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The present paper explores the use of Artificial Neural Networks in the context of Pseudorandom Number
Generators such as Linear Feedback Shift Registers and Geffe. Because of their hardware efficiency, variations
of these generators may be used by IoT devices for security purposes. Testing to ensure security is essential,
but it was observed that traditional test suites are too slow for the task. Machine Learning models, on the
other hand, represent a faster alternative. While Artificial Neural Networks have been able to learn from these
generators, improvements are still needed in terms of optimization and lowering domain knowledge. For that,
the present paper focuses on the manner in which state of the art neural network approaches scale for a wider
variety of Linear Feedback Shift Registers, including some of degree > 100 and discusses the challenges
that arise. Moreover, it proposes a novel Geffe learning approach that produces up to 100% testing accuracy
and, based on that, promotes an additional optimization by capitalizing on model visualization and the ability
of neural networks to learn deterministic functions to perfection. A comparative analysis is performed in
order to show the superiority of the approach and an in-depth discussion is conducted on the possibility and
implications of neural network perfect learning, particularly when coupled with model visualization. The
obtained results can be regarded as incremental advances towards the creation of more robust neural network
models to perform PRNG security evaluation for IoT devices.

1 INTRODUCTION

Recent years have seen an increase in the use of Ma-
chine Learning techniques for detecting latent pat-
terns in Pseudorandom Number Generators (PRNGs).
It is believed that a Machine Learning algorithm that
is able to learn from a pseudorandom sequence to
the point of predicting future outputs with more than
chance accuracy has captured at least some of the in-
trinsic, hidden mechanisms of the PRNG. Learning is
possible because, while PRNGs produce numeric se-
quences that have a random aspect, they rely on the
repetitive application of some mathematic and logic
operations to produce new outputs, therefore causing
the existence of some subtle patterns.

Given the suitability of Machine Learning tech-
niques for handling large amounts of numerical data,
several successful applications for predicting future
PRNG outputs have surfaced in the literature (Kant
and Khan, 2006), (Fischer, 2018), (Mostafa Hassan,
2021), (Amigo et al., 2021). The most prominent ap-
proaches are those that rely on neural networks.

Machine and Deep Learning approaches have
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been extensively discussed with respect to the pos-
sibilities they bring to the field of IoT (Cui et al.,
2018) (Hussain et al., 2020) as well. Recent work
(Ince, 2024) has revealed that neural networks can
successfully mimic traditional PRNG test suites while
significantly decreasing evaluation time on IoT de-
vices. Linear Feedback Shift Register (LFSR) in-
spired PRNGs are used for generating randomness in
the context of IoT (Noura et al., 2019). While (Ince,
2024) used neural networks only to imitate statistical
tests, it is considered that these techniques are able
to discover other patterns in PRNG data that tradi-
tional test suites may miss. The creation of Machine
Learning specific tests for PRNGs used in IoT devices
may be beneficial for combining fast and robust eval-
uation. However, since some of the PRNGs used in
the context of IoT, such as stream ciphers (Kietzmann
et al., 2021), have not been successfully predicted us-
ing Machine Learning techniques (Kant et al., 2009),
we observe the need for advancing the possibilities
imposed by the latter, especially of neural networks,
in the perspective of leading to solutions that will, in
the future, be able to successfully learn from more
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complex PRNGs. We conjecture that once this is pos-
sible, Machine Learning testing frameworks will be
more robust and lead to a more realistic evaluation of
elaborate PRNGs. In the present work we aim to take
an incremental approach in this direction by focus-
ing on extending current possiblities of learning from
LFSR-based PRNGs with Artificial Neural Networks
(ANNSs).

We observe that in (Boancd, 2024)(a) ANNs were
used for finding the smallest possible size for a train-
ing set that allows learning from LFSRs and for cre-
ating a pipeline to tackle the Geffe PRNG prediction
problem. While the proposed directions were able to
mitigate several difficulties imposed by LFSRs and
Geffe, we identify possibilities of further optimiza-
tion and improvement. We observe that (Boancad,
2024)(a) failed to evaluate the manner in which the
proposed ANN framework scales for higher degree
LFSRs (> 100) where the binary output distribution
may be skewed towards 0. Moreover, the pipeline
model proposed for Geffe in (Boancd, 2024)(a) re-
quires significant domain knowledge as it evaluates
its consisting LFSRs separately.

The present paper focuses on deriving optimiza-
tions for learning from LFSRs and Geffe with ANNs
with the goal of developing lightweight and reliable
Machine Learning models that may ultimately be
used to evaluate the security of PRNGs on IoT de-
vices. It addresses the aforementioned issues by eval-
uating the approach proposed in (Boancid, 2024)(a)
for LFSRs degree > 100 and discussing the chal-
lenges that arise in this context. Furthermore, a direct
ANN model is introduced for making predictions on
complete Geffe seeds, without the need of a special-
ized pipeline. This model is then used to derive an
optimization by capitalizing on visualization and the
ANNs ability of learning deterministic functions to
perfection. The proposed Geffe models are compara-
tively evaluated against the one in (Boancd, 2024)(a).
A discussion ensues about the capability of ANNs to
perfectly learn deterministic functions in the context
of PRNGs and the possibilities advanced by it, espe-
cially when corroborated with visualization. More-
over, the paper addresses the possibility of extending
the current approach to learn from Geffe outputs in
an attempt to lower the number of bits needed for the
task in (Kant et al., 2009). The results are regarded
from the perspective of learning on more complex
PRNGs used in IoT devices such as stream ciphers.
Challenges that arise in this respect are discussed.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of the related work. Sec-
tion 3 offers theoretical background for the proposed
approach. Section 4 presents the experiments. Sec-

118

tion 5 describes the obtained results. Section 6 fol-
lows with a discussion regarding the results and impli-
cations of the employed methods. Section 7 presents
the conclusion of the paper.

