
Toolshed: Scale Tool-Equipped Agents with
Advanced RAG-Tool Fusion and Tool Knowledge Bases

Elias Lumer a, Vamse Kumar Subbiah, James A. Burke,
Pradeep Honaganahalli Basavaraju and Austin Huber

PricewaterhouseCoopers, U.S.A.

Keywords: Tool Learning, Tool Selection, Function Calling, Retrieval-Augmented-Generation, Tool Retrieval,
Knowledge Retrieval, AI Agents, Large Language-Models.

Abstract: Recent advancements in tool-equipped agents (LLMs) have enabled complex tasks like secure database in-
teractions and code development. However, scaling tool capacity beyond agent reasoning or model limits
remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases,
a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool
selection for large-scale tool-equipped agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel
ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval,
intra-retrieval, and post-retrieval phases, without requiring fine-tuning. During pre-retrieval, tool documents
are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on
query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool docu-
ments, enables self-reflection, and equips the tools to the agent. Furthermore, by varying both the total number
of tools (tool-M) an agent has access to and the tool selection threshold (top-k), we address trade-offs between
retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute
improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmarks, respectively (recall@5).

1 INTRODUCTION

The latest advancements in Large Language Models
(LLMs) have enabled LLM agents to autonomously
handle tasks through external tools or APIs. With tool
calling, or function calling, these agents can execute
complex actions such as interacting with data APIs,
collaborating on code development, and performing
domain-specific question answering. Current models
handle up to 128 tool function definitions, though this
limit presents challenges for scaling agent capabilities
in production, where hundreds or thousands of tools
may be required (Google Cloud, 2024).

Despite advancements in retriever-based tool se-
lection systems, a significant gap remains com-
pared to the advanced retrieval-augmented generation
(RAG) community (Gao et al., 2024). Current tool
retrievers rely on only 1–2 key tool components (tool
name and description) to embed as vector representa-
tions, whereas advanced RAG methods append docu-
ment summaries, questions, and key metadata. Addi-
tionally, inference-time solutions such as query plan-
ning, expansion, and reranking, remain unexplored.

a https://orcid.org/0009-0000-9180-3690

In this paper, we introduce Toolshed Knowledge
Bases, a knowledge base optimized for storing and
retrieving tools for scalable tool-equipped agents,
through enhancing tool documents with 5 tool compo-
nents (Fig. 1). This approach also addresses and op-
timizes the trade-off of how the tool definition count
(tool-M) and tool selection threshold (top-k) affect re-
trieval accuracy, agent performance, and cost.

We also introduce Advanced RAG-Tool Fusion,
a modular ensemble of advanced RAG patterns ap-
plied to tool selection and planning without requir-
ing model fine-tuning. They include 1) pre-retrieval
techniques (optimizing tool document vector embed-
dings), 2) intra-retrieval strategies (query transforma-
tions to retrieve relevant tools), and 3) post-retrieval
techniques (reranking or self-correction) (Fig. 1). Our
Advanced RAG-Tool Fusion significantly advances
tool retrieval, achieving 46%, 56%, and 47% abso-
lute improvements over BM25 on ToolE single-tool,
ToolE multi-tool, and Seal-Tools benchmarks, while
outperforming current SOTA retrievers (recall@5).

The paper is organized as follows: Section 2 re-
views advanced RAG and tool learning, Section 3 out-
lines methods, Section 4 covers evaluations, Section
5 concludes, and Section 6 discusses limitations.

1180
Lumer, E., Subbiah, V. K., Burke, J. A., Basavaraju, P. H. and Huber, A.
Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases.
DOI: 10.5220/0013303000003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 1180-1191
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

2 BACKGROUND

2.1 Advanced RAG

Advanced Retrieval-Augmented Generation (RAG)
builds on naive RAG by improving relevance and ef-
ficiency, addressing the challenge of selecting cor-
rect documents from large knowledge bases for LLM
reasoning (Gao et al., 2024). Query rewriting and
hypothetical document embeddings (HyDE) trans-
form queries and improve out-of-domain understand-
ing (Ma et al., 2023; Gao et al., 2022). Query expan-
sion adds relevant terms to improve accuracy (Jager-
man et al., 2023; Wang et al., 2023; Peng et al., 2024).
Document chunk enhancements such as summaries
and potential questions (reverse HyDe) align docu-
ments to queries in semantic space (Setty et al., 2024;
Gao et al., 2024). Query decomposition and plan-
ning break complex questions into steps, improving
multi-step reasoning (Tang and Yang, 2024; Trivedi
et al., 2023; Yao et al., 2023; Khattab et al., 2023;
Joshi et al., 2024; Xu et al., 2023; Zheng et al.,
2024a). Reranking algorithms reorder results for con-
textual relevance (Raudaschl, 2023; Sun et al., 2023;
Sawarkar et al., 2024). Corrective methods discard
poor documents or retrieve new ones (Yan et al., 2024;
Asai et al., 2023). Agentic RAG equips agents with a
RAG tool, while Adaptive-RAG adjusts strategies to
query complexity (Roucher, 2023; Jeong et al., 2024).

Our approach, Advanced RAG-Tool Fusion, ap-
plies the aforementioned document RAG techniques
to tool selection and planning for agents.

2.2 Task Planning for Tools

Similar to advanced RAG, task planning is essential
for breaking down complex queries into manageable
sub-tasks for tool retrieval. Chain-of-Thought (Wei
et al., 2023) and ReAct (Yao et al., 2023) laid the
foundation by enabling agents to systematically de-
compose tasks. EasyTool, PLUTO, and Re-Invoke
extend this by retrieving tools for each sub-task (Yuan
et al., 2024b; Huang et al., 2024a; Chen et al., 2024).
Advanced RAG-Tool Fusion leverages task planning
while also employing other pre-, intra-, and post-
retrieval strategies to enhance tool retrieval (Fig. 1).

2.3 Tool Selection or Retrieval

2.3.1 Retriever-Based Tool Selection

Tool retrieval is tightly coupled to task planning for
tools. Early retriever-based methods, such as TF-
IDF (Papineni, 2001) and BM25 (Robertson and

Zaragoza, 2009), rely on exact term matching to align
queries with documents or tools, forming the baseline
for modern retrieval methods. ProTIP (Anantha et al.,
2023) uses a BERT-base-uncased retriever to match
decomposed queries with tool descriptions. CRAFT
(Yuan et al., 2024a) retrieves tools using SimCSE
embeddings and aligns generated names and descrip-
tions to queries with function names. ToolRerank
(Zheng et al., 2024b) combines Adaptive Truncation
and Hierarchy-Aware Reranking with dual-encoder
and cross-encoder models for queries. Re-Invoke
(Chen et al., 2024) and Tool2Vec (Moon et al., 2024)
employ synthetic queries to enhance embeddings.

