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Abstract: Automated Short Answer Grading (ASAG) has emerged as a promising tool for the challenge of assessing
open student responses in an efficient and scalable manner as manual grading of such open short answers is
labor-intensive and time-consuming. In this study, we present several ways of refining LLMs to fit the task
of grading student short-answer responses robustly, fairly, and consistently, including a task-specific approach
and a combined variant, being able to assess different tasks within the same model. In this regard, we explore
two key questions: (1) Are transformer-based models suitable for short-answer grading? (2) Can a single
transformer-based model effectively generalize across diverse tasks? The experimental results showed the
significant potential of fine-tuned LLMs in ASAG. We further compared different fine-tuning strategies and
the experimental results showed that full-fine-tuned models outperformed other fine-tuning approaches.

1 INTRODUCTION

Essays and short-form answers have been widely
used as a tool to evaluate students across educa-
tional levels. Compared to multiple-choice questions,
short-form answers require a deeper understanding
of the material and a capacity for coherent expres-
sion. However, grading these responses manually is
time-consuming, leading educators to favor multiple-
choice questions, which often provide only a super-
ficial measure of a student’s knowledge despite their
ease of grading. As online courses gain traction and
education gets more accessible to large parts of the
population, the demand for a fair, fast, and scalable
solution for automated grading of textual answers has
entered the spotlight. Automated Short Answer Grad-
ing (ASAG) seeks to meet this need by enabling fast
and reliable assessment using the newest available
technologies and computational resources in a sys-
tematic way.

The use of computational methods for grad-
ing written responses has a long history, originat-
ing with the 1966 pioneering work of Page (1966),
which introduced an automated essay scoring sys-
tem called Project Essay Grade (PEG). Since then,
automatic grading of natural language responses has
evolved into a substantial field of study, with increas-
ingly complex models being developed, and Machine
Learning (ML) techniques gaining significant trac-
tion. Nonetheless, most models kept relying on simi-

lar hand-engineering surface-level features (Galhardi
and Brancher, 2018) and thus failed to capture the
context and meaning of student responses. Further-
more, the contribution of each of these features to the
final grade is usually assumed to be true based on
preconceived notions without accounting for deeper
nuances in writing (for example, valuing longer re-
sponses without considering conciseness and clarity).

Recently, a new exciting method has gathered
considerable attention in Natural Language Process-
ing (NLP) due to its transformative potential: Large
Language Models (LLMs) (Ding et al., 2023; Zhao
et al., 2023). Bonner et al. (2023) emphasized the
transformative potential of LLMs in education. In
particular, the authors point out how LLMs are well-
suited to help in educational tasks like text evalua-
tion because of their ability to understand and gener-
ate coherent text. For this reason, we believe LLMs
could constitute a game-changer in the field of ASAG:
not only could they achieve high agreement with hu-
man scorers, but they also simplify the grading pro-
cess for educators by eliminating the need for manual
feature engineering and enabling models to learn di-
rectly from the text without any additional manipula-
tion. This approach could be highly versatile: merely
providing the text would enable the model to automat-
ically capture relevant features and patterns.

Additionally, because LLMs are pre-trained on
vast amounts of real-world textual data, they possess
a remarkable capability to generalize across various

108
Todorov, A., Klunder, E. and Belloni, J. E.
Evaluating the Potential of LLMs for Better Short Answer Scoring.
DOI: 10.5220/0013291700003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 108-119
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



tasks and exam questions without requiring extensive
retraining for each new task (Reizinger et al., 2024).
Recent studies indicate that transformer-based models
fine-tuned with instructional data exhibit impressive
generalization to unseen tasks (Zhang et al., 2023b).
By training across multiple tasks, these models de-
velop an understanding of diverse input types, learn-
ing underlying representations that distinguish well-
written answers from poorly phrased ones without
altering the model’s core architecture. While task
diversity and unique requirements can present chal-
lenges, instruction-based fine-tuning helps address
these complexities, further enhancing model adapt-
ability (Zhang et al., 2024). This flexibility makes
LLMs particularly valuable for short-answer scoring.

