
Automated Migration of Legacy Code from the C++14 to C++23
Standard

Aleksander Świniarski a and Anna Derezińska b
Warsaw University of 5/19, Warsaw, Poland

{aleksander.swinarski.stud, anna.derezinska}@pw.edu.pl

Keywords: Transpiler, Source-to-Source Compiler, C++, Legacy Code, C++14, C++23.

Abstract: The continuous development of the C++ programming language results in changes in many programming
features from one version to another. Therefore, we face a growing increase in maintenance and evolution
costs. To address this problem, a set of removed and deprecated programming features was examined, and
automating of the feature migration was proposed. A transpiler has been developed that transforms a C++
code from a legacy form to its latest standard. The CppUp tool translates a C++14 program into its equivalent
C++23. The current version of the tool supports 17 removed and 3 deprecated features. The restrictions of the
tool limit its practical application, but the experiments conducted on seven real-world programs confirmed
the reliability and usability of the transpiler.

1 INTRODUCTION

Legacy software systems could be very important in
the operational strategy of business processes and
industrial practice. Maintenance of such systems and
manual migration between different dialects of a
programming language are a time-consuming and
costly activity (Sneed and Verhoef, 2020).

The C++ programming language, originated in the
late 1970s, is still widely used for software
development (ISOCPP, 2024). It is especially
beneficial when we challenge requirements of high
performance and low energy consumption. Since the
revolutionary change in 2011, every several years
new versions of the language with a set of feature
improvements have been announced (Bancila, 2024).

In this paper, we address the problem of a C++
program that migrates from a legacy form to the latest
one. C++14 was chosen as the starting point for
migration due to its widespread use in real-world
projects, as highlighted in the 2024 C++ Developer
Survey (ISOCPP, 2024), which shows a significant
number of developers still rely on this version. All
modifications between consecutive variants from
C++14 (ISO/IEC, 2014) to C++23 (ISO/IEC, 2024)
have been revised. Current research has focused on

a https://orcid.org/0009-0008-4564-9061
b https://orcid.org/0000-0001-8792-203X

those that hinder program development the most and
fall into the removed and deprecated categories. For
the selected features, source-to-source transformation
guidelines have been developed.

To support automated code migration, a CppUp
transpiler has been designed and implemented
(Cooper, 2011). The tool transforms a program from
one dialect to another while maintaining its
functionality. Its application reduces the migration
effort and minimizes the number of errors that could
be introduced during this process.

CppUp has been evaluated on a set of programs.
Unit tests and tests using real-world programs dealt
with various coding practices corresponding to the
migrated features. The evaluation of the transpiler
confirmed the reliability of the transformation within
the limitations of the current solution.

The CppUp code, together with its unit tests and
the applications used in the tool evaluation, is
available at (Świniarski, 2024).

The main contributions of the paper are:
 Examining examples of legacy programming

features and a way of their migration;
 Development of the CppUp tool that supports 17

removed and 3 deprecated features in the
transformation from C++14 to C++23;

 Experimental evaluation of the transpiler.

Świniarski, A. and Derezińska, A.
Automated Migration of Legacy Code from the C++14 to C++23 Standard.
DOI: 10.5220/0013298000003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 549-556
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

549

The paper is organized as follows. In the next section,
we briefly describe basic problems of code transpilers
and review related work. Section 3 contains an
explanation of the selected programming features
transformed between different versions of the C++
standards. The CppUp tool is presented in Section 4.
In Section 5, we discuss the evaluation of the tool.
Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED
WORK

Transpilers, or source-to-source compilers, automate
code migration by translating code between dialects
or languages while preserving functionality. They
ensure that the input and output code remain at the
same abstraction level.

2.1 Transpilers in Research and
Industry

Many transpilers have been developed for different
purposes. A systematic review of transpilers and their
application can be found in (Bastidas Fuertes, Pérez,
and Meza Hormaza, 2023). It has been reported that
in the industry, transpilers are primarily used for (i)
code reusing and migration strategy for legacy
platforms, (ii) achieving compatibility with end-user
and mobile platforms, and (iii) generating language
extensions, mainly as a superset of Javascript.

Problems of legacy code translation were faced in
(Schnappinger and Streit, 2021). A system written in
Natural, Cobol, and Assembler was migrated to its
corresponding system in Cobol on Linux and Java.
The legacy code was parsed using a grammar defined
with ANTLR (ANTLR, 2024). A custom
transpilation was promoted, that is, only basic simple
transformation rules were implemented, while the
legacy code could have been inspected in
transpilation time, and complicated cases resolved by
a user. Consequently, new rules were added to the
grammar and translation.

