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Abstract: The Internet of Things (IoT) refers to devices and applications that interact and connect the physical and
digital worlds. Unfortunately, their interactions often lead to information leaks and safety issues. Controlling
their autonomous behavior related to events and actions in their environment is therefore important. This is
the key to uncovering conflicts between user-defined expectations. To control these conflicts, we propose to
verify IoT information-flow according to the principles of model checking. We propose a model based on
an abstraction of the information flow induced by device and application operations and interactions in an
IoT network. More precisely, the model is independent of any functional and technical heterogeneity. This
abstraction is the result of an information flow analysis carried out, a priori, for all the involved devices, as well
as for all the applications controlling them. A transition system is constructed from these abstractions enabling
us to transform the information flow control into reachability and safety properties verification. We express
these properties using a modal logic inspired by Timed Computation Tree Logic (TCTL) (Baier and Katoen,
2008). We illustrate our approach with an example and adapt the language and the model to an existing model
checker.

1 INTRODUCTION

The Internet of Things (IoT) connects the physical
and digital worlds. With the flourishing of IoT, so-
cial networks, the advent of cloud computing and
the spread of mobile information access technologies,
information is becoming increasingly available. It
can be found everywhere instantaneously with dig-
ital networks of applications and devices that inter-
act and communicate with each other. However,
IoT networks may cause information leakage or ille-
gitimate information flows i.e., the exposure of any
type of confidential, sensitive or protected informa-
tion (example: audio, image, integer, text, etc.) to
an unauthorized user, applications or devices (Park
et al., 2019; Sha et al., 2018). Also, the interact-
ing IoT applications and devices could be developed
or maintained using the same IoT platform or dif-
ferent IoT platforms such as Samsung SmartThings,
Apple HomeKit, etc. (Abuserrieh and Alalfi, 2024).
But when they run interactively in one environment,
it may cause serious safety issues. In this extremely
complex context of multitudes of devices and applica-
tions connected, information flow control has become
an constant concern, given the massive adoption of
IoT and the convenience it brings.

There are several examples of information leak-

age from devices or applications in the literature
(Cardoza, 2016; Zetter, 2014; Neagle, 2015). But
the prevalence of vulnerabilities in cloud-hosted ser-
vices is particularly problematic for public devices
(Mafamane et al., 2021). Users sometimes config-
ure or connect devices and applications to services
inappropriately. They lack the knowledge to per-
ceive the subtle interactions of devices and applica-
tions and have a poor understanding of their function-
ality, partly because of their imprecise description.
Moreover, users are increasingly connecting devices
and applications that become visible to each other.
This does not provide them with a comprehensive un-
derstanding of how systems work, especially when it
comes to installing and configuring applications from
different companies.

Users use interfaces to express automation rules,
hoping to obtain an information flow that reflects their
ideas. If these devices and applications interact and
produce a lot of information, controlling the flow of
their exchanges is not a simple matter. The more con-
nected devices there are, the greater the risk of inter-
ference between automation rules, leading to unex-
pected behavior such as information leaks or safety
issues (Reddit, 2018). They are also heterogeneous
and use different protocols or information represen-
tation schemes with varying semantics (Sobin, 2020).
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Heterogeneity in IoT systems can refer to the diversity
of IoT devices, networks, applications and platforms.

Information leakage poses a confidentiality issue.
Solutions based on access control and cryptography
are available to protect the confidentiality of infor-
mation transmissions and limit unauthorized informa-
tion disclosure (Ngo and Nguyen, 2019). These ap-
proaches prevent the reading or modification of con-
fidential information by unauthorized users, and du-
ally prevent untrusted flow of information to compro-
mise the integrity of trusted information. However,
these techniques do not control the interference of au-
tomation rules in an IoT network. They do not control
also how the information, once decrypted or known,
is propagated at the risk of implying an information
leak or violating predefined rules. These limitations
together with verifying the safety of an IoT system
are the main issues addressed in our work, which we
clarify in Section 2.

The general purpose of our work is to enforce ad-
equate information flow and predefined safety prop-
erties in IoT systems. We want to provide tools to
show that a system actually applies the rules prede-
fined by its users, regardless of the underlying plat-
form. This requires to provide a rigorous analysis of
the integrated behavior of devices and applications,
rather than each in isolation, when connected in a
given configuration. In this way, users could system-
ically validate their configuration intentions through
the communication channels they themselves estab-
lish by properly interconnecting the devices and ap-
plications in their IoT system.

In this paper, we propose a new approach to
control IoT information flow via formal verification
of safety and reachability properties. Reachability
properties express the fact that a desirable configura-
tion is always reachable from an initial configuration
and safety properties state that something bad should
never happen i.e., the system is not dangerous for it-
self or its environment as long as the assumptions on
which the system is built are fulfilled. Our approach
consists of three steps, the first two being the follow-
ing contributions:

• We use an abstraction of devices and applica-
tions behaviors to represent interactions in an IoT
network, as a model that a user can draw. The
model reflects the relations between communica-
tion ports and the information flow from one ap-
plication or device to another. The abstraction is
the result of a priori analysis of the information
flows for all the devices analyzed, all the appli-
cations that control them, as well as the represen-
tation of the interconnections in the configuration
adopted by the user. We specify this analysis’s re-

sult in Section 4.2. The model built from these
abstractions allows to transform the information
flow control problem into a problem of reachabil-
ity. Furthermore, this model naturally allows the
verification of safety properties. Interconnecting
devices and applications does not guarantee that
a user’s expectations are met. These expectations
must also be verified against the abstract model.