Our approach showcases zero-shot usage with
out-of-the-box embedders from providers like Ope-
nAI that avoid reliance on labeled data for train-
ing. While Re-Invoke and ToolRerank enhance vec-
tor representations with synthetic queries, Advanced
RAG-Tool Fusion extends this by generating syn-
thetic queries, key topics, themes, and intents, as well
as detailed descriptions and schema parameters for
embedding. Furthermore, Advanced RAG-Tool Fu-
sion’s ensemble modules include query rewriting, de-
composition into sub-tasks (user intents), and multi-
query expansion or variation for each sub-task, cap-
turing diverse descriptions to better match tools.

2.3.2 LLM-Based Tool Selection

Researchers have also used LLMs for tool retrieval
alongside retriever-based methods. API-Bank (Li
et al., 2023) uses a Plan+Retrieve+Call paradigm,
similar to Agentic RAG (Roucher, 2023), but strug-
gles with GPT-4’s limited use of the search API tool.
AnyTool (Du et al., 2024) retrieves tools via a hier-
archical API structure and incorporates self-reflection
when retrieved tools are insufficient.

Our approach uses retriever-based tool selection
with additional post-retrieval strategies. Unlike Agen-
tic RAG (Roucher, 2023), we prompt LLMs to first
decompose queries for tool retrieval and can self-
correct itself if the retrieval does not yield all neces-
sary tools. Furthermore, Advanced RAG-Tool Fusion
can utilize metadata filtering or hierarchy groupings
in the Toolshed Knowledge Base (Appendix C).

2.4 Tool Calling

Prior work focuses on tool invocation through pa-
rameter extraction and fine-tuning. GorillaLLM fine-
tunes LLaMA-7B with retriever-aware training to ac-
cess tool documentation (Patil et al., 2023), while
ToolLLM is trained on 16,000 APIs from the Tool-
Bench dataset using a retriever with DFSDT (Qin
et al., 2023). ToolACE uses multi-agents to train

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

1181

Final Set of top-k for D1

Q1 Set of top-kQ1 Set of top-k

Pre-retrieval (indexing)

Get_Record()

Toolshed Knowledge Base

Update_Record() (...) M Tools(...) M Tools(...) M Tools

Tool Description: "Retrieves a record from a
database from an ID"
Argument Schema: "ID: The unique ID of the
record to filter."
Hypothetical Questions: "Fetch me the record for
ID 243","I want the database row of ID 34"
Key Topics: "Database get request","Fetching
records"

1

2

3

4

5

Tool Name: "Get Record"

Metadata: {"tool_name_in_code":"get_record"}

 Human: "get ID 304 from db"

Intra-retrieval (inference)

Query Rewrite: "Get me ID 304 from the database"

Post-retrieval

Q1: "Retrieve
the record with
ID 304 from the

database"

Q2: "Fetch the
database entry
where the ID
equals 304"

Q3: "Query the
database for the

row with ID 304"

Multi-query Expansion or Variation

 Toolshed KB

(...) M Tools(...) M Tools(...) M Tools

Q1 Set of top-k

Q1 Set of top-kQ1 Set of top-kQ2 Set of top-k

Q1 Set of top-kQ1 Set of top-kQ3 Set of top-k

Q1 Set of top-kQ1 Set of top-kD1 Set of top-k

Retrieve sets of tools

D1: "Get me ID 304 from the database"

Query Decomposition

Q1 Set of top-kQ1 Set of top-kQ1 Set of top-k

Q1 Set of top-kQ1 Set of top-kQ2 Set of top-k

Q1 Set of top-kQ1 Set of top-kQ3 Set of top-k

Q1 Set of top-kQ1 Set of top-kD1 Set of top-k

Query Decomposition: D1

Final Set of top-k for D1Final Set of top-k for D1

(Additional D2, D3, etc.)
Q1 Set of top-kQ1 Set of top-kQ1 Set of top-k

Q1 Set of top-kQ1 Set of top-kQ2 Set of top-k

Q1 Set of top-kQ1 Set of top-kQ3 Set of top-k

Q1 Set of top-kQ1 Set of top-kD1 Set of top-k

Final Set of top-k for D1Final Set of top-k for D1

Re-ranking, Corrective
RAG, or Self-RAG

Re-ranking every final set of top-k of D1-n

Final Set of top-k for D1Final Set of top-k for D1Final Set of top-k to solve user question

Final Set of top-k for Dn

Agent + final tools

Figure 1: Advanced RAG-Tool Fusion within three phases. The pre-retrieval phase optimizes the tool document by appending
a high-quality name, description, argument schema, hypothetical questions the tool can answer, related key topics, and meta-
data. The intra-retrieval and post-retrieval phases transform the user question into decomposed queries and expanded/varied
queries to retrieve the top-k relevant tools from the Toolshed Knowledge Base and rerank the final tools to the agent.

LLaMA-8B (Liu et al., 2024), CITI uses MOLoRA
(Hao et al., 2024b), and ToolkenGPT trains output to-
kens as tools (Hao et al., 2024a). Unlike prior work,
we do not fine-tune LLMs for tool calling. We use
function-calling LLMs (e.g., OpenAI, Anthropic) as
a plug-and-play tool selection and planning solution,
analyzing how tool count and top-k thresholds affect
retrieval accuracy, agent performance, and cost.

3 METHOD

3.1 Tool Datasets

Notable datasets in the tool-calling community in-
clude ToolBench (Qin et al., 2023), ToolAlpaca (Tang
et al., 2023), ToolE (Huang et al., 2024b), τ-bench
(Yao et al., 2024), and Seal-Tools (Wu et al., 2024).

Upon reviewing these datasets and golden query-
tool-parameter pairings, we identified several issues:
unclear tool descriptions, missing parameter details,
overlapping tools, and queries solvable by multiple
similar tools. For this study, we selected Seal-Tools
and ToolE as primary datasets. Seal-Tools (∼3,500)
and ToolE (∼200 tools) both contain high tool counts
and minimal tool overlap to reduce retrieval errors.

3.2 LLM and Embedder Models

We use Azure OpenAI gpt-4o, 2024-05-13 (fi-
nal result), gpt-4o (0613), gpt-35-turbo-16k
(0613) for the LLM. For the embedders, we
use Azure OpenAI text-embedding-3-large
(final result), text-embedding-3-small,
text-embedding-ada-002.

3.3 Toolshed Knowledge Bases

The Toolshed Knowledge Base serves as the vector
database for storing tools that will be retrieved and
equipped to a Single agent during inference. The
strategy we use to represent tool documents stems
from the pre-retrieval phase of Advanced RAG-Tool
Fusion. Each tool’s vector representation combines
up to 5 components: tool name, description, argu-
ment schema, synthetic queries, and key topics (Fig.
1. Since tool names cannot contain spaces when using
OpenAI function definitions, we modify tool names
by adding spaces (e.g., “GetRecord” becomes “Get
Record”) to better represent them in the vector space,
along with other features for enhanced retrieval. Each
tool document also includes a metadata dictionary
(“tool name”) that links its unique name to its cor-
responding Python function. During inference, with
the user query or decomposed query well-represented
across the vector space, the top-k tools are retrieved
and mapped to Python functions via the dictionary.