Transpilers can operate within the same language
family. For example, a program in the strongly typed
TypeScript language needs to be compiled with the
tsc transpiler in JavaScript form, which can be
executed (TypeScript, 2024).

Others deal with languages with similar
functionality running in different environments, such
as Kotlin (Android) and Swift (iOS) supported by
unidirectional and bidirectional transpilers
(Schneider and Schultes, 2022).

An example of a multi-platform approach is Haxe,
an object-oriented and strongly typed programming
language, which framework is associated with
transpilation facilities to C#, Java, C++, Python, and
PHP (Haxe, 2024).

While general functionality should be preserved,
source-to-source transformation could be associated
with enhancement of different non-functional
requirements, namely: supporting parallel execution,
reducing power consumption, avoiding selected
programming concepts, etc.

The transformation of C programs into Rust is
supported by different tools, including the C2Rust
transpiler. However, these tools preserve the unsafe
semantics of C. The authors of CRustS, described in
(Ling, et al., 2022), focus on the safety issues
available in Rust. The approach is based on a set of
source-to-source transformation rules, both
preserving strict semantics (198 rules) and
approximating semantics with a more safe code of
Rust (22 rules).

2.2 Migration of C++ Programs

Several tools have been developed to facilitate code
migration of C++ programs.

Originally, C++ programs were translated into C
using the Cfront cross-translator. Hence, existing C
compilers could be utilized to develop the final code.

Code migration could be performed in different
directions, that is, ‘from’ or ‘to’ legacy versions. The
latter case is described in (Antal, et al., 2016), where
developers wanted to use new features of C++11, at
that time, while the code was supposed to be
compatible with C++03 used by an industrial partner.
Using (LLVM Clang, 2024), a tool was developed
that backported a large subset of C++11 features to its
older legacy version.

Parallel processing was also supported by C++
transpilers. A Togpu tool was developed to transform
C++11 into parallel CUDA to lower the entrance
barrier to GPU (Marangoni and Wischgoll, 2016).
The OP2 framework enables translation of
C/C++/Fortran programs into different parallel
models, e.g. CUDA, MPI (Chen, et al., 2024).

In high-level synthesis, C/C++ programs are
converted into appropriate domain languages, such as
Verilog (Xu et al., 2024). These kinds of program do
not cope with new programming features, as the
number of allowed programming structures is usually
strongly restricted.

To the best of our knowledge, none of the
transpilers supports a C++ program migration in the
scope addressed in this paper.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

550

3 MIGRATION FROM C++14 TO
C++23

The C++ language has evolved significantly beyond
C++14, with C++17 (ISO/IEC, 2017), C++20
(ISO/IEC, 2020), and C++23 offering improved
efficiency, readability, safety, and performance. Yet,
many codebases still rely on older standards,
hindering maintainability and compatibility.
Upgrading these legacy projects is essential to
optimize applications and ensure sustainability.

3.1 Taxonomy of Migration Features

When migrating a C++ codebase to a newer standard,
it is crucial to understand the added, modified,
deprecated, and removed features. These can be
grouped into the following feature categories:
 Removed - Elements that have been entirely

removed from the language. Code utilizing these
features will result in compilation errors;

 Deprecated - Features that are marked for
potential removal in future standards. While still
supported, their use generates warnings during
compilation;

 New - Additions to the language that introduce
new capabilities, improve performance, or
enhance code expressiveness;

 Modified - Existing features that have undergone
changes in syntax or behavior. Code using these
features may require adjustments to align with the
updated definitions to maintain compatibility;

 Miscellaneous - Category that encompasses
various minor additions, enhancements, or
changes that do not fit into the major categories,
such as core language features, standard library
updates, or syntax changes.

While migrating from C++14 to C++23, removed and
deprecated features pose the most immediate
concerns: removed features cause compilation errors,
while deprecated ones generate warnings that, if
ignored, can accumulate technical debt.

Table 1 summarizes the C++ features deprecated
or removed between C++17 and C++23, showing the
standard version for each change. It is based on
Annex C of the C++ standards (C++14–C++23) and
additional documents from the ISO C++ committee,
including (Köppe, 2018) and (Köppe, 2020).