• In order to use a formal approach to verify the
safety and reachability properties based on our
model, we express them in a new formal lan-
guage, inspired by TCTL (Timed Computation
Tree Logic) (Baier and Katoen, 2008), that is in-
tuitive and easy for everyone to use. The original-
ity of this language lies in the fact that it can ex-
press both high-level and specific properties with
devices or applications communication attributes.

The final step is to automatically verify that the
model satisfies the reachability or safety properties
using a model checker. This requires an acceptable
adaptation of our model and language. We present
these adaptations in section 4.5.

Section 2 returns to the issues to be solved in more
details. We present related work in Section 3, Our ap-
proach of controlling information flow is presented in
Section 4. We illustrate our approach with an example
in Section 4.6. Further discussion and observations to
extend our work are presented in Section 5. Finallay,
we conclude the paper in Section 6.

2 PROBLEM STATEMENT

In an IoT network, we want to guarantee confidential-
ity in information exchanges and the safety of an IoT
system. But this guarantee must be based on user-
defined automation rules, general rules, laws, or any
user defined or context induced policy. To better un-
derstand the issue at hand, let us note that a device or
application can acquire and generate information and
act on its environment. The device’s resources there-
fore include various interfaces enabling it to exchange
information over various wired or wireless networks
through input and output ports attached to communi-
cation protocols (Yu et al., 2020; Mainuddin et al.,
2021).

Even if IoT applications perform securely and
safely when run in isolation, they may cause depend-
ability issues when they run interactively in one envi-
ronment. The interacting IoT applications can be de-
veloped or maintained using the same IoT platform or
different IoT platforms. Referring back to the exam-
ple of contradicting rules in IoT system, when Smoke
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is detected, then activate the sprinkler. When moisture
is detected, switch off the water valve. If both smoke
detectors and smart valve devices work interactively
in the same environment, we have to consider the
shared environment properties. The action of one de-
vice triggers an event associated with another device
that is set up in the same environment. The result-
ing contradiction may cause serious safety hazards if
such behavior is not prohibited or fixed. Foremost,
one aspect of our work is to guarantee the reliable op-
eration of the devices and applications involved in an
IoT network.

As we have mentioned, traditional methods such
as access control, firewalls and cryptography impose
limits on access to information but provide no con-
trol over the confidentiality or propagation of infor-
mation once it has been decrypted or made accessible
to a device, application or user. In an IoT network,
devices and applications can generate new informa-
tion for transmission based on information received
on different communication ports. So, they can in-
fluence each other and so do communication ports. In
this way, if we want to check, for instance, whether an
image passes from a device D1 to a device D2, in the
case where an application or device D3 lies between
the two, it is important to know whether or not this
data is relayed through D3. The influence relations
between the input and output communication ports of
D1, D2 and D3 are therefore important characteristics
to be considered when studying information flows of
an IoT system. In this work, we aim at exploiting
these influence relations to control confidentiality in
information exchanges in an IoT system. We desig-
nate input and output entries by ports whether it is
related to a hardware device or to an application. We
assume that a priori analyses have been performed in
order to determine influences relating input ports to
output ports for each device or application.

Devices and applications communicate together to
meet a usage scenario based on desired safety and
reachability properties of an IoT system. By a reach-
ability property, we mean that an information is al-
lowed or not to reach some destination (a device or
an application or a user). To illustrate our information
flow control approach, we will consider the following
use-case for configuring a smart system in a building.

Example 2.1. Let us consider a building equipped
with a smart system featuring an application App,
three cameras C1, C2 and C3 each equipped with
motion detectors, two televisions Tv1 and Tv2 and a
sound system S. The application records images from
the cameras, and then processes and broadcasts them
to the televisions. In the event of an incident notifica-
tion, the application sends a signal to all devices and

Table 1: Some amenities of a smart building.

Amenities
1. A dance hall equipped with Speaker Sp1 and

an emergency exit door.
2. A childcare room equipped with Speaker Sp2

and Camera C3.
3. An entrance hall accessible only through two

doors, each equipped with a camera capable
of relaying signals. C1 is for the first door
and C2 is for the second one.

4. A control room equipped with Televisions
Tv1 and Tv2 to monitor entrances and exits
in the hall and children’s motions in the child-
care room.

5. A room equipped with Sound system S linked
to the two speakers and to television Tv1.

Table 2: Some configuration properties.

Names Properties
P.1 If the childcare room camera, C3, trans-

mits an image, it appears on the control
childcare television, Tv2.

P.2 If the application sends an off signal, the
emergency door closes.

P.3 Opening the emergency door should
shut down the sound system S.

P.4 the images from the cameras on the en-
trance hall doors never reach the control
childcare television Tv2.

P.5 If a camera detects a motion, the appli-
cation receives an image.

P.6 The music played on the surveillance
television of the lobby is always the
same as that played on the speaker in the
dance hall.

to the application. The sound system uses the speak-
ers Sp1 and Sp2 and the television Tv1 to broadcast
music. To complete the smart system description, Ta-
ble 1 presents some of the non-exhaustive amenities
expected in the building and Table 2 lists a few de-
sired safety and reachability properties.