This paper aims to investigate two fundamental
questions: (1) Are transformer-based models suitable
for short-answer grading? (2) Can a single trans-
former model generalize effectively across diverse
tasks? By leveraging state-of-the-art LLMs, we seek
to create a reliable and robust approach to evaluat-
ing student answers, examining both the appropriate-
ness of transformers for scoring and their potential
for task generalization. We believe this can advance
the discussion on accessible and efficient assessment
tools for educators, particularly in settings like Mas-
sive Open Online Courses (MOOCs), which can be
used for bridging the knowledge gap in settings where
public education is not easily accessible. LLMs offer
a powerful solution to meet these demands, enabling
large-scale assessments without sacrificing accuracy
or fairness.

The remaining part of this paper is comprised of
a literature review, illustrating both a historical per-
spective and an analysis of the state-of-the-art models
for ASAG. Next, we present the methods, techniques,
and methodologies used in this research to ensure re-
producibility. The data, experiments, and evaluation
procedures are detailed, followed by the results and
an in-depth analysis of the model’s performance. Fi-
nally, we conclude by summarizing our findings, em-
phasizing key achievements, and acknowledging the
primary limitations and future directions of the re-
search.

2 RELATED WORK

In the sixty years following the work from Page
(1966), the field of Automated Short Answer
Grading has evolved significantly, from early feature-
engineered models to advanced LLMs. This section
aims to provide a historical perspective on the field

and an overview of the most relevant currently
existing literature on the topic.

2.1 Feature-Engineered Models

In the early stages of research, hand-engineered fea-
tures along with traditional machine learning models
were the primary methods for assessing short-answer
responses. These approaches relied heavily on pre-
vious research in general linguistics and natural lan-
guage processing. A prime example for the use of
hand-engineered features like grammar, vocabulary,
and average word length, was proposed by Attali and
Burstein (2006). This approach provided the advan-
tage of transparency and explainability of the scores.
However, it lacked depth in evaluating content, as
it primarily measured surface characteristics without
accounting for contextual meaning.

To address some of these limitations, Mohler et al.
(2011) introduced a combination of the Bag-of-Words
(BoW) approach with dependency graphs. While
BoW represents data based on word frequency, it
struggles with capturing polysemous word meanings
in context, leading to challenges in interpreting con-
tent accurately. This approach, though effective for
some tasks, lacked the semantic depth needed for
deeper text understanding.

Building on all these approaches, Kumar et al.
(2020) introduced AutoSAS, an efficient machine
learning method for short answer scoring (SAS) based
on clever feature engineering and a random forest ar-
chitecture. Trained on the popular ASAP-SAS bench-
mark dataset (Barbara et al., 2012), AutoSAS intro-
duced a new set of features, including lexical diver-
sity, Doc2Vec embeddings, and prompt-content over-
lap, to capture content-based similarities between stu-
dent responses and ideal answers. This model demon-
strated a notable improvement in prediction accuracy
and scalability across diverse domains, establishing
itself as the state-of-the-art feature-engineered model
for the ASAP-SAS dataset. Since this dataset will
also be used in our study, the work by Kumar et al.
(2020) will serve as an important benchmark for as-
sessing the impact of shifting from hand-engineered
features towards more complex pre-trained models
like LLMs in the field of ASAG.

2.2 Recurrent Neural Networks

The advent of neural networks, particularly Recurrent
Neural Networks (RNNs), marked a major shift in
ASAG research, as new algorithms allowed the mod-
eling of sequential dependencies, such as in-between
sentence relations. Taghipour and Ng (2016) lever-
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aged Long Short-Term Memory (LSTM) networks
to build an end-to-end system for essay scoring that
not only demonstrated near human-level accuracy but
also bypassed the need for hand-crafted features by
directly learning from raw text input. Similarly, Saha
et al. (2019); Tashu et al. (2022) used Bi-directional
Long-Short Term Memory (BiLSTM) networks to en-
code answers into dense feature representations and
model long-term dependencies. These methods were
made possible by the internal hidden state of recur-
rent neural networks, which enables modeling of un-
derlying latent variables and thus preserves important
context from the previous text. However, the inabil-
ity to parallelize computations of these models and
their inherent instability caused by vanishing and ex-
ploding gradients hampered their scalability and thus
wider adoption, especially as more research projects
and companies started gaining access to better GPUs.