Some features underwent a two-step process: first
deprecated (D) in one standard version, and then
removed in a later one. As a result, they appear twice
in the table, reflecting each stage in their timeline.
Counting each row separately yields 42 changes, but

consolidating duplicates reduces it to 35 unique
changes.

In the current prototype, only a selected subset of
these features is implemented, with the rest deferred
due to complexity. Table 1 labels implemented
features as “Yes” and unimplemented ones as “No”.

3.2 Overview of Transformations

As an example, the following sections present
features 5. and 9. for migrating the C++14 code to the
C++23 standard. For each feature, the rationale
behind its removal or deprecation and the method to
replace it with a C++23-compatible equivalent are
discussed. The approach is supported by insights
from documentation and related discussions.

3.2.1 Smart Pointer std::auto_ptr (Id. 5.)

The std::auto_ptr is a smart pointer that manages
dynamically allocated objects, automatically deleting
them when destroyed. It grants unique ownership of
the object it points to. However, std::auto_ptr
has problematic copying semantics: when copied,
ownership transfers to the destination pointer, leaving
the source as nullptr. This violates conventional
copy semantics, where copies are expected to be
equal and independent, leading to potential
unexpected behavior (Lavavej, 2014).

Due to these issues, std::auto_ptr was
deprecated in C++11 and removed in C++17,
replaced by std::unique_ptr, which uses move
semantics to ensure a consistent and safe ownership
transfer. Migrating involves replacing
std::auto_ptr declarations with
std::unique_ptr and updating any copy
operations to use std::move.

For example:

// Original code
std::auto_ptr<int> ptr1(new int{1});
std::auto_ptr<int> ptr2(ptr1);
// Updated code
std::unique_ptr<int> ptr1(new

int{1});
std::unique_ptr<int>

ptr2(std::move(ptr1));

3.2.2 Binary Function Binders (Id. 9.)

In earlier versions of C++, std::bind1st and
std::bind2nd (from <functional>) created
unary function objects by binding one argument of a
binary function.

Automated Migration of Legacy Code from the C++14 to C++23 Standard

551

However, these binders had limitations and were
deprecated in C++11, then removed in C++17. They
have been replaced by the more flexible std::bind
and lambda expressions, which offer a clearer syntax
(Lavavej, 2014).

Migrating from std::bind1st or
std::bind2nd to std::bind involves updating the
argument list to specify which argument is bound and

which remains dynamic using
std::placeholders::_1.
 For std::bind1st, bind the first argument by

placing the constant value as the second argument
and std::placeholders::_1 as the third
argument;

 For std::bind2nd, bind the second argument by
placing std::placeholders::_1 as the
second argument, and the constant value as the

Table 1: List of features that were removed or deprecated throughout C++14 to C++23.

Id Feature name C++ standard Feature category Handled in
CppUp

1. Trigraphs C++17 Removed Yes
2. Register keyword C++17 Removed Yes
3. ++ for Booleans C++17 Removed Yes
4. throw(A,B,C) C++17 Removed Yes
5. auto_ptr C++17 Removed Yes
6. random_shuffle C++17 Removed Yes
7. Function objects C++17 Removed Yes
8. Function objects Wrappers C++17 Removed Yes
9. Binary Function Binders C++17 Removed Yes

10. Iostream Aliases C++17 Removed Yes
11. Allocator Support From Function C++17 Removed Not
12. Redeclaration of static constexpr Class Members C++17 Deprecated Not
13. C Library Headers C++17 Deprecated Yes
13. Ineffective “C++ versions” of compatibility headers C++17, C++20 D, Removed Yes
14. Allocator<void>, Redundant Members of std::allocator C++17 Deprecated Not
15. raw_storage_iterator C++17 Deprecated Not
15. raw_storage_iterator C++17, C++20 D, Removed Not
16. get_temporary_buffer C++17 Deprecated Not
16. Temporary buffer API C++17, C++20 D, Removed Not
17. is_literal_type C++17 Deprecated Yes
17. is_literal_type C++17, C++20 D, Removed Yes
18. std::iterator C++17 Deprecated Not
19. <codecvt> C++17 Deprecated Not
20. memory_order_consume C++17 Deprecated Not
21. shared_ptr::unique C++17 Deprecated Yes
21. shared_ptr::unique C++17, C++20 D, Removed Yes
22. result_of C++17 Deprecated Yes
22. result_of C++17, C++20 D, Removed Yes
23. uncuaght_exception C++17 Deprecated Yes
23. uncaught_exception C++17, C++20 D, Removed Yes
24. noexcept-specifier throw() C++20 Removed Yes
25. Functional adaptors and argument type class members C++20 Removed Yes
26. Redundant members of allocator C++20 Removed Not
27. Only's two complement representation for signed integers C++20 Deprecated Not
28. Notion of POD type C++20 Deprecated Not
29. Implicit lambda capture of this via [=] C++20 Deprecated Yes
30. Comma operator in subscripting expressions C++20 Deprecated Yes
31. Deprecate certain volatile qualifications C++20 Deprecated Not
32. Shrinking basic_string::reserve C++20 Deprecated Yes
33. Garbage collection support C++23 Removed Not
34. aligned_union and aligned_storage C++23 Deprecated Not
35. float_denorm_style, has_denorm_loss and has_denorm C++23 Deprecated Not