2 RELATED WORK

Machine Learning methods have been successfully
employed for a wide range of cryptography related
tasks, such as differential cryptanalysis (Gohr, 2019)
and pseudorandom number generation (Pasqualini
and Parton, 2020). While the established method
for PRNG security evaluation is the use of statisti-
cal test suites such as NIST (Rukhin et al., 2001),
TestUO1 (L’Ecuyer and Simard, 2007) or dieharder
(Robert G. Brown, 2017), discovering hidden patterns
which may undermine PRNG security with the use
of Machine Learning, especially neural networks, has
evolved in recent years. Given the ability of neural
networks to use and obtain reliable results for large
amounts of data, (Fischer, 2018) proposed a recur-
rent neural network paradigm for evaluating a set of
PRNGs, including some that claim to be cryptograph-
ically secure. While certain interest had been invested
into this problem in the past (Savicky and Robnik-
gikonja, 2008), the results of the former produced re-
newed engagement in the Machine Learning commu-
nity and since, a number of other approaches have sur-
faced, tackling problems such as next in sequence pre-
diction (Feng and Hao, 2020), (John Labelle, 2020),
(Amigo et al., 2021), (Prashant Limba, 2024), min-
entropy estimation (Truong et al., 2018), (Lv et al.,
2020) (Li et al., 2020) and inversion (Mostafa Hassan,
2021). In a comprehensive study, (Boanca, 2024)(b)
gathered a variety of such approaches in order to high-
light advances and popularize this emerging niche.
The study observed the difficulty of the problem (as
some approaches (Zanin, 2022) failed to produce re-
sults at all) and proposed a number of directions. Par-
ticularly, it admitted the possibility of PRNG simpli-
fication and that of performing learning to perfection
due to the deterministic nature of the PRNGs.

In the direction of IoT, the use of Machine and
Deep Learning techniques has been steadily docu-
mented (Cui et al., 2018), (Hussain et al., 2020). Cap-
italizing on the ability of neural networks to mitigate
the high evaluation time needed by traditional statis-
tical tests, (Ince, 2024) proposed a Deep Learning
framework to replace them for IoT devices. A variety
of PRNGs that originate from LFSRs are used in the
context of IoT (Noura et al., 2019), (Kietzmann et al.,
2021). In its early stages, the task of predicting sub-
sequent bits from LFSRs with Machine Learning was
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approached from the perspective of Decision Trees
(DTs) (Kant and Khan, 2006). Subsequently, (Kant
et al., 2009) extended the DT approach to Geffe and
other PRNGs achieving up to 100% accuracy. How-
ever, it stressed the fact that neural network models
may need higher amounts of data in order to obtain
competitive results. (Gupta et al., 2021) and (Kim
and Kim, 2021) managed to elevate the problem of
making predictions on LFSRs to the use of ANNs.
This was done in order to find a minimal bound for
the number of bits necessary to generate LFSR pat-
terns (Gupta et al., 2021) and the minimum window
size needed for learning (Kim and Kim, 2021). More
specifically, (Gupta et al., 2021) introduced two pat-
tern generation algorithms that enabled the creation
of a large dataset consisting of 10* instances from a
small number of known LFSR bits. Using this ap-
proach, the authors managed to learn from and pre-
dict LFSRs with up to 100% accuracy using fewer
bits than the Berlekamp-Massey algorithm (Massey,
1969). In (Kim and Kim, 2021), the minimum win-
dow size needed for learning was revealed to be equal
to the LFSR degree. (Boancd, 2024)(a) provided ad-
ditional optimizations by finding a lower bound for
the actual number of instances necessary for creat-
ing the ANN training dataset (less than 10* instances)
even for LFSRs of degree > 50. The author corrob-
orated this optimization and the nature of the Geffe
PRNG, which consists of 3 separate LFSRs, in or-
der to create an optimized pipeline model that is able
to learn from Geffe using an end-to-end ANN ap-
proach. As the only other known approach for learn-
ing Geffe (Kant et al., 2009) used millions of bits, the
pipeline proposed in (Boancd, 2024)(a) succeeded in
contradicting the claim that ANNs need more data for
training when compared to DTs and cemented ANNs
as the most efficient tool for learning on LFSRs and
Geffe.