2.3 Transformer-Based Models

Transformers (Vaswani et al., 2023) are a type of neu-
ral network architecture, mostly suited for LLMs, and
are designed to process and generate text by model-
ing probability distributions. These distributions en-
able the model to predict the next token (typically
words or parts of words) based on the context. For
instance, when generating a sentence, the model eval-
uates the probability of each possible word at a given
position by using self-attention mechanisms, allow-
ing the model to weigh all preceding tokens defined
within a span, capturing contextual relationships. The
token with the highest probability is then selected, and
this process continues iteratively until a special end-
of-sequence token is generated, indicating the conclu-
sion of the prediction. Developing transformer mod-
els requires extensive pre-training on large datasets,
enabling it to learn linguistic patterns, syntax, and se-
mantics.

In recent years, transformer-based LLMs have
shaped the field of Natural Language Processing. Al-
though these architectures excel at processing and
generating human-like language, they may not ini-
tially appear well-suited to tasks like short answer
scoring, where the focus is on accuracy, precise and
reliable outputs, and interpretability, as opposed to the
open-ended generation typical of traditional LLM ap-
plications. However, with fine-tuning techniques and
the ability to constrain outputs effectively, LLMs have
proven highly effective for ASAG tasks.

BERT (Sung et al., 2019), for instance, demon-
strated the potential of bidirectional context model-
ing for short answer scoring, achieving a notable im-
provement in performance over earlier methods. This

research demonstrated that transformers, with their
ability to generate contextual embeddings through
self-attention mechanisms, significantly improved the
performance of short answer grading models. How-
ever, BERT’s reliance on domain-specific fine-tuning
remained a key limitation of this study, as its perfor-
mance tended to drop significantly when applied to
different domains without additional training.

Building on BERT’s foundations, research by
Latif and Zhai (2024) evaluated GPT-3.5 for ASAG,
noting its flexibility and higher performance in multi-
label and multi-class grading tasks. However, the
study also noted concerns regarding the potential bi-
ases that LLMs like GPT-3.5 might inherit from their
(undisclosed) training data. In a field like automated
grading – where outcomes can have real and long-
lasting impacts on individuals’ academic and profes-
sional lives, such potential biases are hardly accept-
able, regardless of performance improvements.

While all previous approaches involved fine-
tuning LLMs to fit specific datasets, research by
Kortemeyer (2023) evaluated GPT-4’s performance
for ASAG tasks without fine-tuning. This research
showed that, although GPT-4 could match the per-
formance of some older hand-engineered systems, it
struggled with nuanced grading scenarios and did not
reach the accuracy levels of fine-tuned BERT models.
This finding demonstrates that, despite the impressive
advancements in large pre-trained LLMs capable of
tackling diverse tasks, fine-tuning remains essential to
achieving the necessary accuracy and alignment with
human graders in ASAG.

Finally, recent developments in zero-shot learning
have highlighted the potential of LLMs to generalize
to multiple and even unseen tasks. Wei et al. (2021)
introduced instruction fine-tuning to enhance zero-
shot learning across multiple tasks. The main idea
was to treat each question-answer dataset (task) as an
instruction that was passed to the LLM, from which
the model learned to generalize to new tasks. The
model’s performance was compared with other mod-
els, including GPT-3, and the conclusion reached was
that instruction fine-tuning significantly improved the
model’s ability to do well in unseen tasks. Moreover,
instruction prompting remains an effective technique
that could sometimes achieve impressive results even
for short and simple prompts (Zhang et al., 2024).
For this reason, we believe that instruction fine-tuning
could enhance model performance and generalization
and will therefore be a key component in the con-
ducted experiments and analyses. These studies col-
lectively emphasize the promise of LLMs for ASAG
but also highlight challenges, such as interpretability
and domain adaptation. This body of research forms
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the foundation for our paper, which seeks to lever-
age LLMs’ strengths in both contextual understand-
ing and generalization to develop a scalable, fair, and
efficient solution for automated short-answer grading.