3.4 Advanced RAG-Tool Fusion

Having an agent retrieve and choose the correct
tool(s) from a large collection of tools is fundamen-
tally the same problem as document RAG (Gao et al.,
2024; Kamradt, 2023). Thus, we can apply advanced
RAG principles to the tool selection and planning
field. While previous tool scaling work touched on
few, if any, individual components of advanced RAG,
our approach, Advanced RAG-Tool Fusion (Fig. 1),
introduces an ensemble of state-of-the-art advanced
RAG patterns applied to tool selection and planning
in three phases (pre-retrieval, intra-retrieval, post-
retrieval). See Appendix C for a detailed case study.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1182

3.4.1 Pre-Retrieval (Indexing)

In the pre-retrieval or indexing phase of Advanced
RAG-Tool Fusion, our goal is to enhance the quality
of the tool document to be retrieved at a higher accu-
racy rate in the retrieval stage. Prior work demon-
strates storing a tool’s name and description in a
vector database does not yield optimal results (Chen
et al., 2024; Moon et al., 2024). Our approach in
Advanced RAG-Tool Fusion enhances the tool doc-
uments with 5 tool components and stores them in
the Toolshed Knowledge Base: 1) tool name, 2)
tool description, 3) argument schema (parameters &
description), 4) hypothetical questions, and 5) key
topics/intents (both questions/topics are synthetically
generated). The corresponding advanced RAG meth-
ods involve appending document chunks with meta-
data, summaries, key topics, and hypothetical ques-
tions (Gao et al., 2024). See Appendix C, Fig. 16.

Recommendations for Pre-Retrieval. If opting to
enhance the tool document with any 5 components:

• Tool functionality should not overlap, and tool
names should be unique with an “embedded ver-
sion” (spaces instead of underscores/dashes).

• Tool descriptions should be long, unique, and de-
scriptive (e.g., explain when to use or not use it).

• Appending the tool’s argument schema can help
retrieval. Ensure parameter names and descrip-
tions are descriptive with no abbreviations.

• Appending synthetic questions can increase re-
trieval. Ensure questions are diverse, mirror future
user questions, and utilize required and optional
parameters in the question.

• Appending key topics/intents can increase re-
trieval. Ensure key topics are based on tool names,
descriptions, and any synthetic questions.

3.4.2 Intra-Retrieval (Inference-Time)

In the retrieval stage of Advanced RAG-Tool Fusion,
our goal is to retrieve the correct tool(s) needed for a
user question. Previous work demonstrates that, be-
cause users often use shorthand, rely on pronouns in-
stead of using the subject, or ask unclear queries, the
user query may not capture the full intent of which
tool should be retrieved (Ma et al., 2023). There-
fore, our approach in Advanced RAG-Tool Fusion
(Fig. 1) initially rewrites the query to fix any typos,
errors, unclear pronouns (with available chat history),
and overall conciseness. Additionally, a single user
question may consist of multiple distinct steps requir-
ing several tools. Directly embedding and querying

the entire question leads to poor retrieval results for
tools (Tang and Yang, 2024). Advanced RAG-Tool
Fusion then breaks the query into logical, indepen-
dent steps, then rewrites/expands each step, captur-
ing ways to solve the decomposed query. Finally, for
each individual expanded query, we retrieve the ini-
tial top-k tools. The corresponding applied advanced
RAG methods are query decomposition, query rewrit-
ing, multi-query expansion or variation, and step-
back prompting (Joshi et al., 2024; Gao et al., 2024;
Zheng et al., 2024a). See Appendix C, Fig. 18.

Recommendations for Intra-Retrieval. If opting
to add query decomposition, transformation, or more:

• Query planning or decomposition helps retrieve
different tools for a multi-hop query.

• If a user’s question uses shorthand, contains gram-
matical or spelling errors, or relies on pronouns,
rewriting it initially (and utilizing previous chat
history, if applicable) can improve retrieval.

• If there are multiple tools that can solve the same
question, multi-query expansion or variation can
help identify diverse pathways to solve the ques-
tion by broadening the search scope of tools.

• Step-back query rewriting can help answer ab-
stract questions in the planning module, but is an
optional module in the framework.

• Test the retrieval accuracy for various top-k values
(e.g., 1, 5, 10, 20... ≤ 128), and adjust threshold
as needed based on the tool dataset complexity.

3.4.3 Post-Retrieval

In the post-retrieval phase of Advanced RAG-Tool
Fusion, the goal is to finalize the list of tools for the
agent. Reranking can occur in the query decomposi-
tion level, the multi-query expansion/variation level,
and/or the individual query variation level. Some
irrelevant tools may pass through the intra-retrieval
phase because they are similar enough to be re-
trieved but not useful for answering the user’s ques-
tion. To address this, we rerank and discard irrel-
evant tools, selecting only the top-k most relevant
tools. While we use an LLM-based reranker (due
to increased reasoning), an embedder cross-encoder
reranker (Theja, 2023) can be used as well. Finally,
using self-reflection, the agent can autonomously re-
search the Toolshed Knowledge Base if it identifies
missing tools. The associated advanced RAG patterns
include reranking (Sun et al., 2023; Theja, 2023), cor-
rective RAG (Yan et al., 2024), and self-RAG (Asai
et al., 2023). See Appendix C, Fig. 19.

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

1183

Table 1: Retriever results comparison on the Seal-Tools and ToolE datasets. We compare our Advanced RAG-Tool Fusion
approach against a BM25 baseline (Robertson and Zaragoza, 2009), and the SOTA retrievers, Seal-Tool’s DPR (Wu et al.,
2024) and Re-Invoke (Chen et al., 2024). The metrics are reported as recall@k, some k values were not calculated or clearly
defined in the original papers, thus not reproduced for our approach. The best-performing method is highlighted in boldface.

Dataset Retriever Recall @ 1 Recall @ 5 Recall @ 10
BM25 0.410 0.550

Seal-Tools Seal-Tools DPR 0.480 0.680
Advanced RAG-Tool Fusion with Toolshed Knowledge Base 0.876 0.965
BM25 0.272 0.462

ToolE - Single Tool Re-Invoke’s 0.672 0.871
Advanced RAG-Tool Fusion with Toolshed Knowledge Base 0.726 0.928
BM25 0.093 0.335

ToolE - Multi Tool Re-Invoke’s 0.333 0.801
Advanced RAG-Tool Fusion with Toolshed Knowledge Base 0.400 0.894

Recommendations for Post-Retrieval. If opting to
add reranking, corrective, or self-RAG:

• A post-requisite to intra-retrieval Recommenda-
tions 1 and 3 is reranking the N sets of retrieved
tools from the decomposed/expanded queries to
the final condensed top-k (if limiting k).

• Explore the retrieval accuracy vs. cost/latency
trade-off of an embedder vs. LLM-based reranker.

• Self-RAG can help if not all tools were retrieved.

• Remove duplicates in each sub-query tool set.

3.4.4 Advanced RAG-Tool Fusion Equation

The Advanced RAG-Tool Fusion equation is modeled
for any given tool-M and top-k value. The abbrevi-
ated ARTF Agent Accuracy can be measured by its
retrieval accuracy (tool-M, top-k), multiplied by Base
Agent’s accuracy where tool-Mb = top-k. A Base
Agent is a simple LLM with Mb tools equipped. This
equation is critical when optimizing the top-k value
(from 1-128) due to the trade-off of Base Agent Ac-
curacy, ARTF retrieval accuracy, and cost.