It is identified, however, that the work in (Boanca,
2024)(a) can still be improved. More specifically, the
proposed optimization for LFSR learning, namely the
reduction of the magnitude degree of the training set
size to 10° needs to be evaluated as it scales for LF-
SRs of degree > 100. Moreover, given the excessive
domain knowledge needed by the developed pipeline
(each LFSR is delimited within the Geffe seed and
evaluated separately), a more direct approach should
be explored.

In this respect, the contributions of the present pa-
per are summarized as follows:

» Explore how optimizations presented in (Boanca,
2024)(a) scale for other LFSRs, including some
of degree > 100 (higher LFSR degrees are chal-
lenging due to having an unbalanced binary out-

put distribution with a preference towards 0);

* Train an ANN model on Geffe seeds to predict the
next Geffe outputs;

* Compare the obtained results to other Geffe learn-
ing approaches;

* Derive an optimization for Geffe prediction using
model visualization;

» Expand on the implications of perfect learning of
deterministic functions in the context of neural
networks and PRNGs;

e Evaluate the possibility of ANN learning from
more complex expressions of PRNGs.

3 THEORETICAL BACKGROUND

The present section introduces the theoretical back-
ground for learning from PRNGs, more specifically
LFSRs and Geffe, with neural networks (ANNSs). In
the beginning, a prefacing discussion is revealed for
better understanding the intended role of ANNs in
predicting PRNGs. After that, the remaining sec-
tion is split in two subparts: the first, introducing the
PRNGs; the second, presenting ANNS.

3.1 Pseudorandom Number Generators
and Neural Networks: Introductory
Discussion

Pseudorandom Number Generators are algorithms
that produce sequences of numbers that appear to be
uncorrelated with one another, yet are the result of a
deterministic process.

Because of their unpredictability, PRNGs are gen-
erally used in the context of cryptographic applica-
tions, which demand high quality randomness (that is,
highly unpredictable PRNGs) but also in simulation
and games, where the conditions for unpredictability
tend to be more lax.

Thus far, statistical tests have been employed for
evaluating PRNG security by investigating repetitive
patterns and regularities that may account for higher
than chance prediction accuracy in certain contexts.
As such tests have been developed and used for a few
decades, they have improved to the point of ensuring
a reliable degree of security. Machine Learning tech-
niques, and more specifically neural networks, have
seen a relative more recent development. Thus, even
though, in theory, neural networks are believed to be
able to identify patterns that traditional statistical tests
might miss, it is still too early in their development to
produce results for highly complex PRNGs. It can be
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seen in the literature how a number of simpler PRNGs
such as Linear Congruential Generators and LFSRs
provide the “favorite” toy data material for challeng-
ing these innovative techniques.

While important development has already been
achieved, further steps need to be taken from a Ma-
chine Learning, and particularly neural network, per-
spective in order to enable such techniques to tackle
more complex problems. For now, an exhaustive ex-
ploration of their possibilities in the context of sim-
pler PRNGs, such as LFSRs and Geffe, especially
with an interest towards visualization and optimiza-
tion, is considered a steady stepping block for attain-
ing meaningful results for more complex PRNGs in
the future. We theorize that it may be better to obtain
high precision results for simpler PRNGs with a focus
on optimization, than to achieve mediocre results for
more complex ones, as the former may pave the way
for improving the latter.

In what follows, the currently studied PRNGs,
namely LFSRs and the Geffe generator are described.

3.2 Linear Feedback Shift Registers:
Seed, Taps, Degree and Primitive
Polynomial

Linear Feedback Shift Registers are PRNGs that pro-
duce random numbers based on a series of logic op-
erations (XOR) applied upon their seed (Schneier,
2007).

The seed of a PRNG is the internal, usually se-
cret, state of that generator, which may be manu-
ally initialized with a starting value. It is through a
series of operations performed on that seed that the
PRNG changes its internal state and is able to out-
put seemingly random numbers. However, because
of the fact that the exact same sequence of operations
is used to alter successive hidden states (or seeds),
some regularity may be perceived in the PRNG output
(Schneier, 2007).

For LFSRs, the seed consists of a series of bits. At
each time step, the LFSR is clocked, meaning a new
bit is added to the leftmost position in the seed, the
remaining bits are shifted to the right and the right-
most bit is output. The bit that is added is the result of
successive XOR operations applied on bits situated at
tap positions within the seed (Schneier, 2007).

Tap positions or more simply faps are certain po-
sitions or indices of the LFSR seed that are outlined in
its describing primitive polynomial (Schneier, 2007).

A primitive polynomial is a polynomial modulo 2
that describes the configuration of a LFSR. For ex-
ample, x® +x° 4 x3 +x* + 1 is the primitive polyno-
mial of degree 8 that describes the LFSR having state
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00011101, where 1s are placed on positions 8, 6, 5,
4, like the powers of the polynomial. The XOR op-
eration will be performed on bits on position 8 and
6, then the result will be XOR-ed with the bit on po-
sition 5 and their result will be XOR-ed with the bit
on position 4 to obtain a new bit that will, in turn,
be used to change the LFSR seed configuration. The
same operation is repeated until enough data has been
gathered from the LFSR or until the LFSR cycles (the
seed configuration returns to its original state).

This particular rule in the evaluation and the
formation of consecutive LFSR seeds describes Fi-
bonacci LFSRs. For simplicity, in what follows we
will term them as simply LFSRs (Schneier, 2007).