3 METHODS

This study explores the effectiveness of different fine-
tuning strategies for LLMs in automated short-answer
grading. Our objectives include selecting a model
and evaluating the model’s task suitability, examining
multi-task learning potential, testing the impact of in-
struction prompting, and improving computational ef-
ficiency. The techniques used to refine the pre-trained
model to fit the domain-specific task of short-answer
scoring are full fine-tuning, LoRA fine-tuning, and
Prompting.

3.1 Model Selection

With the defined multi-label classification task, we
finetune a Bidirectional Encoder Representation from
Transformers (BERT) (Devlin et al., 2018) and con-
duct our experiments. This model is suited for the
task, since its bidirectional encoder-only architecture
focuses primarily on contextual encoding and textual
comprehension. Moreover, empirically it has already
obtained relevant results in the field of short-answer
scoring (Haller et al., 2022). BERT has been shown
to achieve state-of-the-art performance on a different
benchmarking dataset by Sung et al. (2019).

3.2 Full Fine-Tuning

Fine-tuning is a transfer learning technique often ap-
plied to large language models in order to adapt them
for a specific task (Zhang et al., 2023a). The pro-
cess involves using a pre-trained source model, in this
case, BERT, and modifying it so that the output layer
is replaced by a new one to match the short-answer
grading task. The target model is trained on the
dataset, described further in Section 4.1, with the out-
put layer trained from scratch while the other layers
are only adjusted to adapt to the specific task. In this
case, fine-tuning is applied to the multi-label classi-
fication problem, using categorical cross-entropy loss
to optimize the model.

3.3 LoRA Fine-Tuning

LoRA (Low-Rank Adaptation) is a parameter-
efficient fine-tuning technique that reduces the num-
ber of trainable parameters, enabling faster and more

resource-efficient training. Instead of updating the
entire weight matrix of the pre-trained model, two
smaller update matrices, obtained through low-rank,
are trained on the new data, while the original weight
matrix is kept frozen. The final outputs are obtained
through a combination of the original weight matrix
and the update matrices. Notably, LoRA is less sam-
ple efficient compared to fine-tuning and was shown
to substantially underperform full fine-tuning (Bider-
man et al., 2024), thereby, in tasks requiring reliable
performance full fine-tuning is to be preferred. Ad-
ditionally, LoRA has a more gradual training process
but might take longer to achieve comparable results to
full fine-tuning, even though each epoch takes longer
to complete. The LoRA fine-tuning strategy further
introduces several hyperparameters that might not be
highly suitable for the automated grading task as it
adds another layer of complexity. This point is ex-
panded in Section 5, after a thorough analysis of the
achieved performance.

3.4 Prompt Engineering

Prompt engineering is used to enhance the perfor-
mance of the model by giving it a wider context. In
this case, an instruction-prompting technique was im-
plemented, by directly informing the model about the
goal it needs to accomplish. It is expected that this
approach will allow the model to learn faster and un-
derstand the objective it needs to perform. A sample
model’s prompt is:

Grade this student’s answer on a scale [scale],
focusing on grammar, lexical variability, and task rel-
evance.,

where [scale] is either 0-2 or 0-3, depending
on each specific essay set.