E[ARTF Agent Acc.(tool-M, top-k)] =
E[Base Agent Acc.(tool-Mb = top-k)]×
E[ARTF Retrieval Acc.(tool-M, top-k)]

(1)

4 EVALUATIONS

In this section, we describe two experiments, evaluate
results, and discuss impacts to gauge the 1) tool selec-
tion effectiveness of Advanced RAG-Tool Fusion and
the 2) impact of varying the number of tools (tool-M)
an agent has on Base Agent accuracy and the tool se-
lection threshold (top-k) has on retrieval accuracy, and
cost. The former is a study on our approach and the
latter dictates the optimization and trade-off of top-k
in Advanced RAG-Tool Fusion.

4.1 Scaling Tool Selection and Planning
with Advanced RAG-Tool Fusion

4.1.1 Experiment Settings

We assess Advanced RAG-Tool Fusion’s retrieval ac-
curacy compared to baselines and SOTA retrievers
at recall@k (k = 1,5,10). Section 3.1 specifies the
dataset. Section 3.2 states the models used.

4.1.2 Results Analysis

Table I compares retrieval results on the Seal-Tools
and ToolE datasets. Each dataset section begins with
a baseline BM25 result, followed by comparisons of
our approach against Seal-Tools DPR and Re-Invoke.

Advanced RAG-Tool Fusion outperforms the
baseline by approximately 46% across all datasets.
On the Seal-Tools dataset (both single and multi-tool
evaluations), our approach shows an improvement of
41% over Seal-Tools DPR. On the ToolE single-tool
dataset, it outperforms Re-Invoke by 5% and 9% on
the single- and multi-tool datasets, respectively (re-
call@5). All metrics are absolute improvements.

4.1.3 Discussion

Comparing results in Table 1, the key differentiator
(among all other modules) on the Seal-Tools DPR
benchmark is the query decomposition module. Sim-
ilarly, the distinction between our approach and the
Re-Invoke ToolE (single and multi tool) benchmark
lies in the pre-retrieval, multi-query expansion, query
rewriting, and reranking modules.

Our findings show our ensemble-based Advanced
RAG-Tool Fusion consistently outperforms individ-
ual (1-2) applications of advanced RAG within their
isolated tool selection frameworks. Notably, for
the Seal-Tools dataset, our approach enables tool-
equipped agents to scale to thousands of tools without
a significant drop in retrieval accuracy.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1184

Advanced RAG-Tool Fusion and Toolshed
Knowledge Bases require no fine-tuning, allowing
easy implementation for researchers and practition-
ers. We encourage benchmarking your tool datasets
to identify which tool components are most impactful
in pre-retrieval, and which modules are beneficial in
intra-retrieval and post-retrieval phases.

4.2 Varying Number of Tools (tool-M)
and Selection Threshold (top-k)

4.2.1 Experiment Settings

We assess the tool-calling ability of a Base LLM
Agent by incrementally equipping it with M tools,
ranging from 1 to 128. The evaluation uses our Tool-
shed Evaluation Framework (Appendix A).

Next, we evaluate the retrieval accuracy of Ad-
vanced RAG-Tool Fusion by varying both the selec-
tion threshold top-k (from 1 to 128) and the total num-
ber of tools in the Toolshed Knowledge Base (from 1
to ∼3,500). For each tool-M level, we vary top-k such
that top-k ≤ M. We also explore different configura-
tions within Advanced RAG-Tool Fusion, including
the components in the tool embedding, the embedder
for indexing and retrieving, and the LLM.

4.2.2 Results Analysis

Base Agent Accuracy. Across all M values
(1–128), Base Agent accuracy remains around
97–100% (See Appendix B). Thus, for the Seal-Tools
dataset, the number of tools equipped to an agent
(tool-M) does not significantly affect Base Agent’s
accuracy (likely due to the dataset’s distinct non-
overlapping query-tool pairs and lack of sequential
tool calls).

Retrieval Accuracy. In Fig. 2 and Fig. 3, we com-
pare the retrieval accuracy of multi-hop queries for
Seal-Tools DPR and Advanced RAG-Tool Fusion, re-
spectively. As tool-M and top-k increase for Seal-
Tools DPR, accuracy decreases significantly. How-
ever, Advanced RAG-Tool Fusion maintains high ac-
curacy (∼95–100%) across all tool-M and top-k.

Other Variations. Adding the argument schema
hypothetical questions and key topics improved re-
trieval. However, this depends on the query-tool
dataset. Varying embedders and LLMs (Appendix
B, Fig. 13 and Fig. 14) showed minor gains
(1–3%); text-embedding-large-3 and gpt-4o
outperformed others (See Section 3.2 for models).

Figure 2: Impact of varying the selection threshold (top-k)
(y-axis) and number of total tools (tool-M) (x-axis) from
1–3,500 on retrieval accuracy (recall@top-k) of Seal-Tools
DPR benchmark, without query decomposition.

Figure 3: Impact of varying the selection threshold (top-k)
and number of total tools (tool-M) from 1–3,500 on retrieval
accuracy of Advanced RAG-Tool Fusion. This approach
uses query decomposition among other patterns.

4.2.3 Discussion

Our work highlights how tool-M and top-k impact re-
trieval accuracy, Base Agent accuracy, and cost (Ap-
pendix B). As top-k increases, retrieval improves but
raises token costs and may lower Base LLM Agent
accuracy on complex datasets. Thus, optimizing top-
k involves a trade-off between retrieval accuracy, Base
Agent accuracy, and cost (Anthropic, 2024). In sce-
narios with complex tool datasets (Appendix B), a
Base Agent may struggle to select the correct tools
for high tool-M. Setting a lower top-k can help the
agent reason with fewer tools and reduce cost, though
it may hinder retrieval accuracy if top-k is too low.

We recommend first analyzing how a Base Agent
performs on your tool dataset (tool-M). While the
number of tools did not affect accuracy in the Seal-
Tools dataset, other datasets with overlapping tools,
intra-tool dependencies, or sequential reasoning (Lu
et al., 2024; Yao et al., 2024) may show varied re-
sults. Finally, after customizing pre-retrieval, intra-
retrieval, and post-retrieval modules, optimize top-k
by considering Base Agent accuracy tool-Mb = top-k.

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

1185

5 CONCLUSION

As agent applications become more complex and
scale to hundreds or thousands of tools, there is a
need to consistently retrieve the correct tools to an-
swer a user question. In this work, we present Ad-
vanced RAG-Tool Fusion, an ensemble of advanced
RAG patterns novelly applied to tool selection and
planning. Our framework consists of strategies within
three phases: pre-retrieval, intra-retrieval, and post-
retrieval. We have demonstrated that this ensemble
of methods enables scalable tool-equipped agents and
significantly outperforms both the baseline and an ap-
proaches using single applications of advanced RAG,
without fine-tuning LLMs or retrievers. Furthermore,
we present Toolshed Knowledge Bases, the vector
database to efficiently store the collection of tools dur-
ing the pre-retrieval stage. Lastly, we study the im-
pact of varying both 1) the total tools (tool-M) in the
Toolshed Knowledge Base and 2) the tool selection
threshold (top-k) on retrieval accuracy, Base Agent
tool calling ability, and cost. Advanced RAG-Tool
Fusion moves the needle for scaling tool-equipped
agents and sheds light on the trade-off between re-
trieval accuracy, agent accuracy, and cost.