As at each step LFSRs output a single bit value,
they may be seen as Pseudorandom Bit Generators
and this is the perspective from which they are ap-
proached in the current study. However, it is impor-
tant to note that it is possible to use the generated bits
to derive actual numbers.

3.3 Geffe

PRNG aggregation is the technique of combining
the outputs (and thus, the mechanisms) of different
PRNGs in a manner that allows for obtaining a new,
more robust one. This is the premise for the creation
of the Geffe PRNG.

Geffe uses 3 LFSRs that operate independently
and, based on their outputs, derives a pseudorandom
bit that will be the final Geffe output. The Geffe for-
mula is described as follows:

x6 = (x1 Ax2) ® (—x1 Axs) (D)
where x¢ is the Geffe output and x;, xp and x3 are
the corresponding outputs of the 3 LFSRs (Schneier,
2007).

It is known that the Geffe output is highly corre-
lated to the output of the third LFSR, x3, as they share
the same values in 75% of the cases (Schneier, 2007).
This is perceived as a severe limitation to Geffe, since
the problem of predicting it with more than chance
accuracy is reduced to the problem of predicting the
output of the third LFSR, rendering the aggregation
useless (Schneier, 2007).

While in certain circumstances traditional ap-
proaches to predicting Geffe may need as little as
37dnqy bits, where dy,qx is the degree of the largest
LFSR (Schneier, 2007), Machine Learning based ap-
proaches tend to struggle at this task.

3.4 Artificial Neural Networks

Artificial Neural Networks are a powerful type of Ma-
chine Learning techniques that are known as universal
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approximators of functions. That is, given some in-
put, they should be able to learn an approximate map-
ping to its corresponding output.

At their core, ANNs are algorithms that use aggre-
gation of data (dot product) and unit activation (ac-
tivation functions) to perform this task. The paral-
lelism with the human brain comes from their percep-
tive abilities (they are fed some input, thus we say
they are able to “perceive” it) and the error correction
mechanism (backpropagation), similar to trial and er-
ror learning for humans.

In more technical terms, ANNs consist of neurons
that share weighted connections and are disposed in
layers such that all neurons in consecutive layers are
fully connected to one another, but neurons in the
same layer are not.

As an input of the form I = (iy,...,i,) is fed into
the network, neural units compute the dot product be-
tween the input and their corresponding weights:

z=0wi+iwr+...izw, +b )

where wi,w»,...w, is the set of weights and b is the
bias of the neuron.

The resulting z value is activated via an activation
function that is typically non-linear, such as relu, tanh
and sigmoid: & = 6(z) (here, sigmoid has been used)
to obtain the final output of the neuron, which will,
in turn, be the input of other neurons in the following
layer.

This process is repeated until it reaches the output
layer, where the error function is computed. The er-
ror is propagated backwards into the network with the
goal of adjusting all neural weights (and biases) ac-
cordingly. The backpropagation process relies upon
derivatives. As the current weight configuration may
describe a point on the error function in a hyperplane,
minimizing the error equates to performing a step by
step descent on the error space from the current point.
In order to perform this descent, we need to know the
slope (hence the derivative) of the error function, such
that we may move downwards.

The forward propagation of the information and
the backpropagation of the error is repeated until no
more improvement (or learning) is possible.

Figure 1 displays an ANN with an input layer, one
hidden layer and one output layer.

Given their ability to capture significant features
when learning from the data, ANNs are a robust tool
for predicting LFSR-based PRNGs (Mostafa Hassan,
2021), (Gupta et al., 2021), (Kim and Kim, 2021),
(Boancd, 2024)(a), which is the reason why they have
been chosen for the task.

Input layer Hidden layer Output layer

Figure 1: A simple ANN consisting of an input layer, a hid-
den layer with 2 neurons and an output layer with 1 neuron.
For simplicity, biases have been omitted.

4 EXPERIMENTS

The following section describes the experiments per-
formed as part of the current paper.

Unless specified otherwise, all experiments have
been undertaken using a CPU based Google Colab
backend. The use of CPU instead of GPU is motivated
by the fact that CPU was found to perform better for
smaller tensor dimensions.

4.1 Linear Feedback Shift Registers

While (Boancd, 2024)(a) managed to reduce the num-
ber of bits needed to learn from LFSRs with ANN to
degree of magnitude 103, this bound was evaluated
only for LFSRs of degree < 100. In an attempt to
test the scalability of the solution for other LFSRs,
including some of degree > 100, we observe the con-
figurations presented in Table 1.

Table 1: Configurations of the studied LFSRs.

Degree | Primitive polynomial | Nb. of taps
42 [P+ 0+ 4
46 A I 4
100 X100+ 37 1 2
155 x5 1 2
177 7T 4841 2
250 P04+ + 1 2

The dataset is created in the following manner: a
sliding window of size LFSR degree + I is moved
bit by bit across LFSR outputs, resulting in binary
input vectors of length LFSR degree and binary out-
put labels corresponding to the value of bit at position
LFSR degree + 1. Given the nature of ANN learning
and its sensitivity towards statistical bias it is essential
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that the obtained output labels are evenly distributed
among classes 0 and 1.