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

552

third.
An exemplary migration looks as follows:

//Original code
auto funFirst =

std::bind1st(std::multiplies<double>(),
pi/180.0);

auto funSecond =
std::bind2nd(std::multiplies<double>(),
pi/180.0);

//Updated code
auto funFirst =

std::bind(std::multiplies<double>(),
pi/180.0, std::placeholders::_1);

auto funSecond =
std::bind(std::multiplies<double>(),
std::placeholders::_1, pi/180.0);

4 CPPUP TRANSPILER

The CppUp transpiler is a tool designed to transform
the code compatible with the C++14 standard into one
that is compatible with the C++23 standard. The core
aim of CppUp is to simplify code migration for
developers who want to use the features provided in
the newer standard without the need for manual code
refactoring.

4.1 Requirements

The following section details the functional
requirements (A–G) and non-functional requirements
(H–M) for the CppUp transpiler.
A. Parsing and Syntax Analysis – Accurately parse

valid C++14 syntax and provide clear error
messages for syntax issues;

B. Transformation Guidelines – Implement robust
methods to convert C++14 to C++23, focusing on
20 key features listed in Table 1, replacing
deprecated elements with suitable alternatives;

C. Preservation of Functionality – Ensure that
transformed code retains original functionality,
readability, and maintainability;

D. Standards Compatibility and Compliance –
Guarantee that the generated code adheres fully to
the C++23 standard while maintaining backward
compatibility with the g++14 compiler from GCC
(GCC, 2024);

E. Extensibility and Configurability – Design a
project so that the code transformations are easy
to customize and add;

F. Testing – Include comprehensive testing to
validate functionality and prevent regressions;

G. User Interface and Experience – Provide a user-
friendly CLI with clear options, including verbose
mode for detailed logs;

H. Performance – Ensure efficient transformation,
handling large codebases quickly;

I. Usability – Offer an intuitive CLI and a detailed
user manual;

J. Reliability – Deliver robust and accurate
transformations that maintain code behavior,
handle edge cases, and provide stability on UNIX
systems;

K. Maintainability – Ensure modular, well-
structured implementation for easy updates and
debugging;

L. Scalability – Efficiently handle large projects with
many files and complex structures;

M. Interoperability – Integrate seamlessly with build
systems and development environments.

4.2 Design Overview

This section outlines the overall design of the CppUp
transpiler, highlighting the key components and
methodologies that enable its functionality.

4.2.1 Tools Used in Implementation

The CppUp transpiler was developed in C++23,
leveraging modern language features for efficiency
and maintainability. It uses the g++ compiler version
14 from the GNU Compiler Collection, which
provides near-complete support for C++23.

ANTLR 4.13.1 was chosen for parsing and syntax
analysis due to its flexibility, ease of use, and prior
familiarity, which allows rapid prototyping. The build
process is managed with CMake, simplifying
configuration and cross-platform compilation.

ClangFormat from LLVM (LLVM Clang, 2024).
Ensures that the generated code adheres to industry-
standard styles, enhancing readability and
consistency. Unit testing is performed with
GoogleTest, providing a robust framework to
maintain functionality as the project evolves.

4.2.2 Workflow of the Program

The operation of CppUp is divided into three main
steps.

At first, the program reads command-line
arguments to configure its behavior, such as
specifying input and output paths or enabling optional
features.