6 LIMITATIONS

Challenges remain for production-grade scalable tool-
equipped agents. The first limitation is the need for
human-in-the-loop planner modules to ask clarifying
questions, such as “to confirm, you want to do X and
Y?” Although deviating from zero-shot tool calling,
this could confirm users’ true intent, refine sub-intent
breakdowns, improving retrieval accuracy.

The second limitation concerns optimizing the
tool selection threshold (top-k) for sub-queries. Cur-
rently, a fixed threshold is split even across sub-
intents. However, if one sub-intent is more complex,
the fixed top-k may hinder accuracy. Future research
could explore dynamic thresholds based on sub-intent
complexity, capped at the overall tool threshold.

The third limitation involves multi-turn chat his-
tory. For instance, if a chatbot calculates the net
present value of the user’s cash flows and follows up
with “what if the initial cost was $500 more?”, re-
search is needed to determine whether to reuse the
initial tool set or rerun the retrieval process. We hope
that future contributions build on Advanced RAG-
Tool Fusion and Toolshed Knowledge Bases to maxi-
mize the tool-calling ability of LLM agents.

REFERENCES

Anantha, R., Bandyopadhyay, B., Kashi, A., Mahinder, S.,
Hill, A. W., and Chappidi, S. (2023). ProTIP: Pro-
gressive Tool Retrieval Improves Planning. Preprint,
arXiv:2312.10332.

Anthropic (2024). Tool use system prompt.
Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi, H.

(2023). Self-RAG: Learning to Retrieve, Gener-
ate, and Critique through Self-Reflection. Preprint,
arXiv:2310.11511.

Chen, Y., Yoon, J., Sachan, D. S., Wang, Q., Cohen-Addad,
V., Bateni, M., Lee, C.-Y., and Pfister, T. (2024). Re-
Invoke: Tool Invocation Rewriting for Zero-Shot Tool
Retrieval. Preprint, arXiv:2408.01875.

Du, Y., Wei, F., and Zhang, H. (2024). AnyTool: Self-
Reflective, Hierarchical Agents for Large-Scale API
Calls. Preprint, arXiv:2402.04253.

Gao, L., Ma, X., Lin, J., and Callan, J. (2022). Precise
Zero-Shot Dense Retrieval without Relevance Labels.
Preprint, arXiv:2212.10496.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., Wang, M., and Wang, H. (2024). Retrieval-
Augmented Generation for Large Language Models:
A Survey. Preprint, arXiv:2312.10997.

Google Cloud (2024). Function declarations.
Hao, S., Liu, T., Wang, Z., and Hu, Z. (2024a).

ToolkenGPT: Augmenting Frozen Language Models
with Massive Tools via Tool Embeddings. Preprint,
arXiv:2305.11554.

Hao, Y., Cao, P., Jin, Z., Liao, H., Chen, Y., Liu, K., and
Zhao, J. (2024b). CITI: Enhancing Tool Utilizing
Ability in Large Language Models without Sacrificing
General Performance. Preprint, arXiv:2409.13202.

Huang, T., Jung, D., and Chen, M. (2024a). Planning and
Editing What You Retrieve for Enhanced Tool Learn-
ing. Preprint, arXiv:2404.00450.

Huang, Y., Shi, J., Li, Y., Fan, C., Wu, S., Zhang, Q.,
Liu, Y., Zhou, P., Wan, Y., Gong, N. Z., and Sun, L.
(2024b). MetaTool Benchmark for Large Language
Models: Deciding Whether to Use Tools and Which
to Use. Preprint, arXiv:2310.03128.

Jagerman, R., Zhuang, H., Qin, Z., Wang, X., and Bender-
sky, M. (2023). Query Expansion by Prompting Large
Language Models. Preprint, arXiv:2305.03653.

Jeong, S., Baek, J., Cho, S., Hwang, S. J., and Park, J. C.
(2024). Adaptive-RAG: Learning to Adapt Retrieval-
Augmented Large Language Models through Ques-
tion Complexity. Preprint, arXiv:2403.14403.

Joshi, A., Sarwar, S. M., Varshney, S., Nag, S., Agrawal, S.,
and Naik, J. (2024). REAPER: Reasoning based Re-
trieval Planning for Complex RAG Systems. Preprint,
arXiv:2407.18553.

Kamradt, G. (2023). Needle in a haystack - pressure testing
LLMs: A simple ’needle in a haystack’ analysis to test
in-context retrieval ability of long context LLMs.

Khattab, O., Santhanam, K., Li, X. L., Hall, D., Liang,
P., Potts, C., and Zaharia, M. (2023). Demonstrate-
Search-Predict: Composing retrieval and language

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1186

models for knowledge-intensive NLP. Preprint,
arXiv:2212.14024.

Li, M., Zhao, Y., Yu, B., Song, F., Li, H., Yu, H., Li, Z.,
Huang, F., and Li, Y. (2023). API-Bank: A Com-
prehensive Benchmark for Tool-Augmented LLMs.
Preprint, arXiv:2304.08244.

Liu, W., Huang, X., Zeng, X., Hao, X., Yu, S., Li, D.,
Wang, S., Gan, W., Liu, Z., Yu, Y., Wang, Z., Wang,
Y., Ning, W., Hou, Y., Wang, B., Wu, C., Wang, X.,
Liu, Y., Wang, Y., Tang, D., Tu, D., Shang, L., Jiang,
X., Tang, R., Lian, D., Liu, Q., and Chen, E. (2024).
ToolACE: Winning the Points of LLM Function Call-
ing. Preprint, arXiv:2409.00920.

Lu, J., Holleis, T., Zhang, Y., Aumayer, B., Nan, F., Bai, F.,
Ma, S., Ma, S., Li, M., Yin, G., Wang, Z., and Pang,
R. (2024). ToolSandbox: A Stateful, Conversational,
Interactive Evaluation Benchmark for LLM Tool Use
Capabilities. arXiv:2408.04682 [cs].

Ma, X., Gong, Y., He, P., Zhao, H., and Duan, N. (2023).
Query Rewriting for Retrieval-Augmented Large Lan-
guage Models. Preprint, arXiv:2305.14283.

Moon, S., Jha, S., Erdogan, L. E., Kim, S., Lim, W.,
Keutzer, K., and Gholami, A. (2024). Efficient and
Scalable Estimation of Tool Representations in Vector
Space. Preprint, arXiv:2409.02141.

Papineni, K. (2001). Why Inverse Document Frequency?
In Second Meeting of the North American Chapter of
the Association for Computational Linguistics.

Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E.
(2023). Gorilla: Large Language Model Connected
with Massive APIs. Preprint, arXiv:2305.15334.