In the recent years, various researchers have pro-
posed a variety of architecture reference models for
building the IoT systems. The models were ex-
plained and comparative analysis of these models was
achieved (Frappier et al., 2010; Stevens et al., 2020;
Arslan et al., 2023). The focus of these studies is to
build a model of the IoT from the dimension of sys-
tem function and composition, and get the nature of
the IoT system through theoretical analysis. None of
these studies provides formal modeling and verifica-
tion methods for the integration of devices and ap-
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plications taking into account, at the same time, the
global communication and their internal communica-
tion. Our approach provides a good and easy refer-
ence for the design and model validation of IoT sys-
tems using transition systems. This approach allows
us to achieve better modularity when we add or re-
trieve new applications or smart devices. Since we
have only to represent how a new element is intercon-
nected to the network and to provide an abstraction of
its inner communications. Devices and applications
are represented as information vehicles. They receive,
generate and transmit information, which may depend
on the information they receive. It considers fully in-
formation flow in the interactivity with physical world
despite devices and applications heterogeneity. Our
approach verification performance depends directly
on the model checker used. In the related work 3,
which cuts across several areas such as privacy and
safety, we describe research in the literature.

3 RELATED WORK

Reliable information flow in an IoT network does not
always depend on devices, applications or platforms.
Users are sometimes a source of risk, as they consume
output information from systems, but can also provide
input information. To this end, Nunes et al. (Nunes
et al., 2015) emphasize that for a system to better
respond to human needs, its modeling and analysis
must take into account human intentions, psychologi-
cal states, emotions and actions deduced from sensory
data. This is a particularly difficult challenge, given
the complexity of the psychological and behavioral
aspects of human beings. In addition to the aspect
of modeling human behavior, managing the unpre-
dictability and occasional unreliability of human in-
formation in an IoT environment makes it all the more
complex to guarantee an information flow without in-
formation leakage. Lee and Truong (Lee and Truong,
2016) propose a management model of three confi-
dence measures to reason about humans and identify
potential causes of human failures in systems analy-
sis. However, outstanding questions relate to how to
find and use a standard human model to guarantee the
reliability of information flows, given the wide human
variety.

In addition to the difficulties associated with hu-
man behavior, the heterogeneity of IoT has resulted
in fragmented systems as shown by Zhang (Zhang,
2017) and ADT’s website (ADT, 2022). Unfortu-
nately, this leads to owner solutions that suffer from
a lack of testing, leaving users exposed to poten-
tial attacks from outdated software (Radovici et al.,

2020). Bannour and Lapitre (Bannour and Lapitre,
2020) propose a model based on automata to promote
rapid propagation of new firmware versions and thus
minimize the periods during which devices are obso-
lete. Abuserrieh and Alalfi (Abuserrieh and Alalfi,
2024) and Gani et al. (Gani et al., 2015) focusing
on the needs of users such as devices or applica-
tions use formal methods for testing in IoT environ-
ments. Unfortunately, Esquiagola et al. (Esquiagola
et al., 2017) justify the inadequacy of current soft-
ware testing methods to observe and control the inap-
propriate exposure of confidential information result-
ing from the actual interaction of devices and applica-
tions with the physical world. This is obvious in re-
views outlining IoT issues related to information flow
confidentiality, safety and security (Alhirabi et al.,
2021; Li and Xu, 2017; Pradeep and Kant, 2022).
These reviews are often focused on device or proto-
col faults, malicious applications, platform problems,
and so on (Chen et al., 2018; Ang and Seng, 2019).
However, there is few work dealing with IoT interac-
tion control.

Clements et al. (Clements et al., 2017) propose
a novel technique called privilege overlaying to ap-
ply protections against code injection, control-flow
hijack, and data corruption attacks in a system. Chi
et al. (Chi et al., 2020) employ symbolic execution
to extract automation rules from IoT applications and
utilize the analysis of abstract syntax tree to iden-
tify cross-app interference threats. They introduce a
risk ranking technique that evaluates the severity of
detected threats based on the impact of rule execu-
tion, functionality, and the criticality of device safety.
Nguyen et al. (Nguyen et al., 2018) focus on analyz-
ing IoT application interactions through the construc-
tion of dependency graphs. Wang et al. (Wang et al.,
2018) use provenance-based tracing to generate a data
provenance graph to perform the analysis in order
to provide a complete history of IoT system interac-
tions, which may guide the analysis to a potential ma-
licious behavior. Abdelouadoud and Logrippo (Ab-
delouadoud and Logrippo, 2024) offer an approach to
information access control that assigns roles to users
and devices based on authorization levels.