We observe that in the case of LFSR learning, the
only positions in the input vector that influence the
output are the tap positions, the rest of the bits be-
ing considered noise. More precisely, in the case of
LFSRs degree > 100, only 2 values in the input vec-
tor are relevant. The possibilities of combining the 2
relevant bit values at tap positions for LFSRs degree
> 100 are limited: 0 XOR 0 and 1 XOR 1 result in
a final value of 0; 0 XOR 1 and 1 XOR O result in a
final value of 1.

In what follows, we will address the aforemen-
tioned combinations of bits at these relevant tap po-
sitions as LFSR patterns. For each pattern, 00, 01,
10, 11, a number of input vectors can be associated to
it, namely the vectors that have these specific bit con-
figurations at tap positions. We observe that because
of the large distance between tap positions in LFSRs
degree > 100, the patterns are unevenly skewed to-
wards those that result in an output of 0 (00 and 11),
thus making data unbalanced. Figure 2 displays the
distribution in terms of the aforementioned patterns
for LFSRs degree > 100 for the first 5 x 10* dataset
entities.

It is apparent that the dataset needs to be prepro-
cessed such that an even number of entities is present
for each pattern. Through visualization we observe
the number of available entities per pattern for each
LFSR degree > 100. A balanced number of entities
is extracted from each LFSR pattern as presented in
Table 2. For LFSRs degree < 100, no extra process-
ing step is necessary since contiguous bits account for
balanced classification labels. For them, the training
set simply used the first 8000+ degree + 1 LFSR bits,
as in (Boanca, 2024)(a).

Table 2: Number of training samples for the studied LFSR.

Degree | Entities / pattern | Total samples
42 not the case 8000
46 not the case 8000
100 2000 8000
155 2000 8000
177 2500 10000
250 4000 12000

These observations come to challenge the assump-
tion in (Boancd, 2024)(a), since for LFSRs degree
> 100 a number of bits greater than order of magni-
tude 103 was necessary to create the training set. The
assumption in (Boancd, 2024)(a) was that contiguous
bits (with N — 1 bit overlap, where N is the sliding
window size) could be used to generate the training
set. In the case of LFSRs degree > 100, this assump-
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Figure 2: Pattern distribution for LFSRs degree > 100.

tion may not hold since contiguous bits may skew data
distribution towards the dominant class (i. e. class 0).
Thus, after collecting enough samples for that class
using the sliding window mechanism, inputs that lead
to the same output need to be skipped. Consequently,
an N — 1 overlap may not be applied to all instances
because some of their consecutive outputs (equal to 0)
may be dropped for keeping the training set balanced.
Thus, a training set of 8000 samples (as in the case of
LFSR degree 155) requires more than 8000+ 155+ 1
LFSR output bits to be created. Experimentally, it
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was observed that a number of bits equal to degree
of magnitude 10* to 10° was necessary for deriving
a balanced number of patterns (and thus, of training
inputs) for LFSRs degree > 100.

For each of the validation and test sets, 1000 sam-
ples have been obtained in a similar manner.

The architecture of the proposed ANN is similar
to the one used in (Boancd, 2024)(a), namely 2 lay-
ers consisting of 10 and 1 neurons, respectively, with
sigmoid activation. Binary cross-entropy was used as
loss function. The number of epochs was chosen to be
250 for LFSRs degree < 100 as in (Boanca, 2024)(a)
and 500 for LFSRs degree > 100 and the batch size
64.

4.2 Geffe

4.2.1 Learning from Consecutive Seeds

Instead of using a processing pipeline which sep-
arately considers each Geffe seed LFSR (Boanca,
2024)(a), we formulate the problem of learning from
Geffe seeds directly. In this manner, we aim to reduce
domain knowledge, which is one of the limitations in
the study of (Boancd, 2024)(a).

The dataset is composed by input entries which
consist of full Geffe seed configurations (i. e. the
concatenated seed configurations of its consisting LF-
SRs) and the corresponding output bit as a binary la-
bel. For each Geffe configuration 8000 samples are
used for training, 2000 for validation and 2000 for
testing. The only exception is the configuration where
the LFSR degree 250 is present. For that, 12000 sam-
ples were used for training, 1000 for validation and
1000 for testing.

The ANN architecture consists of 6 layers of sizes
input _size —64 —32 — 16 — 8 — 1 having sigmoid acti-
vation. The loss function used is binary cross-entropy.
Models are trained for 50 to 100 epochs with batch
sizes of 16 for Geffe configurations where all LFSRs
have degree < 100 and 64 for those that contain a
LFSR degree > 100. The Geffe configurations and
data sizes used for training, validation and testing as
well as the corresponding batch size and number of
training epochs are presented in Table 3.

4.2.2 Learning from Consecutive Outputs

We further elaborate on the problem and attempt to
eliminate the need for domain knowledge completely
through ANN learning from Geffe outputs only. A
simple configuration with LFSRs degree 8,13,19 is
studied, where the LFSR degree 8 is described by
primitive polynomial x® 4+ x% 4 x> 4+-x* 4- 1 and LFSRs
degree 13 and 19 are taken from (Boancd, 2024)(a).