Peng, W., Li, G., Jiang, Y., Wang, Z., Ou, D., Zeng, X.,
Xu, D., Xu, T., and Chen, E. (2024). Large Language
Model based Long-tail Query Rewriting in Taobao
Search. Preprint, arXiv:2311.03758.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin,
Y., Cong, X., Tang, X., Qian, B., Zhao, S., Hong, L.,
Tian, R., Xie, R., Zhou, J., Gerstein, M., Li, D., Liu,
Z., and Sun, M. (2023). ToolLLM: Facilitating Large
Language Models to Master 16000+ Real-world APIs.
Preprint, arXiv:2307.16789.

Raudaschl, A. H. (2023). Forget RAG, the future is RAG-
Fusion: The next frontier of search: Retrieval Aug-
mented Generation meets Reciprocal Rank Fusion and
generated queries.

Robertson, S. and Zaragoza, H. (2009). The Probabilis-
tic Relevance Framework: BM25 and Beyond. ISSN:
1554-0669 Issue: 4 Pages: 333-389 Publication Title:
Foundations and Trends® in Information Retrieval
Volume: 3.

Roucher, A. (2023). Agentic RAG: Turbocharge your RAG
with query reformulation and self-query!

Sawarkar, K., Mangal, A., and Solanki, S. R. (2024).
Blended RAG: Improving RAG (Retriever-
Augmented Generation) Accuracy with Semantic
Search and Hybrid Query-Based Retrievers. Preprint,
arXiv:2404.07220.

Setty, S., Thakkar, H., Lee, A., Chung, E., and Vidra,
N. (2024). Improving Retrieval for RAG based
Question Answering Models on Financial Documents.
Preprint, arXiv:2404.07221.

Sun, W., Yan, L., Ma, X., Wang, S., Ren, P., Chen, Z., Yin,
D., and Ren, Z. (2023). Is ChatGPT Good at Search?
Investigating Large Language Models as Re-Ranking
Agents. Preprint, arXiv:2304.09542.

Tang, Q., Deng, Z., Lin, H., Han, X., Liang, Q., Cao, B.,
and Sun, L. (2023). ToolAlpaca: Generalized Tool
Learning for Language Models with 3000 Simulated
Cases. Preprint, arXiv:2306.05301.

Tang, Y. and Yang, Y. (2024). MultiHop-RAG: Benchmark-
ing Retrieval-Augmented Generation for Multi-Hop
Queries. Preprint, arXiv:2401.15391.

Theja, R. (2023). Boosting RAG: Picking the best embed-
ding & reranker models.

Trivedi, H., Balasubramanian, N., Khot, T., and Sabhar-
wal, A. (2023). Interleaving Retrieval with Chain-of-
Thought Reasoning for Knowledge-Intensive Multi-
Step Questions. Preprint, arXiv:2212.10509.

Wang, L., Yang, N., and Wei, F. (2023). Query2doc: Query
Expansion with Large Language Models. Preprint,
arXiv:2303.07678.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. (2023). Chain-
of-Thought Prompting Elicits Reasoning in Large
Language Models. Preprint, arXiv:2201.11903.

Wu, M., Zhu, T., Han, H., Tan, C., Zhang, X., and Chen,
W. (2024). Seal-Tools: Self-Instruct Tool Learning
Dataset for Agent Tuning and Detailed Benchmark.
Preprint, arXiv:2405.08355.

Xu, B., Peng, Z., Lei, B., Mukherjee, S., Liu, Y., and Xu,
D. (2023). ReWOO: Decoupling Reasoning from Ob-
servations for Efficient Augmented Language Models.
Preprint, arXiv:2305.18323.

Yan, S.-Q., Gu, J.-C., Zhu, Y., and Ling, Z.-H. (2024). Cor-
rective Retrieval Augmented Generation. Preprint,
arXiv:2401.15884.

Yao, S., Shinn, N., Razavi, P., and Narasimhan, K.
(2024). τ-bench: A Benchmark for Tool-Agent-
User Interaction in Real-World Domains. Preprint,
arXiv:2406.12045.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2023). ReAct: Synergizing Rea-
soning and Acting in Language Models. Preprint,
arXiv:2210.03629.

Yuan, L., Chen, Y., Wang, X., Fung, Y. R., Peng, H., and Ji,
H. (2024a). CRAFT: Customizing LLMs by Creating
and Retrieving from Specialized Toolsets. Preprint,
arXiv:2309.17428.

Yuan, S., Song, K., Chen, J., Tan, X., Shen, Y., Kan, R.,
Li, D., and Yang, D. (2024b). EASYTOOL: Enhanc-
ing LLM-based Agents with Concise Tool Instruction.
Preprint, arXiv:2401.06201.

Zheng, H. S., Mishra, S., Chen, X., Cheng, H.-T., Chi,
E. H., Le, Q. V., and Zhou, D. (2024a). Take a Step
Back: Evoking Reasoning via Abstraction in Large
Language Models. Preprint, arXiv:2310.06117.

Zheng, Y., Li, P., Liu, W., Liu, Y., Luan, J., and Wang,
B. (2024b). ToolRerank: Adaptive and Hierarchy-
Aware Reranking for Tool Retrieval. Preprint,
arXiv:2403.06551.

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

1187

APPENDIX

A: Toolshed Evaluation Framework

The Toolshed Evaluation Framework enhances Tool-
Eval (Qin et al., 2023) by introducing granular met-
rics: 1) tool name, 2) parameter keys, and 3) param-
eter values. These metrics pinpoint if poor agent per-
formance stems from errors in selecting tool names,
understanding parameter keys, or inputting values.
Recall is computed at the sub-metric level using the
golden dataset and agent responses. A weighted score
combines these metrics (50% tool name, 25% each for
keys and values), averaged for multiple tool calls in a
golden QA set.

User (Golden QA):
What is $AAPL's stock price?

Toolshed Evaluation Framework

Correct Tool Names (%) = 0% (Stock_Price)
Correct Tool Parameter Keys (%) = 100% (ticker)
Correct Tool Parameter Values (%) = 100% (AAPL)
Weighted Score (%) = 50%

Agent Response: [
{"tool_name":"Get_Stock_Price",
"arguments":[{"ticker":"AAPL"}]}]

Golden Tool(s): [
{"tool_name": "Stock_Price",

"arguments": [{"ticker":"AAPL"}]}]

Weighted Accuracy Score = Correct Tool Names (%) x .50 + Correct Tool Parameter
Keys (%) x .25 + Correct Tool Parameter Values (%) x .25

User (Golden QA):
What is $AAPL stock price?
Also, what is Ford's stock ticker?

Toolshed Evaluation Framework

Correct Tool Names (%) = 100% (Stock_Price and Get_Stock_Ticker)
Correct Tool Parameter Keys (%) = 50% (ticker but not company_name)
Correct Tool Parameter Values (%) = 100% (AAPL and Ford)
Weighted Score (%) = 87.5%

Agent Response: [
{"tool_name":"Stock_Price",
"arguments": [{"ticker":"AAPL"}]},
{"tool_name":"Get_Stock_Ticker",
"arguments":[{"company":"Ford"}]}]

Golden Tool(s): [
{"tool_name": "Stock_Price",

"arguments": [{"ticker":"AAPL"}]},
{"tool_name": "Get_Stock_Ticker",

"arguments": [{"company_name":"Ford"}]}]

Query type: Single reasoning trace

Query type: Multi-reasoning trace -- Parallel
(Since both tool calls are independent and can be executed in parallel)

Figure 4: Toolshed Evaluation Framework.