In addition, developers struggle to decipher the
semantics of the communication protocols of each
device or application. Despite control structures in
IoT application are limited to IFTTT (If This Then
That) or triger-action programming (Abuserrieh and
Alalfi, 2024), it is therefore not easy to find a standard
method of extracting from the code source of any de-
vice or application the permissions linked to events
and actions, in order to detect information leaks, and
control interactions to avoid properties violations. Ce-
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lik et al. (Celik et al., 2018) verify the compliance of
a transition system extracted by static analysis to a set
of user-predefined safety and confidentiality proper-
ties. In another paper, Celik et al. (Celik et al., 2019)
extend their work to dynamic analysis in order to de-
tect properties violations in an individual IoT appli-
cation or a group of IoT application interacting in one
environment. Users have the option either to allow the
violations to be executed or to allow to block them.
To identify properties violations via model checking,
McCall et al. (McCall et al., 2023) model the rules of
IoT applications as a labeled transition system and de-
fine the desired behavior by representing properties in
the computational tree logic, where properties are typ-
ically specified as formulas in temporal logic (Baier
and Katoen, 2008).

Given the aforementioned challenges, the above
works are insufficient to theoretically analyze IoT
systems and deal with information flow control as we
do in our approach to verifying user-defined expec-
tations.To the best of our knowledge, our modeling
strategy is absent from the literature and therefore not
comparable with any other.

4 INFORMATION FLOW
CONTROL

An IoT network is made up of IoT devices and appli-
cations. Information therefore travels, through com-
munication ports, both within and between network
components. This information flow becomes illicit
when it can cause information leakage i.e., a sensi-
tive information reaches an unauthorized destination.
Non-interference is the basic confidentiality property
for information flow (Goguen and Meseguer, 1982;
Sabelfeld and Myers, 2003). We want to enforce non-
interference on the information flow of the IoT net-
work. We propose an abstract representation of the
connection of devices and application with a tran-
sition system. This allows to transform the non-
interference problem to a reachability problem.

4.1 Basic IoT System Modeling

When connecting the devices and applications of a
network, one gets a model that can be represented nat-
urally with a transition system. Devices and applica-
tions are represented as vertices, and arrows symbol-
ize oriented communication channels (links between
two ports) specifying the information flow between
vertices. Thus the arrows represent the physical con-
nections, or wireless connections, that are established
by the users.

Figure 1 is the transition system of the smart sys-
tem of Example 2.1. The labels on the arrows are pri-
marily intended to make the model easier to read. La-
bels of the same type and color identify similar infor-
mation. The state’s colors represent the rooms where
the devices are. The sound system S is in the music
control room (cyan), Sp1 is the speaker in the par-
ents’ room (orange), Sp2 is the speaker in the child-
care room (magenta); Ci is the camera on hall door i,
with i = 1,2, and C3 is the one in the children care
room. Tv1 broadcasts the image of C1 and C2, in
the security room (red) and Tv2 broadcasts the image
of C3. Looking at Figure 1, we see that cameras C1
and C2 seem to influence the application directly and
the television Tv1 indirectly. This corresponds to the
description in Example 2.1. This model can be for-
malized with a system of transitions as shown in the
following definition.

Definition 4.1. A basic model of an IoT system is a
tuple T = (S,O, I,L1,δ) where:

• S is the set of devices and applications of the sys-
tem,

• O is a set of output ports of format t.id!, where
the letter t is the port type (examples: audio, im-
age, signal, etc.), id is its unique identifier and the
symbol ! indicates that it is an output port,

• I is a set of input ports of format t.id?, where t
is the port type (examples: audio, image, signal,
etc.), id is its unique identifier and the symbol ?
indicates that it is an input port,

• L1 : S → 2X where X = I∪O is a labeling function
that associates a finite set of ports with a vertex,

• δ : S×O → S× I is a transition function. We write

App

Tv2Tv1

C1 C2 C3

Door

S
Sp1 Sp2

image image image
signal

signal

image signal

imagesignal

signal

signal

musicsignal

music

music

signalsignal

Figure 1: Basic model for the smart system of Example 2.1.
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s
o,i−→ q rather than δ(s, o) = (q, i) where o ∈ L1(s)

and i ∈ L1(q).

As information travels from one device or appli-
cation to another, vertices and ports influence each
other. We call this a basic model, since it does not
reflect the influences between communication ports
inside an application or a device. For instance, if an
output port of a device is influenced only by a subset
of the input ports, the basic model is unable to show
this detail. In our example, one can think that the ap-
plication transmits images from cameras C1 and C2
in the lobby to the television Tv2. This would break
a configuration rule, even though this is not the case
in the Example 2.1 description. In fact, such an er-
ror could arise from the user’s incorrect connection of
devices and the application. They do not necessarily
know if the information input to the application influ-
ences the information output to Tv2. It is thus impor-
tant to give them a more precise tool for validating
their intentions expressed via the configuration of this
system and the connection they actually establish.

4.2 Influence Matrix

As we argued, the basic modeling presented above
is not sufficient, because the abstraction of internal
devices and applications communication is too pes-
simistic. Thus we assume we are given an influence
matrix for each device and application, that represents
the possible flow of information from every input port
to every output port within that device or applica-
tion. This abstraction of information flow allows us
to transform the non-interference problem to a reach-
ability problem. For instance, a positive entry in the
influence matrix between input port A to output port
B means that there may be an information flow from
port A to port B. If no public destination is reachable
from private ones then the non-interference property
is satisfied.

We assume that the influence matrix is given. It
can be established using standard information flow
analysis mechanisms. These can be divided into two
categories: mechanisms based on a static analysis
of the application, and mechanisms based on a dy-
namic approach (Damodaran et al., 2017). Some hy-
brid mechanisms also exist, usually using the results
of static analysis when examining the code (Bedford
et al., 2017). These mechanisms could be used up-
stream of our work. The following example illustrates
the main application matrix of the smart building Ex-
ample 2.1.