The second step of CppUp is to translate a C++14
code into its C++23 equivalent. It first creates an
output directory for the resulting files and directories,

Automated Migration of Legacy Code from the C++14 to C++23 Standard

553

then iterates through entities in the input path,
performing operations based on each entity type:
 Directory – The program creates a corresponding

directory with the same name in the output
directory;

 C++ File – CppUp creates a file with the same
name in the output directory, analyzes it to extract
preprocessing directives and translation units,
applies all implemented transformations, writes
the updated code, and formats it using clang-
format;

 Non C++ File – The transpiler by default copies
the file with its name and contents to the directory
for the resulting files.

In the last step, if specified, CppUp compiles all
transpiled C++ files using g++14. Users can also
request a complete build if the output forms a valid
C++ program.

4.2.3 General Architecture of CppUp

The architecture of CppUp is built for modularity and
extensibility, with each component serving a distinct
purpose. The core class, CppUp, orchestrates the
transformation process, manages file operations,
generates transpiled code, and optionally compiles or
builds the resulting project.

Parsing and syntax analysis are handled by
CPP14Lexer and CPP14Parser, constructed from the
C++14 grammar in ANTLR's grammar-v4. The lexer
tokenizes the source code into elements like
keywords, literals, and operators, while the parser
generates a parse tree representing the code's
syntactic structure.

The CppUpVisitor module handles code
transformation, traversing the parse tree to identify
and modernize constructs incompatible with C++23.
It ensures that the transformed code is functionally
equivalent while adhering to modern standards.

5 CPPUP EVALUATION

This section presents an evaluation of the CppUp
transpiler. The evaluation encompasses both the
controlled testing of individual modules and practical
experiments conducted on real-world applications.

5.1 Testing of the Approach

To ensure CppUp's reliability, a testing strategy
combined unit tests and real-world assessments. Unit
tests validated individual modules, including file

handling, code generation, syntax error management,
and transformations for all 20 implemented features
marked as “Yes” in the “Handled” column (Table 1).

5.2 Experiments on Real-World
Applications

To assess the effectiveness of CppUp in practical
scenarios, a diverse set of open-source C++14
projects was selected based on criteria such as
language compliance, feature usage, codebase size,
and available functionality verification methods. The
projects ranged from small applications to large
systems, thoroughly evaluating the tool's capabilities.

The testing methodology included the following:
1. Baseline Compilation and Execution – The

projects were compiled and executed using their
existing build systems to establish a functional
baseline;

2. Selective Transpilation – Only files using the
supported C++14 features were transpiled and
reintegrated due to current limitations;

3. Compilation with the C++23 Standard –
Modified projects were recompiled with GCC14
using the C++23 standard;

4. Comparison of Results – The outputs from the unit
tests and the example applications were compared
against the baseline to ensure functional
consistency.

Table 2 summarizes the selected projects, while Table
3 details the experimental results, including metrics
like total LOC, transpiled LOC, and the tested
features. In particular, some features handled by
CppUp were not tested, as no real-world projects that
used all features were identified during the study. The
projects in Table 3 are identified by their identifiers
from Table 2.

5.3 Discussion of Results

The evaluation confirmed that CppUp effectively
transpiles key C++14 features to C++23, maintaining
functionality across diverse projects. Unit tests
validated individual modules, while real-world tests
demonstrated seamless integration and consistent
results. However, challenges were noted. Selective
transpilation was necessary due to the separate
handling of preprocessing directives and translation
units, limiting the number of files processed (Table
3). Additionally, the reduction in output lines of code
(LOC) was due to clang-format enforcing consistent
formatting rather than simplification of constructs.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

554

Table 2: Real-World Projects Used in Experiments.

Id Project name and origin Description

I CellularForms. Fogelman, M.,
https://github.com/fogleman/CellularForms

Implementation of Andy Lormans' conference paper on
cellular growth (Lomas, 2014)

II Flowcpp. Vanatasin, K.,
https://github.com/kittinunf/flowcpp

A header only implementation of the JavaScript Redux
(Abramov, 2024)

III
Butterworth Filter Design. Ruotsi, R.,

https://github.com/ruohoruotsi/Butterworth-
Filter-Design

Project that provides a collection of classes for designing
high-order Butterworth filters

IV Curvature filter. Gong, Y.,
https://github.com/YuanhaoGong/CurvatureFilter

Collection of algorithms developed by Yuanhao Gong
during his PhD work (Gong, 2017)

V CoRM. Taranov, K.,
https://github.com/spcl/CoRM.