4 DATA AND EXPERIMENTS

4.1 Data

The dataset for Automated Student Assessment Prize
Short Answer Scoring (ASAP-SAS) by Barbara et al.
(2012) was released as part of a Kaggle competition
in 2013, sponsored by the Hewlett Foundation. It con-
tains more than 20,000 short-answer responses on 10
different tasks mainly from Grade 10 students from
the United States. Each topic is based on either Sci-
ence, Arts, Biology, or English. All the answers have
been hand-graded on a scale of 0-2 or 0-3 (specified
in each task description document) and double-scored
for reliability, however, the second score has no effect
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on the final score received. Some of the task descrip-
tions can be found in Table 1. The data has been split
by the authors into a train set, consisting of 17,044 en-
tries, and a test set, composed of 5225 responses.The
tasks vary across domains, which is intended to test
the capabilities of the developed model(s). For in-
stance, task 1 regards scientific reasoning. In this task,
students are presented with a partial scientific exper-
iment and need to describe what additional informa-
tion is needed to replicate it. The purpose of this task
is to test students’ scientific understanding and logical
reasoning about experimental settings.

The other nine tasks follow a similar structure, re-
quiring short responses (an average of 50 words per
answer) on a topic demanding reasoning and critical
thinking. Few of the tasks involve referring to exter-
nal sources.

Table 1: Some of the tasks in the dataset and their descrip-
tions.

Topic Task

Biology List and describe three processes
used by cells to control the move-
ment of substances across the cell
membrane.

English Read the article and explain how the
author organizes it. Support your re-
sponse with details from the article.

Arts Read the article and explain how
pandas in China are similar to koalas
in Australia and how they both are
different from pythons. Support your
response with information from the
article.

All the data is in a text format, but four of the ten
datasets have been manually transcribed and might
contain typing errors. However, an addition of such
noise might be beneficial as it simulates the real-world
setting, where textual inconsistencies often occur.

4.2 Evaluation Method

4.2.1 Baselines

As baselines for evaluation, we use the pre-trained
BERT model from HuggingFace and the state-of-the-
art feature-based random-forest model proposed by
Kumar et al. (2020). In the former case, we contrast
whether our fine-tuning and prompt engineering ap-
proach will improve the performance and feedback-
providing capabilities of the untuned LLM. Moreover,
the BERT baseline is evaluated both with and without

the instruction-engineering technique mentioned pre-
viously. For the latter, we compare only the perfor-
mance in terms of the κ score across all essay tasks,
defined in the section below.

4.2.2 Cross-Validation and Early Stopping

The train was further split into a training set (80%)
and validation set (20%) for all experiments using a
random seed 4242 to ensure reproducibility. Hence,
the train set contained 13635 data points, the valida-
tion set 3409 data points, and the test set 5225, dis-
tributed across all 10 essay tasks.

The data was shuffled before splitting, to ensure
similar distributions of essay sets. Furthermore, it re-
duces the potential effect of primacy and recency bi-
ases during the training process. The validation set
was used for the early-stopping mechanism. If the
model is trained for too many epochs, it may even-
tually overfit by memorizing the labels or the noise
without learning the underlying patterns, leading to
poor generalization on new data sets. This system
monitors the validation loss and halts training if no
improvement is observed over a specified number
of epochs, defined by the patience parameter (see
the Experiment Details section). When this limit is
reached, the model detects the potential for overfit-
ting, the training is stopped and the model with the
lowest validation loss is saved.

4.2.3 Evaluation Metric

Barbara et al. (2012) provide a suggested metric for
evaluating model performance on the dataset, namely
the Quadratic Weight Kappa (QWK). This metric
compares the agreement between the predicted scores
of our model and the ones provided by human graders.
It also accounts for the probability of the two scores
being equal by chance. The QWK evaluates to 1 when
the predicted value and the known one are the same
and 0 when there is an agreement by random. A neg-
ative QWK can be received if the agreement is be-
low what is expected due to random chance. A batch
of student responses has N possible scores, and two
raters, Rater A (human) and Rater B (model).

Each short-answer response has been scored as a
tuple (i, j), where i is the human score and j is the
model-generated score. An N ×N histogram matrix
O is calculated over the ratings of the responses, such
that each Oi, j corresponds to the number of answers
that received rating i by Rater A and rating j by Rater
B. A weight matrix W measures the disagreement be-
tween any two scores.

wi, j =
(i− j)2

(N −1)2 ,
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with i, j respectively being the human and model
score, and N the number of scores possible. More-
over, an expectation matrix

E = ea ⊗ eb

is calculated, where ea and eb are the histogram vec-
tors of the human values and the model predicted val-
ues, respectively and ⊗ denotes the outer product. In a
histogram vector, each entry represents the frequency
of a certain score in the data. In this case, there are N
possible scores, so at each index the count of a score
is registered. The QWK metric κ is finally calculated
as

κ = 1−
∑i, j wi, jOi, j

∑i, j wi, jEi, j
.