Example 4.1. Let us consider Example 2.1 again. Ta-
ble 3 is the influence matrix of the application. It tells

us that the Appa port influences the Appd port, be-
cause the information received by the Appa port is
sent, perhaps after processing, to the Appd port. The
information sent by Appd port is therefore dependent
on the information received by Appa port. The ab-
sence of the ✓symbol in a table cell indicates that
the ports concerned are independent of each other. It
could also be that the object or application generates
output information that is not influenced by the input
port (example: a timer that sends a signal at a cer-
tain frequency to its output port). However, in the net-
work, perhaps the ports influence each other through
another loop.

Such an influence matrix of smart objects could be
supplied by IoT device manufacturers, downloaded
from their sites, or deduced from the manufacturer
specification. The influence matrix of an application
could also be provided by its provider, or obtained by
performing information flow analysis on the code of
this application. They enable a user unaware of the in-
terweaving of information within devices to perform
specific diagnostics or validate their expectations and
have counter-examples for those unsatisfied.

Table 3: Application influence matrix.

Output port
Appd Appe App f

Appa ✓
Input Appb ✓
port Appc ✓

4.3 The Extended IoT System Model

Combining the basic model, which represents how the
objects and applications are linked, and the influence
matrix, we define the extended model. Unlike the ba-
sic model, it must be automatically generated for the
user by a software tool that integrates our concept and
formalizes it as shown in the following definition.

Definition 4.2. Let T = (S,O, I,L1,δ) be a basic
model. Its extended model is T ′ = (P,M,L2,δ

′,T )
where:

• P ⊆ O∪ I is the set of communication port.
• M is a finite set of influence matrices such that
∥M∥ = ∥S∥ and ∀m ∈ M,mi,o ∈ {true, false} rep-
resents the possibility of a flow from port i ∈ I to
port o ∈ O.

• L2 : S → M is a labeling function that associates
an influence matrix to each device and application
of S,

• δ′ : P → P is a transition relation such that
if δ′(p) = p′ then ∃m ∈ M.mp,p′ = true (in-
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ternal channel inside an element of S) or

∃s,q ∈ S. s
p,p′−−→ q (outer channel between two

elements of S).

App
Tv2Tv1

C1 C2 C3

DoorS

image image image
signal

signal

image signal

imagesignal

signal

signalsignal

Figure 2: Extract of the model from the Figure 1.

App f

Appe

Appa Appc

Appd

Appb

Tv2Tv1

C1 C2 C3

Door

S

image image

imageimage

signal

image

imagesignal

signal

image

signal

signal

signalsignal

image

Figure 3: Extended information flow model.

It is with the extended model that we will use the
model checker to validate more precisely that its ba-
sic model satisfies reachability or safety properties.
We illustrate the extended model in Figure 3. It re-
sults from the model in Figure 2 extracted from the
model in Figure 1 of the building Example 2.1. In the
Figure 2, we only substitute the application with their
communication ports, so as not to weigh down the ex-
tended model. The extended model in Figure 3 shows
a transition system representing the connection of the
application to the cameras, televisions and emergency
door, as well as the connection of the door to the
sound system. It focuses attention on the application
(blue color), illustrating its substitution by its ports.
The labels on the arrows serve only to help the reader
understand the model, and those of the same color
identify similar information. The application repre-
sented by the blue vertex in Figure 1 is split into six

vertices, also in blue, representing its input and output
ports, even if they are not physical ports. The cam-
eras C1, C2 and C3 are connected to the ports Appa,
Appb and Appc respectively. The television Tv1 is
connected to the ports Appd and App f and the tele-
vision Tv2 is connected to the ports Appe and App f .
The sound system is connected to the door and the
door is connected to the port App f . The labels on the
arrows are only there to help the reader understand the
model.

According to the application influence matrix de-
scribed in Table 3, the information received at Appa
port influences that leaving at Appd port. That is
why there is an arrow from Appa to Appd . So, in
the model shown in Figure 3, we have an integration
of the devices connection system with the influence
matrix, enabling us to analyze how information trav-
els through the network under study. The camera C1
therefore only influences the television Tv1 via the
path Appa → Appd in the application and not both
televisions as we might have thought if we had only
looked at Figure 1.

4.4 Expressing Safety and Reachability
Properties

In the context of system analysis, we are particu-
larly interested in properties of safety and reachabil-
ity. These properties are expressed in terms of se-
quences of states, or paths. In our setting, we want
to focus on the paths that, when entering an input
port, go out through a port that is indeed influenced
by the input port, as expressed by the influence ma-
trix. We thus formalize the notion of influence path
in the following definition, to avoid any ambiguity in
their evaluation.

Definition 4.3. Let T ′ = (P,M,L2,δ
′,T ) be an ex-

tended model of T. An influence path in T ′ is a finite
alternating sequence of devices (or applications) and
communication ports π = s0 p0 p′0...s1 p1 p′1s3 p3 p′3
where ∀i ∈ N:

• pi ∈ L1(si) and p′i ∈ L1(si+1)

• s0
p0,p′0−−−→ s1

p1,p′1−−−→ s3
p3,p′3−−−→ ...