Remote memory system designed to support data
compaction over RDMA, developed as a part of research

project presented at SIGMOD 2021 (Taranov, 2021)

VI Microvolt. Deynega, A.,
https://github.com/deinega/microvolt Program for modelling semiconductor devices

VII Evhttpclient. Potter, J.,
https://github.com/jspotter/evhttpclient HTTP client written in C++

Table 3: Results of experiments on real-world projects.

Project id Project
LOC (files)

Transpiled
LOC (files) In

Transpiled
LOC Out Tests Feature tested

I 2578 (41) 71 (1) 65 Procedural 3D Object Generator 22., 30.
II 450 (11) 450 (11) 474 Example of library usage 29., 30.
III 7307 (6) 832 (1) 725 Unit tests with 113 assertions 5., 23., 30.

IV 2224 (4) 2067 (2) 1998 Program for filtering exemplary
images 2., 30.

V 8101 (37) 161 (2) 126 Binaries for managing remote
memory systems 6., 30.

VI 23021 (99) 683 (3) 692 Four programs with experiments 7., 8., 9., 30.
VII 1441 (8) 111 (1) 68 Four programs testing functionalities 30., 32.

5.4 Threats to Validity

Several factors affect the validity of the evaluation
findings:
 Internal Validity – Limited feature support and

selective transpilation may overlook issues in
unsupported or complex code;

 External Validity - The selected projects, while
diverse, may not fully represent all C++14
applications, and testing was performed in a
specific environment;

 Construct Validity - Reliance on existing unit tests
assumes comprehensive coverage, which may
leave some issues undetected;

 Migration Strategies - To address these threats,
efforts were made to select a varied set of projects
from different domains and to document all
testing procedures and results meticulously in the
CppUp repository. Future evaluations will aim to
expand feature support and enable full project
transpilation;

 Developer Bias – The evaluation was conducted
internally; third-party reviews or independent test
suites could improve objectivity.

6 CONCLUSIONS

This paper presented CppUp as a practical solution
for modernizing legacy C++14 codebases to C++23,
addressing 20 critical features and ensuring
functional correctness. Systematic testing highlighted
its reliability and utility, although limitations persist.
CppUp currently lacks support for some deprecated
or removed features and cannot process entire files in
one pass due to the separate handling of
preprocessing and translation.

Future enhancements will focus on extending
parser capabilities, preserving comments, and
expanding feature support to improve compatibility
and facilitate more efficient and readable code
modernization. The scalability, practicality, and

Automated Migration of Legacy Code from the C++14 to C++23 Standard

555

detailed performance results of the tool will be
reassessed after these improvements.

Integration of AI is also a potential avenue for
further innovation, offering automated codebase
analysis, identification of deprecated features,
replacement suggestions, and validation of
correctness through automated testing.

REFERENCES

Abramov, D., Redux [Online] [Accessed 28 Aug 2024]
https://github.com/reduxjs/redux.

Antal, G., Havas, D., Siket, I., Beszédes, Á., Ferenc, R.,
Mihalicza, J., 2016. Transforming C++11 Code to
C++03 to Support Legacy Compilation Environments.
In: IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM),
Raleigh, NC, USA, pp. 177-186. doi: 10.1109/
SCAM.2016.11.

ANTLR Another Tool for Language Recognition [Online]
[Accessed 10 July 2024] https://github.com/antlr.

Bancila, M., 2024. Modern C++ Programming Cookbook:
Master modern C++ including the latest features of
C++23 with 140+ practical recipes, Packt Publishing,
3rd edition.

Bastidas Fuertes, A.; Pérez, M.; Meza Hormaza, J., 2023.
Transpilers: A Systematic Mapping Review of Their
Usage in Research and Industry. Applied Sciences, vol.
13, 3667. doi: 10.3390/app13063667.

Chen, Z., Huang, K., Che, Y., Xu C., Zhang, J., Dai, Z.,
Mig, L., 2024. Extending OP2 framework to support
portable parallel programming of complex applications.
CCF Trans. HPC, vol. 6, pp. 330–342. doi: 10.1007/
s42514-023-00174-8.

Cooper, K.D., Torczon, L, 2011. Engineering a compiler,
Morgan Kaufmann. San Francisco, 2nd edition.

GCC, the GNU Compiler Collection [Online] [Accessed 18
Nov 2024] https://gcc.gnu.org/

Gong, Y., Sbalzarini, I. F., 2017. Curvature filters
efficiently reduce certain variational energies. IEEE
Transactions on Image Processing vol. 26, no. 4, pp.
1786-1798. doi: 10.1109/TIP.2017.2658954.