Table 3: Configurations and corresponding number of train,
validation and test samples as well as the batch size (de-
noted Bs.) and total training epochs (denoted Ep.) for the
Geffe models. The configuration is represented only by the
degree of each LFSR. In the case of LFSRs degree < 100
which were not defined in the present paper, the configura-
tion follows the same parameters as in (Boancd, 2024)(a).
Config. Train | Valid. | Test | Bs. | Ep.
19,42,53 8000 | 2000 | 2000 | 16 | 50
19,42,59 8000 | 2000 | 2000 | 16 | 50
19,46,53 8000 | 2000 | 2000 | 16 | 50
19,46,59 8000 | 2000 | 2000 | 16 | 50
19,53,59 8000 | 2000 | 2000 | 16 | 50
42,53,59 8000 | 2000 | 2000 | 16 | 50
46,53,59 8000 | 2000 | 2000 | 16 | 50
19,53,100 | 8000 | 2000 | 2000 | 64 | 100
42,59,155 | 8000 | 2000 | 2000 | 64 | 50
46,53,177 | 8000 | 2000 | 2000 | 64 | 100
53,59,250 | 12000 | 1000 | 1000 | 64 | 50

Data is obtained through a sliding window process
over consecutive Geffe binary outputs, with a win-
dow size equal to lcm(Dprsr1,Drrsr2, DLrsrs) + 1,
where Icm denotes the lowest common multiple of the
degrees (D) of the 3 LFSRs in the Geffe configura-
tion and the +1 term accounts for its corresponding
output (to be used as binary label). The choice of
the window size is based on the conclusions of (Kant
et al., 2009). The dataset that ensues is composed of
175 x 10° training samples and 1000 validation and
testing samples, respectively.

Multiple deep ANN architectures are proposed,
having at least the complexity of the one used for
learning from Geffe seeds. Sigmoid activation is
used, binary cross-entropy is chosen as loss function
and the model is trained on a GPU with a batch size
of 2048 for 1000 epochs.

S RESULTS

5.1 Linear Feedback Shift Registers

The ANN models trained on LFSRs produce highly
accurate results, demonstrating ability at the level of
(almost) perfectly fitting the data. As it will be ex-
panded upon in Section 6, this is not equivalent to
overfitting, especially as some ANN models achieve
perfect accuracy on the testing sets as well. Table 4
provides an overview of the corresponding testing ac-
curacy for each of the studied LFSR configurations.
The number of bits needed for training was ob-
served to increase together with the degrees of the
LFSRs having an upper bound at order of magnitude

123



IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

Table 4: Testing accuracy of the trained ANN models for
each LFSR. In the table, LFSRs are identified by their de-
gree.

LFSR degree | Test accuracy
42 100%
46 100%
100 99.9%
155 100%
177 97.8%
250 99.2%

10°. While the results show that in the case of higher
LFSR degrees a dataset of size 10* is no longer suffi-
cient, the increase in data is observed to be steady and
still under the threshold of (Kant et al., 2009). Thus,
the current study nuances that of (Boancd, 2024)(a) in
terms of clarifying how the training set size scales for
higher LFSR degrees.

The increase in the number of bits needed for gen-
erating the training set is motivated by the high de-
gree - low number of taps situation for LFSRs de-
gree > 100 which leads to a disproportionately high
amount of 0 output labels. (Boanca, 2024)(a) based
its optimization on the sliding window approach on
contiguous bits (which, for the studied LFSRs degree
< 100 produced balanced output labels). For the LF-
SRs degree > 100 in the current study the sliding win-
dow approach produces disproportionately more data
entries corresponding to label O than to label 1. Thus,
the increase in the number of bits stems from the need
of “gathering” sufficient 1-labeled instances among
those labeled with O and discarded to create a bal-
anced training set (as ANNS are sensitive to statistical
bias).

Table 5 displays a comparison between the current
approach and that of (Kant et al., 2009) regarding the
magnitude degree of the size of the training set for
LFSRs degree > 100.

Table 5: Comparison of the degree of magnitude between
the number of necessary training bits in the current ap-
proach as opposed to (Kant et al., 2009) for LESRs degree
> 100.

LFSR | Current work | (Kant et al., 2009)
100 10° 10°
155 10° 10°
177 10° 100
250 10° 100
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5.2 Geffe

5.2.1 Learning from Consecutive Seeds

The models trained on Geffe seeds to predict future
outputs prove the ability of ANNSs to capture patterns
with (almost) perfect accuracy in the case of the Geffe
PRNG as well. The results are displayed in Table 6.
The obtained training time on a CPU is at most 3 sec-
onds per epoch, amounting to a total of less than 5
minutes for each Geffe configuration.

Table 6: Results for learning from Geffe seeds. The Geffe
configuration is presented as a the sequence of its consisting
LFSR degrees. The testing accuracy as well as the epoch
of convergence (i. e. the epoch in which both train and
validation accuracy reach 100%) are presented.