• if i ≥ 1 and L2(si) = m then p′i−1 ∈ L1(si) and
mp′i−1,pi

= false.

Ports abstraction in π gives the influence path in
T and we denote by :

• π(i) the ith vertex of an influence path π ∀i ∈ N.
• Path(s) the set of influence paths starting from

s ∈ S.
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One could imagine describing properties in a nat-
ural language. Unfortunately, natural languages are
too ambiguous for the needs of computerization, and
not concise enough. Logics are formal specification
languages. They have a precise mathematical defini-
tion to enable automatic verification of a system. One
obvious challenge is to completely specify the behav-
ior of a system, which is impossible to do automat-
ically, especially given the multitude of devices and
applications in an IoT network. To achieve this, we
rely on families of properties. We propose a logic for
expressing reachability and safety properties on basic
and integrated models, which we call IFCTL (Infor-
mation Flow Computation Tree Logic).

The aim of IFCTL is to scrutinize the information
flow and the triggering of actions or events through
influence paths one device or application to another.
On the one hand, we want to express properties, in-
tuitively and simply, at the level of a user unaware of
the names of the ports used to send and receive in-
formation from devices or applications. On the other
hand, the language allows properties to be stated by
specifying port names, enabling the informed user to
perform diagnostics on their model or to validate a
counter-example given by a model checker when a
property not being satisfied in the integrated model.
IFCTL distinguishes between two classes of formu-
las: device or application formulas and system for-
mulas. A device formula is interpreted on a device or
application, as it provides a description of the commu-
nication ports. Information can be a signal, an action
to be executed, an event, etc. It therefore has a type.
A path formula is interpreted on an influence path. It
is used to check the suitability of interactions between
devices and applications. The following definition de-
scribes the syntax and semantics of IFCTL.

Definition 4.4. Let T ′ = (P,M,L2,δ
′,T ) be an ex-

tended model of T = (S,O, I,L1,δ). The syntax of
IFCTL on O∪ I is defined by:

ψ ::= ϕ | ∀[ϕ : ϕ] | ∀[ϕ □ ϕ] | ∃[ϕ : ϕ] | ψ ∧ ψ | ¬ ψ

ϕ ::= p | true

where ϕ is a device or application formula with p ∈
O∪ I and ϕ : ϕ is a path formula. The quantifier ∀ is
read “for any influence path” and the quantifier ∃ is
read “there is an influence path“. Formula semantics
are defined on the basis of the satisfaction relation |=.
Let s ∈ S, then:

- s |= p iff p ∈ L1(s)
- s |= ψ1 ∧ψ2 iff s |= ψ1 and s |= ψ2
- s |= ¬ψ iff ¬s |= ψ

- s |= ∃[ϕ1 : ϕ2] iff ∃π ∈ Path(s).π |= ϕ1 : ϕ2
- s |= ∀[ϕ1 : ϕ2] iff

∀π ∈ Path(s)∧π(0) |= ϕ1.π |= ϕ1 : ϕ2

- s |= ∀[ϕ1 □ ϕ2] iff
∀π ∈ Path(s)∧π(0) |= ϕ1.π |= ϕ1 □ ϕ2

For an influence path π then:

- π |= ϕ1 : ϕ2 iff π(0) |= ϕ1 and ∃i > 0.π(i) |= ϕ2
- π |= ϕ1□ ϕ2 iff π(0) |= ϕ1 and ∀i ≥ 0.π(i) |= ϕ2

In Definition 4.4, ∀[ϕ1 : ϕ2] and ∃[ϕ1 : ϕ2] express
reachability properties. Table 4 illustrates the IFCTL
formalization of some reachability and safety proper-
ties applicable to Example 2.1. The reachability prop-
erties P.1, P.2 and the safety property P.4 extracted
from Table 2 are of high-level order. The reachability
property P3 is more detailed, as it specifies communi-
cation ports. The absence of a port name in an IFCTL
property means that any port can be used, which sim-
plifies the formalization of the property. For example,
DoorClose? designates an input port of type Close and
any name. The formalization of path properties iden-
tifies at least one initial port and one influenced port.
In the property ∀[C1Image.B!:Tv1Image.B?], C1Image.B! is
the initial port and Tv1Image.b? is the sought-after des-
tination. The mathematical quantifier ∀ indicates that
we are interested of information flow paths from port
C1Image.b! to port Tv1Image.b?. IFCTL logic is in fact a
subset of CTL (Computation Tree Logic) (Baier and
Katoen, 2008), if one interprets ports as state labels.

To verify these properties on a model, we plan
to use the model checker Uppaal (Uppsala and Aal-
borg, 2020). Developed jointly by the Uppsala and
Aalborg Universities, Uppaal is a real-time systems
model checker that has proven its effectiveness in sev-
eral studies (Gerking et al., 2018; Chen et al., 2020).
So we give a translation of the logic formulas into
TCTL, a timed version of CTL that is accepted by
Uppaal. Our plan is that this translation and the model
checking will be done automatically, so that it appears
transparent to the user.

Table 4: Some formal reachability and safety properties.

P.1 ∃[C3Image!:Tv2Image?]: if the childcare room
camera C3 transmits an image, it appears on
the control childcare television Tv2.

