTM-GAN model to en-
hance privacy is problematic, as even minimal noise
disrupts the original data’s range, compromising data
integrity. This alteration undermines the model’s util-
ity for privacy preservation within the WLSTM-GAN
framework, as it may impair the model’s ability to
represent the original data distribution accurately.

6 CONCLUSIONS

Generating synthetic tabular data for medical appli-
cations is challenging due to the complex dependen-
cies and specific value ranges required for accurate
disease prediction and classification. Our proposed
model, WLSTM-GAN, addresses these challenges
by employing a single generator with two distinct
networks to handle categorical and continuous vari-
ables alongside two separate discriminators tailored
for categorical and continuous features. This study
demonstrates that LSTM networks are not only ef-
fective for generating time-series data but also adapt-
able for tabular data generation. Furthermore, we
conduct a comprehensive performance comparison of
multiple state-of-the-art models, both with and with-
out privacy-preserving mechanisms, using diverse
datasets that include adult demographic data, emer-
gency medical records, cardiovascular health data,
and diabetes-related metrics. This evaluation en-
ables a nuanced analysis of each model’s efficacy and
privacy-preserving capability across different types of
medical and demographic information types, high-
lighting their adaptability and reliability within varied
healthcare and demographic applications.
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APPENDIX

The tables below display the results of data fidelity
and privacy metrics for multiple dataset comparisons
across various models, including our proposed ap-
proach. In DCR, R means real, and S means Syn-
thetic.
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Table 3: Adult and cardio dataset fidelity and privacy result regarding models.

Matrics — adult fidelity adult privacy cardio fidelity cardio privacy

Model | CS | CPT [DV | NRS | DCR NNDR | CS CPT | DV | NRS | DCR | NNDR

GAN 0.798 | 0.016 | 0.00 | 1.00 ISQ::%OI(.);) 07 I;;g:?gj 0.000039 | 0.146 | 0.16 | 1.0 };::22%13 1;::3‘.92;)

CTGAN 0.684 | 0.535 | 0.810 | 1.00 l;;g:ggggg 1;;8:?355 0.906 0.730 | 1.00 | 0.99 };::8.'871; l;::g.'f;)f
DP-CTGAN | 0.416 | 0289 | 1.00 | 1.00 };;g,'gggg 1;:8.‘8;‘? 0.752 0.633 | 0.99 | 1.00 51:3..391;1 l;:g.'fgj
CopulaGAN | 0.735 | 0.528 | 0.800 | 1.00 1;:8:888?2 1;;8"83]7 0.924 0.770 | 1.00 | 0.99 1;;8.'8115 1;;:8,'2241:
TabFairGAN | 0.935 | 0.874 | 0.99 | 0.99 };;g_'ggg?f 1;;8_‘?35 0.966 0.843 | 1.00 | 0.96 1;;8.'821 52 }Szi).zzz
CTabGAN+ | 0.882 | 0.857 | 0.99 | 0.99 };::g_'g 88?66 1;::8"8228 0.975 0.793 | 1.00 | 0.96 1;;8_'821 52 }Szi).zoo
PATE-GAN | 0.929 | 0.028 | 0.182 | 1.00 I;;g :;0008 1;;8:2;? 0.083 0.128 | 025 | 1.00 };;2;;13 lsz::g‘.gzjlz
PATE-CTGAN | 0.654 | 0.435 | 1.00 | 1.00 l;;gf;) 320 g 1;;8:33; 0.748 0.619 | 1.00 | 1.00 };;;).'S ig l;;gjgg
WLSTM-GAN | 0.899 | 0.864 | 0.99 | 1.00 l;::g"ggggg I;;(())..(());t; 0.937 0.898 | 1.00 | 1.00 g:?é(.);z 1;;8';;32
WisTaGan | 0665 | 0385 | 0506 | 100 | St 0 [osse o7 oo | oo | (FO0 | CISS

Table 4: Emergency medical and diabetes datasets fidelity and privacy result regarding models.

Matrics — emer. medical fidelity emer. medical privacy diabetes fidelity diabetes privacy

Model | CS [CPT |[DV |NRS | DCR NNDR | CS | CPT | DV | NRS | DCR | NNDR

GAN 0.020 | 0.061 | 0.133 | 1.00 1;:;?6(;3 1 1;::?..3;)8 0.014 | 0.003 | 0.045 | 1.00 1;::?3(?65 é 151:;(())..5 gg
CTGAN 0.863 | 0.759 | 1.00 | 0.92 1;:8.'873; 1;::8..2377 0.845 | 0779 | 095 | 1.00 5;8:?15 f 1;;3'55 gg
DP-CTGAN | 0.696 | 0.628 | 0.97 | 1.00 1;;?.‘8 éﬁ };fg.‘;gj 0.907 | 0.794 | 1.00 | 0.936 };;g_‘g;g 1;{).205
CopulaGAN | 0.863 | 0.752 | 1.00 | 1.00 1;:8.'813; 1;;8':91;* 0.821 | 0.770 | 0.954 | 1.00 1;;8"?153 1;’8.'221;
TabFairtGAN | 0.895 | 0.881 | 1.00 | 0.962 1;:28.'823576 };:28‘5332 0.983 | 0,965 | 099 | 097 };fg_'gsss 1;::?.425
CTabGAN+ | 0.765 | 0.586 | 1.00 | 0.919 1;;8'82352 1;::8"33;12] 0955 | 0914 | 1.00 | 0.977 1;::8"?]53 ];;?'5 00
PATE-GAN | 0.071 | 0.072 | 0.09 | 1.00 IS{;%(E 5;8:8133 0.070 | 0.012 | 0.130 | 1.00 I;fg?g 8 l;;gh‘sgg
PATE-CTGAN | 0.836 | 0.674 | 0.98 | 1.00 1;;8‘3 :2 1;;8'31992 0.806 | 0.714 | 1.00 | 1.00 };::8"22598 l;;gjgg
WLSTM-GAN | 0.890 | 0.677 | 0.96 | 1.00 1;:8.'22392 1;:8.':975 0.985 | 0.9419 | 0.973 | 1.00 };:g'gggs 1;;3?;;
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