With this score, we evaluate both the baseline
model and the fine-tuned models. The mean of the κ

scores is taken over all responses from the 10 different
tasks, which is consistent with the approach of Kumar
et al. (2020). In the field of short-answer scoring, an
automated system is considered to be acceptable if it
achieves a QWK score of at least 0.70 (Doewes et al.,
2023). An interpretation of κ values can be seen in
Table 2.

Table 2: Quadratic Weighted Kappa Interpretation Scale.
Table from Doewes et al. (2023).

κ Interpretation

< 0 Less than chance agreement
0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 1.00 Almost perfect agreement

4.3 Experimental Details

The experiment was designed based on the dataset,
which is organized into ten independent tasks (or es-
say sets). The configuration was made around the fol-
lowing three main conditions:

• A separate model (called task-specific) for each
essay set or a model for all ten tasks at once (re-
ferred to as combined).

• Providing or not providing the model(s) with an
instruction prompt. Those model configurations
are also referred to as instructed and uninstructed.

• Performing full fine-tuning or parameter-efficient
fine-tuning using Low-Rank Adaptation (LoRA).

These options resulted in eight distinct experi-
ments. The motivations behind each experiment are

given in the next sections. Each experiment was exe-
cuted systematically to maintain consistency and en-
sure reliable results. The common goal across all
experiments is to predict the score of a student’s re-
sponse using the efficacy of LLMs in considering tex-
tual dependencies and context. We hypothesize that
our approach will yield comparable results to tradi-
tional machine learning models, eliminating the need
for labor-intensive feature engineering, while allow-
ing both task-specificity (singular models per essay
set) and task-generality (combined model for all es-
say sets).

4.3.1 Full Fine-Tuning Experiments

The first set of experiments focuses on full fine-
tuning. We further compare the performance of task-
specific models, where a separate BERT model is
fine-tuned for each of the essay tasks, and a com-
bined model, fine-tuned for all of the essay sets at
once. Moreover, we examine the effect of instruction-
prompting, by adding another variable to the config-
uration, i.e., whether the model is prompted with the
instruction or not.

In the first experiment, a distinct BERT model was
trained for each essay task, allowing it to learn the
specific grading criteria relevant to that task, with-
out the use of an instruction prompt. The second ex-
periment employs a similar strategy, however, a sin-
gle BERT (task-specific) model is fine-tuned across
all ten essay sets simultaneously, without instruction
prompts. This approach aimed to exploit potential
common mistakes and criteria between the tasks to
enhance generalization capabilities. The task-specific
and the combined experiment strategies can be easily
differentiated by examining Figures 1 and 2, respec-
tively.

Essay Set 1

Essay Set 2

Essay Set 10

BERT #1

BERT #2

BERT #10

Grade

Grade

Grade

Figure 1: The task-specific experiment strategy, where a
single BERT model is fine-tuned for each of the 10 essay
sets in the dataset.

The third and fourth experiments involve the ad-
dition of instruction prompting. The third experiment
is equivalent to the first experiment, except that it was
fine-tuned with the aforementioned instruction, guid-
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Essay Set 1

Essay Set 2

Essay Set 10

Combined BERT Grade

Figure 2: The combined BERT experiment strategy, where
one BERT model is fine-tuned for all the 10 essay sets at
once, resulting in a more general model.

ing the model in understanding what is expected from
it. Similarly, the fourth experiment is equivalent to
the second experiment, with the addition of the in-
struction prompt in every input.