B: Varying tool-M and top-k

Measuring Base Agent Accuracy. The graphs
compare Seal-Tools weighted accuracy (Fig. 4) of
the Base Agent and Advanced RAG-Tool Fusion at
fixed top-k across tool-M levels (1–3,500). The Base
Agent drops to 0% at tool-M=129 due to API limits
(128 tools) from providers (Anthropic, 2024; Google
Cloud, 2024). Advanced RAG-Tool Fusion, with top-
k ≤ 128, consistently outperforms the Base Agent.

Figure 5: Base Agent accuracy for Single Reasoning
Traces, varying tools 1–128.

Figure 6: Base Agent accuracy for Multi-Reasoning Traces,
varying tools 1–128. Sequential reasoning performs lower.

Figure 7: Comparison of Single-Reasoning Traces, varying
tools 1–3,500 and top-k. Higher top-k improves retrieval.

Figure 8: Comparison of Multi-Reasoning Traces, varying
tools 1–3,500 and top-k. Red retriever has no query decom-
position.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1188

Measuring Token Cost. The graphs compare Seal-
Tools token counts for Base Agent and Advanced
RAG-Tool Fusion across tool-M levels (1–3,500) at
fixed top-k. Token costs rise with more tools.

Figure 9: Prompt tokens (tools only) for Base Agent, vary-
ing tools 1–128 and top-k at 8, 16, 24.

Figure 10: Prompt tokens (tools only) for Base Agent, vary-
ing tools 1–3,500 and top-k at 8, 16, 24.

Optimizing Trade-Offs in Accuracy, Performance,
and Cost. A Base Agent struggles with more than
20 tools, while Advanced RAG-Tool Fusion scales to
thousands or limits tools to a manageable top-k. Fix-
ing top-k balances retrieval accuracy with token cost.

Figure 11: Trade-off between retrieval accuracy, agent per-
formance, and token cost across tool-M and top-k values.
Uses the Advanced RAG-Tool Fusion equation.

Impact of Embedders, Tool Configurations, tool-
M, and top-k. Retrieval accuracy improves slightly
with advanced embedders and richer tool compo-
nents, while relying only on tool name and descrip-
tion leads to lower accuracy.

Figure 12: No query decomposition: Embedder is text-
embedding-ada-002, using tool name and description.

Figure 13: With query decomposition: Embedder is text-
embedding-ada-002, using tool name and description.

Figure 14: Query decomposition, embedder is text-
embedding-3-small, with tool name, description, and arg
schema.

C: Case Study

Configuration (per each Toolshed Knowledge
Base).

• LLM: AOI gpt-4o-2024-08-06

• Embedder: AOI text-embedding-3-small

• Tool-M: 1,000 (per each TSKB)

• Top-k: 10 (final agent)

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

1189

Hypothetical Situation

You have 3,000 tools or functions and aim to create a multi-agent system. Each agent uses a dedicated Toolshed Knowledge Base and implements
Advanced RAG-Tool Fusion for optimized retrieval and execution. The tools are divided among the following sub-agents:

 • 1,000 Finance Tools: Focused on financial operations and analytics.
 • 1,000 Database Operation Tools: Designed for database management and query execution.
 • 1,000 Healthcare Tools: Tailored for healthcare-related tasks and insights.

Figure 15: Hypothetical Situation for Case Study. See above for configuration of each Toolshed Knowledge Base.

Pre-retrieval (indexing)

The following steps outline the pre-processing pipeline needed for each set of tools. After step 6, store the tool documents in a vector database.

1. Create Clear, Descriptive Names for Each Tool

Each tool should have a name that clearly describes its function.

2. Develop Clear Descriptions for Each Tool

Provide a detailed description of each tool, including specific scenarios where it would be used and where it wouldn't.

3. Define Clear Argument Schema with Parameter Names and Descriptions for Each Tool

List and define the input arguments for each tool.

4. Optional: Generate Hypothetical Questions for Each Tool (may help with retrieval)

Add 1-10 diverse user questions related to the tool. Use existing questions if available. Try to include parameters.

5. Optional: Generate Key Topics, Themes, or Intents for Each Tool (may help with retrieval)

Add 1–10 key topics or intents associated with the tool. Be concise and differentiable from other tools. Can generate from the hypothetical questions and tool name, description, and argument schema.

 6. Metadata for Tool Name in Code Repository

 7. Optional: Metadata filtering for hierarchical or group-based tool groups

e.g. "get_net_present_value"

"Calculates the net present value (NPV) of a series of cash inflows and outflows over a specified period, discounted to present value based on a given rate. Useful for determining the value of future
cash flows, particularly in investment scenarios, when provided with initial investment, discount rate, and time period."

initial_value: "The initial cash flow at the start of the period, which could be an investment, cost, or inflow."
start_date: "The beginning date of the cash flow period."
end_date: "The end date of the cash flow period."
discount_rate: "The rate used to discount future cash flows to their present value."
scrap_value: "The final residual value of the asset at the end of the period."
cash_flows: "A series of inflows and outflows over the specified period."

1. "What is the NPV for a project starting on January 1, 2025, with an initial outflow of $100,000, annual cash flows of $15,000, and a discount rate of 8%?"
2. "Calculate the net present value for cash flows of $20,000 per year over 10 years, with a 7% discount rate."
3. "What is the NPV if my project ends in December 2030, with an initial cost of $50,000 and a scrap value of $5,000?"

1. "Investment Valuation"
2. "Cash Flow Analysis"

{"tool_name":"get_net_present_value"}

{"sub_group":"financial_calculations"}

Figure 16: Case study pre-retrieval phase.

Logistics and Maintenance of Toolshed Knowledge Base with Tool Calling

The following steps outline best practice considerations when using Advanced RAG-Tool Fusion and Toolshed Knowledge Bases in production.

1. Unified tools.py for each Toolshed Knowledge Base

To aid in maintaining the tools or functions, each set of tools used for a Toolshed Knowledge Base should be separated.

2. Ability to add a new tool to the Toolshed Knowledge Base

Automated systems in place to add a new tool/function to the Toolshed Knowledge Base.
Recommended solution: Use hashes to track changes in tool name, description, argument schema, and any appended questions or key topics/intents. Steps: generate a unique hash for each tool and compare it to
the previously stored hash to identify when re-indexing or updates are necessary.

3. Ability to delete a tool to the Toolshed Knowledge Base

Automated systems in place to add a new tool/function to the Toolshed Knowledge Base.
Recommended solution: Use hashes to track changes in tool name, description, argument schema, and any appended questions or key topics/intents. Steps: generate a unique hash for each tool and compare it to
the previously stored hash to identify when re-indexing or updates are necessary.