Haxe programming language with a cross-compiler.
[Online] [Accessed 16 Nov 2024] https://haxe.org/.

ISOCPP, 2024. 2024 Annual C++ Developer Survey "Lite",
[Online][Accessed 14 Jan 2025] https://isocpp.org/
blog/2024/04/results-summary-2024-annual-cpp-
developer-survey-lite.

ISO/IEC JTC 1/SC 22, 2014. International standard
ISO/IEC 14882:2014, Programming languages - C++.

ISO/IEC JTC 1/SC 22, 2017. International standard
ISO/IEC 14882:2017, Programming languages - C++.

ISO/IEC JTC 1/SC 22, 2020. International standard
ISO/IEC 14882:2020, Programming languages - C++.

ISO/IEC JTC 1/SC 22, 2024. International standard
ISO/IEC 14882:2024, Programming languages - C++.

Köppe T., 2018. Changes between C++14 and C++17.
[Online] [Accessed 14 Jan 2025] https://www.open-
std.org/JTC1/SC22/WG21/docs/papers/2018/p0636r3.

Köppe T., 2020. Changes between C++17 and C++20.
[Online] [Accessed 14 Jan 2025] https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p2131r0.htm
l.

Lavavej, S.T., 2014. Removing auto_ptr, random_shuffle(),
And Old <functional> Stuff. [Online] [Accessed 17
April 2024] https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n4190.htm.

Ling, M, Yu, Y., Wu, H., Wang, Y., Cordy, J. R., Hassan,
A. E., 2022. In Rust We Trust – A Transpiler from
Unsafe C to Safer Rust. In: IEEE/ACM 44th
International Conference on Software Engineering:
Companion (ICSE-Companion), Pittsburgh, PA, USA,
pp. 354-355. doi: 10.1145/3510454.3528640.

LLVM Clang. [Online] [Accessed 16 Nov 2024] http://
clang.llvm.org.

Lomas, A., 2014. Cellular forms: an artistic exploration of
morphogenesis. In: Proceedings of Special Interest
Group on Computer Graphics and Interactive
Techniques Conference, SIGGRAPH’14, ACM. doi:
10.1145/2619195.2656282.

Marangoni, M.; Wischgoll, T., 2016. Paper: Togpu:
Automatic Source Transformation from C++ to CUDA
using Clang/LLVM. Electron. Imaging, vol. 28, pp. 1–
9. doi: 10.2352/ISSN.2470-1173.2016.1.VDA-487.

Schnappinger, M., Streit, J., 2021. Efficient Platform
Migration of a Mainframe Legacy System Using
Custom Transpilation, In: IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Luxembourg, pp. 545-554. doi: 10.1109/
ICSME52107.2021.00055.

Schneider, L., Schultes, D., 2022. Evaluating Swift-to-
Kotlin and Kotlin-to-Swift Transpilers. In: IEEE/ACM
9th International Conference on Mobile Software
Engineering and Systems (MobileSoft), Pittsburgh, PA,
USA, pp. 102-106. doi: 10.1145/3524613.3527811.

Sneed, H. M., Verhoef, C. 2020. Cost-driven software
migration: An experience report. J. of Software:
Evolution and Process, vol. 32, no. 7, doi: 10.1002/
smr.2236.

Świniarski, A., CppUp [Online] [Accessed 14 Nov 2024]
https://gitlab-stud.elka.pw.edu.pl/aderezin/
cppup_aswiniarski.

Taranov, K., Giromolo S., D., Hoefler, T., 2021. CoRM:
Compactable Remote Memory over RDMA. In: 2021
International Conference on Management of Data,
SIGMOD’21, pp. 1811-1824. doi: 10.1145/
3448016.34528.

TypeScript documentation -tsc, the TypeScript compiler.
[Online] [Accessed 16 Nov 2024] https://
www.typescriptlang.org.

Xu, K., Zhang, G. L., Yin, X., Zhuo, C., Schlichtmann, U.,
Li, B., 2024. Automated C/C++ Program Repair for
High-Level Synthesis via Large Language Models. In:
2024 ACM/IEEE 6th Symposium on Machine Learning
for CAD (MLCAD), Salt Lake City, UT, USA, pp. 1-9.
doi: 10.1109/MLCAD62225.2024.10740262.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

556