P.2 ∃[AppSignal.off!:DoorClose?]: if the applica-
tion sends an off signal, the emergency door
closes.

P.3 ∀[C1Image.b!:Tv1Image.b?]: the images trans-
mitted by the b port of camera C1 arrive on
television Tv1 via its port b.

P.4 ∀[C1Image!□¬Tv2Image?] ∧ ∀[C2Image!
□ ¬Tv2Image?]: the images from the cam-
eras on the entrance hall doors never reach
the control childcare television Tv2.
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4.5 IFCTL Translation to TCTL

TCTL expressive power lies in the fact that it is based
on both temporal and path quantization (Baier and
Katoen, 2008). It can also be used to determine the
duration between two states or events. The following
definition presents its syntax and semantics.

Definition 4.5. TCTL φ formulas are recursively de-
fined as follows:

φ ::= p | true | φ −→ φ | ∀[φ1
⋃

∼c φ2] | ∃[φ1
⋃

∼c φ2] |
φ ∧ φ | ¬ φ

where p is an atomic proposition, c ∈ N and ∼
denotes one of the binary relations <, ≤, =, ≥ or >.

Informally, ∃[φ1
⋃

<c φ2] describes a property in-
dicating that there is an execution path where φ1 is
true until φ2 it becomes and for a maximum of c time
units. ∀[φ1

⋃
<c φ2] means that for any execution path

φ1 remains true until φ2 becomes true, and for a max-
imum of c time units. The following abbreviations are
accepted in TCTL:

- ∃♢∼cφ ≡ ∃[true
⋃

∼c φ]
- ∀♢∼cφ ≡ ∀[true

⋃
∼c φ]

- ∀□∼cφ ≡ ¬∃♢∼c¬φ

Unrestricted temporal operators correspond to
operators subscribed with ≥ 0. For example, ∃♢φ

corresponds to ∃♢≥0φ. ∃♢ϕ1 and ∀♢ϕ1 are trans-
lated respectively into E <> ϕ1 and A <> ϕ1 in the
model checker Uppaal.

IFCTL’s property formalism is similar to that of
TCTL. However, the properties of the form ∀[ϕ1 :
ϕ2] and ∃[ϕ1 : ϕ2] can not be translated directly into
∀[ϕ1

⋃
ϕ2] and ∃[ϕ1

⋃
ϕ2] in TCTL. In an extended

model, on the one hand, if ϕ1 identifies a single state,
it can not be true all along an influence path, as TCTL
semantics would have it. On the other hand, if ϕ1 or
ϕ2 is a formula identifying several states, it should
be reformulated in such a way as to be able to check
whether there is an influence path from any state in-
herent in ϕ1 to the states falling under ϕ2. This would
mean exploding ∀[ϕ1 : ϕ2] or ∃[ϕ1 : ϕ2] into a con-
junction of formulas. Taking these remarks into ac-
count, we propose the essential equivalence of the sat-
isfaction relation between the IFTCL and TCTL log-
ics in the following definition.

Definition 4.6. Let T = (S,O, I,L1,δ),
T ′ = (P,M,L2,δ

′,T ) an extended model of ⊤,
s ∈ S, p ∈ P, ϕ1 and ϕ2 IFCTL device formulas, ψ1
and ψ2 are any IFCTL formulas and fnct is a function
such that fnct(ϕ1) returns the set of ports identified
by ϕ1. The equivalence relation ≡ starting from a
vertex s ∈ S is defined as follows:

- s |= ∃[ϕ1 : ϕ2]≡ ∃p |= ϕ1.p |= ∃♢ϕ2
- s |= ∀[ϕ1 : ϕ2]≡ ∀p |= ϕ1.p |= ∀♢ϕ2

where p |= ϕ1 iff p ∈ fnct(ϕ1)

To check s |= ψ1 ∧ψ2, use one of the two equiva-
lence forms above to check s |= ψ1 and s |= ψ2. Any
vertex in TCTL satisfies the propriety true.

To illustrate the result of the fnct function,
fnct(AppImage!) = {Appd , Appe} according to the ap-
plication influence matrix in Table 3.

4.6 Case Study

We devote this section to illustrate our information
flow control approach in IoT systems. We use an ex-
tract from the Example 2.1 whose corresponding ba-
sic model is given by Figure 2. To build the corre-
sponding extended model described in Figure 4, we
need the influence matrices of devices and applica-
tions involved in the basic model. They are given
by the influence matrices in Tables 3, 5 and 6. In
everyday life, thanks to their sensors, the camera’s
motion detectors capture data from their surroundings
and sent signals. Camera software is programmed to
use available network connections to initiate an action
based on this data. In this case, this means sending
the data to the application for processing. It should
be remembered here that it is rare for an information
transmission port to be unaffected by an information
input port. But, to keep Figure 4 as light as possible,
we have omitted the motion sensors in the cameras
whose signals trigger images capture. As a result, we
have drawn up the influence matrices showing only
those whose at least an input ports influence an out-
put port. The ports of cameras C1 and C2 and televi-
sions Tv1 and Tv2 are therefore independent of each
other in their influence matrices, which are not pre-
sented here. The door’s influence matrix is trivial. It
has only one input port and one output port that influ-
ence each other. The two properties expected of the
smart system are P.1 and P.3, set out in Table4.