4. Ability to update a tool to the Toolshed Knowledge Base

Automated systems in place to update an existing tool/function to the Toolshed Knowledge Base.
Recommended solution: Use hashes to track changes in tool name, description, argument schema, and any appended questions or key topics/intents. Steps: generate a unique hash for each tool and compare it to
the previously stored hash to identify when re-indexing or updates are necessary.

5. Generate a Toolshed Dictionary from the tools.py file for actual agent-tool execution

The Toolshed dictionary will serve as a in-app, inference-time look-up, where each key is the tool name in tools.py, and the value is the actual python tool or function.
After Advanced RAG-Tool Fusion retrieves the top-k relevant tools to equip to an agent, these tools are actually the documents represented by the vector database. For each retrieved tool document, use the tool
document metadata key "tool_name" that we set up in step 6 of phase 1 pre-retrieval/indexing to access the key-value pair of the Toolshed Dictionary. You can then attach these functions to the agent in the
framework of your choice.

finance_tools.py -- the collection of 1,000 finance tools in whatever tool creation framework of your choice.

top-k
tools tool.metadata["tool_name"]

tool.metadata["tool_name"]

(...)

Toolshed Dictionary:
{"get_net_present_value":
GetNetPresentValue(),
"...": Tool()} Agent

Attach tools to agent

[GetNetPresentValue(), Tool()]

Figure 17: Case study logistics in production.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1190

Intra-retrieval (inference)

User: "current value of inv of 5k, yearly flows 3k for 3 yrs @ R 3.5, also IRR for
another one 7k cost, 4k flows for 8 yrs, 2.75%"

Initial Query Rewriting: "What is the NPV of an initial investment of $5,000 with
yearly cash flows of $3,000 for 3 years at a 3.5% rate? Also, calculate the internal rate
of return (IRR) for another investment with an initial cost of $7,000 and yearly cash
flows of $4,000 for 8 years."

Query/Intent Decomposition and Planning:
D1. "What is the NPV of an initial investment of $5,000 with yearly cash flows of
$3,000 for 3 years at a 3.5% rate?"
D2. "What's the internal rate of return (IRR) for an investment with initial cost of
$7,000 and yearly cash flows of $4,000 for 8 years at 2.75% rate?"

Q1. "How do I calculate the NPV for a
$5,000 investment with yearly cash flows
of $3,000 for 3 years at a 3.5% discount
rate in Excel or Python?"
Q2. "Calculate net present value or
NPV?"
Q3. "If I’m learning finance from courses
or a tutor, how do I calculate the net
present value of a $5,000 investment
generating $3,000 yearly for 3 years with
a discount rate of 3.5%?"

Multi-query Expansion or Variation

Can be parallelized by each D1, D2, Dn

Q1. "What is the internal rate of return
(IRR) and how does it show profitability
of an investment?"
Q2. How can I use IRR to determine if a
$7,000 investment with $4,000 yearly
cash flows for 8 years is profitable?"
Q3. "How to calculate the IRR or
Internal Rate of Return in Excel or
Python to assess the profitability of an
investment with $4,000 annual returns
over 8 years?"

D1

Retrieval (mini top-k for each query variation can be configured, using 5 here)

top-k
tools

The following are Advanced RAG-Tool Fusion modules to build. Not all
modules are necessary, but if used, require an ordered pipeline.

Module 1: Initial Query Rewriting

Rewrite the query to correct any errors (spelling, grammar,
unclear pronouns) using available context, like chat history, to
improve clarity and quality for retrieval.

Module 2: Query/Intent Decomposition and Planning

Break down the query into smaller, independent steps, ensuring
each sub-question focuses on a specific tool or task.

Module 3: Multi-query Diversification, Variation, or Expansion

Generate multiple query variations by adding relevant keywords
and phrases, ensuring the expanded queries cover different
approaches and variations in terminology to improve retrieval
accuracy.
Can utilize step-back prompting to generate a abstract high-
level query to aid in retrieval
Can utilize key topics/intents/themes of the query to aid in
retrieval

Module 4: Retrieval

Use the rewritten, decomposed, and expanded query to retrieve
the correct tool(s) from the Toolshed Knowledge Base, ensuring
the retrieved tools match the sub-questions for relevance and
correctness.

Can be parallelized by each D1, D2, Dn, and by each D1, Q1-3

Q1-D1 Q2-D1 Q2-D1

top-k
tools

top-k
tools

top-k
tools

D2

top-k
tools

Q1-D2 Q2-D2 Q2-D2

top-k
tools

top-k
tools

top-k
tools

1

2

3

4

Figure 18: Case study intra-retrieval phase.

not all

found all tools needed

Post-retrieval

The following are Advanced RAG-Tool Fusion modules to build. Not all
modules are necessary, but if used, require an ordered pipeline. Post-
retrieval primarily deals with reranking, corrective RAG, and self-RAG.

Module 1: Optional: reranking, Corrective RAG for Individual
Query Variations

Using a reranking embedder or LLM can improve the retrieval
accuracy for each query variation by reranking the initial top
10-15 tools and keeping the top 5. If reranking isn't necessary,
directly retrieve the top 5 tools.

Module 2: Reranking, Corrective RAG for Multiple Query
Variations for D1 (Di)

Condensing/reranking the multiple sets of retrieved mini top-k
query variations into a single penultimate set of top-k tools for a
single query decomposition/intent/plan.
Use either an LLM or reranking embedder, and discard
irrelevant tools during the process.
Ensure no duplicates in the final set.

Module 3: Reranking, Corrective RAG if multiple query
decompositions

Rerank the top-k tools across multiple decomposed queries and
retain the most relevant tools.
Corrective RAG can discard irrelevant tools during reranking,
and duplicates should be removed.

Module 4: Optional: Self-RAG

If necessary tools are missing, an agent can re-query the
Toolshed Knowledge Base using additional keywords to
retrieve the correct tools to answer the user question

D1

Previous Step: Retrieval (mini top-k for each query variation, using 5 in this case)

Q1-D1 Q2-D1 Q2-D1 D2 Q1-D2 Q2-D2 Q2-D2

top-k
tools

top-k
tools

top-k
tools

top-k
tools

top-k
tools

top-k
tools

top-k
tools

top-k
tools

Optional: Reranking Individual Query Variations

top-k
tools

top-k
tools

top-k
tools

top-k
tools

The first top-k from D1→top-k can be larger and reranked to the bottom top-k.
Ex. D1→10 tools→reranked→5 tools

top-k
tools

top-k
tools

top-k
tools

top-k
tools

top-k
tools

Reranking Multiple Query Variations for D1, D2, Dn

The individual query variation top-k can be different than the final top-k for D1 (Di).
Ex. 5 tools + 5 tools + 5 tools + 5 tools → max. 10 tools (or max. 5)

top-k
tools

Reranking Multiple Query Decompositions into Final Tool List for Agent

 Attach to Agent

top-k
tools

Agent

Optional: Self-RAG

Agent

{"tool_query":
"NPV "}

top-k
tools Agent:

Answers using tools.

1

2

3

4

Figure 19: Case study post-retrieval phase.

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

1191