LFSR Accuracy | Convergence epoch
19,42,53 100% 4/50
19,42,59 100% 17/50
19,46,53 100% 17/50
19,46,59 100% 15/50
19,53,59 100% 17/50
42,53,59 100% 17/50
46,53,59 100% 19/50
19,53,100 100% —/100
42,59,155 99.9% 41/50
46,53,177 99.6% —/100
53,59,250 100% 20/50

While the obtained results are accurate, efficient
and successfully manage to reduce domain knowl-
edge when compared to the approach in (Boanca,
2024)(a), we observe that the number of models to
be trained increases for every new Geffe configura-
tion. In (Boancd, 2024)(a) this issue is mitigated by
the use of a pipeline where each LFSR is learned
separately, then its corresponding model is only ag-
gregated when needed. Thus, no additional training
needs to be performed for novel Geffe configurations
which represent permutations of existing LFSRs. In
the case of our model, however, when LFSR permu-
tations happen inside the Geffe seed, an entirely new
model needs to be trained.

We attempt to use the fact that the current ap-
proach obtains highly accurate results (thus, we as-
sume it manages to robustly extract information) as
well as a model visualization component to derive an
optimization in this regard.

A weight visualization technique similar to that
in (Kim and Kim, 2021) is employed to observe the
strength of the connection between input features and
the neurons in the first layer of the trained ANN.
Stronger connections denote higher importance asso-
ciated to certain features. Thus, it may be possible to
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understand how the model learns from the data, using
the importance it gives to each bit of input. Figure 3
displays these results for a Geffe configuration con-
sisting of LFSRs with degrees 19, 53 and 59.

Importance
8

Geffe seed bits

Figure 3: Model visualization corresponding to a Geffe con-
figuration described as 19,53, 59 by its LFSR degrees. Note
how bits at the final position in each LFSR share stronger
connections to the input neurons.

Notably, higher importance is given to a set of 3
bits in the Geffe seed. Further investigation shows
that the highlighted values are the final bits of each
LFSR in the Geffe seed. We attempt to capitalize
on this piece of knowledge to derive an optimiza-
tion for Geffe which uses a single model to make ac-
curate predictions for any configuration. Since the
model gives higher importance to the final bits of
each LFSR within the Geffe seed, we assume it is
enough to “fit” any new configuration on an already
trained Geffe model in the following manner: LFSRs
of higher degree are “fit” in place of LFSRs of lower
degree through initial bits cropping; LFSRs of lower
degree are “fit” in place of LFSRs of higher degree
through 0 initial padding. Figure 5 demonstrates these
approaches.

+—F+Foter—F+F+[o [1 o [1[1][o[ 1] nigherdegree LFsR seed

%(—)
dropping leftmost bits /

0 n-n —> LFSR in Geffe seed

1(..]0]1[1 0[0 1 | = lower degree LFSR seed

It

[o].Jofofo]foof1]Tol1]1]o]o]1]|—> Lrsrincefesee

padding with Os

Figure 4: Fitting new LFSR seeds in an existing model.
Higher degree LFSRs undergo initial bits cropping. Lower
degree LFSRs undergo 0 initial padding.

The aforementioned optimization assumes that the
degrees of the LFSRs in the Geffe configuration are
known. However, this assumption is the same as

in (Boancd, 2024)(a) and, thus, serves for compar-
ison purposes. Experiments are performed fitting a
19,42, 53 configuration on the 46,53,59 Geffe model
and the reverse and 100% accuracy is obtained for the
first 100 generated bits in each case, thus deeming the
approach successful. A comparison between the num-
ber of models which need to undergo training in each
approach (the pipeline in (Boancd, 2024)(a), the cur-
rent Geffe seed learning approach and the proposed
optimization using model visualization) is displayed
in Figure 5 showing the superiority of the optimiza-
tion.

—e— current model from seed
existing pipeline model
—&- using model visualization

700

600

500 A

400

300

Number of models to train

T T T T T T T T
3 4 5 6 7 8 9 10
Number of individual LFSRs

Figure 5: Comparison in terms of number of models needed
to be trained between the approach in (Boancd, 2024)(a),
the Geffe seed learning approach and the proposed opti-
mization using model visualization. The comparison covers
the case in which new LFSRs are added to form new Geffe
configurations.

5.2.2 Learning from Consecutive Outputs

While the model trained on Geffe outputs only man-
aged to increase its training accuracy, the validation
accuracy remained rather low or a fluctuating pattern
occurred. We assume this may be due to the size of
the training set. Further increase was attempted, but it
became difficult to process by the system RAM.

We believe, however, that more robust computa-
tional devices may be able to achieve better results.

6 DISCUSSION AND FUTURE
WORK

The present paper studies the manner in which cur-
rent state of the art approaches in terms of learning
from LFSRs with ANNs (Boanca, 2024)(a) scale for
LFSRs degree > 100. It finds that the particular na-
ture of tap distribution on some of these LFSRs results
in an uneven distribution of patterns, thus accounting
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for the need to increase the number of training bits
to obtain a balanced number of samples for each pat-
tern. However, this increase is not dramatic and the
obtained models still outperform those in (Kant et al.,
2009) in terms of data efficiency.