Table 5: The camera 2 influence matrix.

Output port
C2b C2c

Input port C2a ✓

Table 6: The sound system influence matrix.

Output port
Sb Sc Sd

Input port Sa ✓

In the basic model shown in Figure 2, the ver-
ification of the property P.1 consists in checking if
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Figure 4: Extended model of the basic model in Figure 1.

C3 |= E <> Tv2 and for property P.3 to check if
C1 |= A <> Tv1. These properties are all true
in the basic model, but at this stage of the verifi-
cation, we are not yet sure. They must therefore
be checked in the extended model shown in Fig-
ure 4 by checking if C3b |= E <> Tv2b (in IFCTL:
C3b |= ∃♢ Tv2b) for P.1 and if C1b |= A <> Tv2b (in
IFCTL: C1b |= ∀♢ Tv2b) for P.3. In the basic model,
the property E <> Tv1 is true for C1, C2 and C3.
The property E <> Tv1b is false for camera C3, as
it can only send images to port Tv2b, as shown in the
extended model.

As we have developed an automatic verification
approach, its performance is directly linked to the
model checker. So we have to cope with the poten-
tial state-space explosion in our basic model extended
model. As far as concern Uppaal, Larsen et al (Larsen
et al., 1995) has shown via experimental results that
is not only substantially faster than the other real-time
verification tools but also able to handle much larger
systems.

5 DISCUSSION

Some related work do not consider formalizing full
automation of security and safety properties in IoT
analysis. The focus is rather on analyzing the IoT sys-
tem. Some tools use a text-based description of the
properties and conduct manual conformance to IoT
system analysis toward these properties. Some tools
are based on transforming the IoT system into many

representations, which affects the performance anal-
ysis. The lack of IoT security and safety standard-
ization adds difficulties to this process as well. The
originality of our work lies in the device’s internal
communications abstraction by their communication
ports in order to analyze system behavior globally and
identify inadequate information flows through model
checking. This form of abstraction mitigates the im-
pact of functional and technical complexities of IoT
heterogeneity. Our concept of checking reachabil-
ity and safety properties can be exported to several
other IoT domains. Integrity enforcement is known
to be dual to confidentiality enforcement (Schneider,
2000), instead of tracking if confidential information
can reach public destinations, we track if corrupted
information can reach trusted destinations. For exam-
ple, we can check to which extent altered informa-
tion is propagated in autonomous cars to a smart city
IoT network. We assume that influence matrices are
available from a priori analysis (Sabelfeld and Myers,
2003; Bedford et al., 2017) 4.2.

In this work, we have not integrated into our mod-
eling the temporal aspect of device operation. Smart
Devices collect or affect the physical environment de-
pending on a certain frequency and period, so the ser-
vice provided by the IoT system often has high dy-
namic and real-time requirements. An extension of
our approach could build a complete model of an IoT
system with temporal and state dimensions, like the
use-case scenario proposed by Chen et al (Chen et al.,
2020) in their paper. Such a new feature will certainly
make IFCTL more expressive, as it will allow to ex-
press properties such as ∀[ϕ :∼c ϕ], ∀[ϕ □∼c ϕ] and
∃[ϕ :∼c ϕ]. The time unit c will be interpreted as in
TCTL.

Furthermore, since the IoT environmental events
are nondeterministic in nature (Choe and Lee, 2018),
another extension could be to build a probabilistic
extended model in which uncertainties and random-
ized behaviors are modeled by assigning probability
values in the influence matrices (Kwiatkowska and
Parker, 2012; Desharnais et al., 2002). Such modeling
could be used in an IoT system composed of commu-
nicating robots equipped with multiple sensors that
monitor each robot. The sensors record and com-
municate various parameters, such as time, pressure,
temperature, etc. However, due to issues such as sen-
sor malfunctions, network problems or storage errors,
expected influences in the information flow could not
always occur: hence the idea of assigning probabilis-
tic values to the transitions in the targeted model.
However, it is a challenge to guarantee completeness
and maintain a high level of data quality (Klier et al.,
2024). Uppsala 5.0 (Uppsala and Aalborg, 2020) can

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

114



be used for the future work proposed.

6 CONCLUSION

IoT systems are overgrowing, which results in more
connected devices, more developed IoT applications
and platforms. This growth introduces new chal-
lenges to IoT systems and their environments related
to security and safety. The heterogeneity of IoT plate-
forms and networking technologies contribute largely
to the complexity of these issues. Thus, there is an
urgent need for appropriate tools and methods aim-
ing at the design of IoT systems able to operate safely
without leaking sensitive information.

In this paper, we propose to use model checking
to control information flow in an IoT network. Our
model abstracts from technical and functional hetero-
geneity and integrates influence relations between de-
vice and application communication ports. Our ap-
proach reduces the information leakage problem to
a reachability and safety problem, in order to verify
user expectations. We propose to express both general
and specific properties in a new logic IFCTL inspired
by TCTL, an existing language accepted by known
model checkers. The model checker Uppaal accepts
our basic and integrated models. We have illustrated
our approach with a rich but well-chosen example to
underline the problem we are solving. Our work does
not rely on specific plateforms therefore it can be eas-
ily applied to several IoT application domains.
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