All of the hyperparameters are in accordance with
the transformers library, which was used exten-
sively in this research for the fine-tuning and pre-
trained models. The hyperparameters used for the first
four fine-tuning experiments were:

• batch size: Training in batches of 32 proved to
be the most computationally appealing and signif-
icantly faster while retaining performance. More-
over, there are recommendations that the batch
size should not be tuned to directly improve vali-
dation set performance (Godbole et al., 2023) and
there is currently no solid evidence that the batch
size affects the maximum achievable validation
performance (Shallue et al., 2018). Hence, the
batch size was not further tuned and was left as
32 for faster computation.

• epochs: The epochs for the full fine-tuning exper-
iments were set to 10. Ideally, we wish to spec-
ify slightly more epochs than needed, the training
does not finish but rather the early-stopping mech-
anism is triggered, as a means of regularization.

• patience: The hyperparameter for the early-
stopping mechanism. This value was set to 2,
as empirically, models trained rather quickly (1-
2 epochs), after which validation loss started to
decline.

• weight decay: Models in HuggingFace are fine-
tuned through the AdamW optimizer (Loshchilov
and Hutter, 2019), which allows for the weight
decay of all layers (except bias and LayerNorm),
as a further form of regularization. This value is
typically 0.01, which was also used in those ex-
periments.

4.3.2 LoRA Fine-Tuning Experiments

Another set of four experiments was conducted us-
ing LoRA fine-tuning. The experiments are precisely
equivalent to the full fine-tuning ones, except that
a LoRA configuration grid was used as a means of
parameter-efficient fine-tuning. The specified hyper-
parameters for this set of experiments was as follows:

• batch size: 32, equivalent to the full fine-tuning
experiments.

• epochs: LoRA fine-tuning took more epochs un-
til the early-stopping mechanism took effect (20-
30), hence the number of epochs was increased to
50 so that it could be triggered effectively.

• patience: 2, equivalent to the full fine-tuning ex-
periments.

• weight decay: 0.01, equivalent to the full fine-
tuning experiments.

• r: The rank of the matrices in the adaptation lay-
ers, which determines the number of parameters,
was tested with values of 8, 16, 32, and 64. A rank
of 16 was selected as the optimal setting.

• lora alpha: The scaling factor for the output of
the reduced rank matrices from LoRA. The orig-
inal LoRA paper (Hu et al., 2021) recommends a
fixed value of 16, instead of treating it as a tunable
hyperparameter, hence was chosen as so.

• target modules: The targeted modules for the
uncased-base-BERT were the attention layers,
namely query and value.

• lora dropout: The dropout probability for the
LoRA layers, introducing a further regularization
effect. During training, it randomly sets the ele-
ments of an input tensor to 0, which helps prevent
overfitting by decorrelating the activations of the
neurons in the network.
A summary of the experiment configuration can

be seen in Table 3.

Table 3: Experiment Configuration Grid: Fine-Tuning Ap-
proaches, Instruction-Prompting Techniques, and Model
Types.

№ Fine-Tuning Instruction Model Type

1 Full No Task-Specific
2 Full No Combined
3 Full Yes Task-Specific
4 Full Yes Combined
5 LoRA No Task-Specific
6 LoRA No Combined
7 LoRA Yes Task-Specific
8 LoRA Yes Combined
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5 RESULTS AND DISCUSSION

5.1 Results

The results of the eight conducted experiments are
reported in Table 4. System metrics are further pre-
sented in Table 5. The next sections present a com-
prehensive analysis of those results.

5.2 Qualitative Analysis

Considering the number of experiments conducted,
multiple subsections address the targeted compar-
isons among models and experiment configurations.

5.2.1 BERT Baseline

The experimental results showed that both the in-
structed and uninstructed pre-trained BERT baseline
received a QWK of 0, meaning that their predictions
were made completely at random.

All fully fine-tuned models achieved performance
significantly better than the BERT baseline across all
essay sets. Similarly, LoRA models exceeded the
BERT baseline, except for the LoRA, instructed, task-
specific model in sets 1, 4, and 9, and the LoRA unin-
structed, task-specific in sets 4 and 7. In those cases,
the predictions were completely at random (κ = 0) or
there was a disagreement between the actual grades
received and the predicted scores (κ < 0).