Both the LFSR and the Geffe seed learning
models produce highly accurate results. In particular,
when the latter is coupled with a model visualization
component an optimization is derived for the number
of necessary models to be trained in case of Geffe
configuration changes.

Perfect Learning vs. Overfitting. Both of the
proposed approaches (for LFSRs and Geffe) obtain
a high level of accuracy, sometimes even achieving
100%. This raises the pertinent question of whether it
is possible that the trained models simply overfit the
data. We desire to elaborate on this and for that, we
would like to return to what was discussed in Section
4.1, more precisely, the fact that for LESRs only bits
at tap positions influence the output, while the others
are considered noise. The nature of PRNGs is de-
terministic, meaning that all inputs are processed in
the same way to obtain the outputs. This implies that
the same input will always result in the same output.
On the contrary, for other problems found in “nature”,
such as object classification in images, the situations
that arise may be more nuanced and fuzzy: the same
object may be placed in different positions, under var-
ious lighting conditions, accounting for a virtually in-
finite set of arrangement possibilities. The problem
of overfitting the data refers to obtaining models that
learn exceedingly well on the training set, but are un-
able to generalize on new, unseen examples as they
lack the ability of correctly extracting distinguishing
features. This may be equivalent to performing im-
age classification for objects such as mugs, with the
training set consisting only of blue colored mugs. It
is possible that the model incorrectly learns that in or-
der for an object to be classified as a mug, it needs to
have the color blue. Hence, the color of the mug is
incorrectly presumed a distinguishing feature. Need-
less to say, this will lead to the incorrect classification
of mugs of other colors in the testing phase.

In the case of LFSRs it is essentially impossible
that a model trained on a sufficient amount of data
overfits, since arrangement possibilities for distin-
guishing features are limited, 2"b¢-0/1aps Tt i vital
that various arrangements of noisy bits are present
in the training set in order to facilitate model distin-
guishing important information from noise. As such
a model is successfully trained, it is considered that
it understands which data features, or bits, are key to
producing the output and, having learned to assign
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higher weights to each of them, will produce the same
results in the case of other learning examples that are
similar in terms of bit configurations at tap positions,
but differ only in the configuration of noise. Thus, it
is not overfitting, but rather perfect learning that takes
place, due to the deterministic nature of PRNGs. To
account for that, various approaches in the literature
(Mostafa Hassan, 2021), (Kim and Kim, 2021) used
model understanding to observe weight values. It
resulted that bits at key positions are always those
that have the strongest ties to the network. We can
confirm that this is the case for both our LFSR and
our Geffe models (for the latter, model visualization
is displayed in Figure 3). In case of Geffe, the most
important bits are those at the final position in each
LFSR seed, as they will be combined using the Geffe
formula to derive the output.

Model Visualization. The model visualization com-
ponent is, thus, essential, and it may be used for
model understanding (checking it extracts meaningful
information) and, as we see in the current approach, it
may be exploited to derive optimizations. While cur-
rent learning perspectives for PRNGs approach prob-
lems with a black box mentality: simply input the data
to a learning model to derive the outputs, we mili-
tate for an increased use of visualization as the deter-
ministic nature of PRNGs allow for various optimiza-
tion possibilities (Mostafa Hassan, 2021), (Boanca,
2024)(a). We believe that it is through approaching
PRNG learning problems in this manner that impor-
tant advances may be achieved.

Last but not least, we attempt to learn from a more
complex formulation of the Geffe problem, namely
learning directly from outputs. While unsuccessful,
the results were not discouraging, in the sense that
it is believed that advanced computational resources
may be able to perform the task given more data.

In the Context of IoT. Through these approaches we
observe the possibilities and limitations of learning
from LFSRs and their variations with ANNs. This is
of particular interest since IoT devices base their ran-
domness sources on similar PRNGs. We perform the
aforementioned incremental advances in order to con-
tribute to the possibility of creating fully intelligent
Machine Learning test suites to run on IoT devices.
Our assumption is as follows: it is believed that the
limit upon Machine Learning is not imposed by the
problems, but rather by the amount of data and com-
putational capacities. As the latter may be presumed
to enlarge in the future, one may successfully tackle
problems such as Geffe output learning, or even the
more complex stream cipher learning. However, upon
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reaching this point it is essential to have well formed
learning approaches that are actually capable to ad-
dress the problem in a reliable manner. The current
incremental expansion on PRNG learning is proposed
to provide stepping stones such that robust security
evaluation may be provided for complex PRNGs in
the context of IoT in the future.

7 CONCLUSION

The present paper examines the manner in which ex-
isting literature approaches for ANN learning on LF-
SRs scale in the case of higher LFSR degrees. More-
over, it formulates a novel Geffe learning task to miti-
gate the excessive use of domain knowledge in previ-
ous approaches. While the results are highly accurate,
challenges are identified in terms of the number of
models that need to be trained for various Geffe con-
figurations. To address these challenges, the present
paper capitalizes on model visualization corroborated
with the ANN ability towards the perfect learning
of deterministic functions to derive an optimization.
A wide discussion ensues on the implications of the
aforementioned concepts for the problem of learning
from PRNGs and the solution is regarded in the con-
text of improving IoT evaluation of PRNG security by
means of neural networks.
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