The fully fine-tuned models mostly satisfy the cri-
terion in the deployment of automated grading sys-
tems of κ > 0.7. We consider those results to be suf-
ficient for the beginning of this novel approach.

5.2.2 Kumar et al. (2020) Baseline

The random forest model used by Kumar et al. (2020),
which was heavily hand-engineered to fit the domain
of short-answer grading, outperformed most of the
models in this study. However, the Full, Uninstructed,
Task-Specific model achieves the same QWK score of
κ = 0.62 in essay set 8, while the two fully fine-tuned
combined models outperform the state-of-the-art with
κ = 0.66 and κ = 0.67.

Notably, most fine-tuned models differed from the
random forest model by no more than 0.10 on any es-
say set. Hence, we consider the LLM approach to be
comparable with the state-of-the-art machine learning
method. According to Table 2, all task-specific and
combined models fall within moderate, substantial, or
almost perfect agreement with the human graders.

The LoRA models significantly underperformed
the full fine-tuned models, and hence the random for-
est model. A further comparison of the LoRA models

is given in one of the next subsections. Nonetheless,
all LoRA models at most display a slight agreement
with the actual scores.

5.2.3 Task-Specific vs. Combined BERT

Within fully fine-tuned models, minimal differences
were observed. The two most notable differences
can be noticed if we compare the task-specific versus
combined models in set 10 for the uninstructed mod-
els and set 8 for the instructed models. In both these
specific cases, the combined models perform better
than the task-specific ones by 0.08 κ. In general, the
combined BERT models exhibit reliable performance
and generalizability across tasks. Among LoRA mod-
els, the combined architecture generally performed
better, whereas the task-specific model type displayed
slight or random agreement with the real scores.

5.2.4 Uninstructed vs. Instructed Models

Overall, minimal performance differences were
showcased in the uninstructed vs. instructed config-
uration. Notably, fully fine-tuned task-specific mod-
els benefited on essay sets 5, 6, and 10, improving by
0.19, 0.10, and 0.07 in terms of the κ score. Even
so, the general effect of instruction-prompting in this
study remains inconclusive. This is further addressed
in discussion and limitations.

For the LoRA models, adding the instruction re-
duced performance, compared to their uninstructed
counterparts. Specifically, including the instruction in
the prompts for the combined models lowered the κ

score in sets 9 and 10 by 0.24 and 0.23, respectively.
This substantial difference suggests that the instruc-
tion prompt made the ASAG task significantly harder
for the LoRA models.

5.2.5 LoRA vs. Full Fine-Tuning

The full fine-tuning configuration significantly out-
performed LoRA models across all essay sets and set-
tings. Moreover, LoRA models took more than half
of the time to train, even though they are designed
for computational efficiency (see System Metrics sec-
tion). We hence consider LoRA models not suitable
for the automated grading task. This is further elabo-
rated on in the discussion section, highlighting possi-
ble causes.

5.3 System Metrics

The training time for all experiments is displayed
in Table 5. LoRA models took more than twice
the time of the fully fine-tuned models. Although
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Table 4: Quadratic Weighted Kappa scores of experiments across essay sets and compared to baselines, together with averages
(µ). The best overall scores are bolded. The best model results from this study are in italics.

Experiment Essay Set

Configuration 1 2 3 4 5 6 7 8 9 10 µ

Full, Uninstructed, Task-Specific 0.82 0.76 0.68 0.69 0.62 0.75 0.70 0.62 0.80 0.66 0.71

Full, Uninstructed, Combined 0.78 0.76 0.65 0.69 0.78 0.80 0.70 0.66 0.80 0.74 0.74

Full, Instructed, Task-Specific 0.84 0.74 0.69 0.67 0.81 0.85 0.66 0.59 0.80 0.73 0.74

Full, Instructed, Combined 0.77 0.74 0.70 0.68 0.77 0.81 0.65 0.67 0.81 0.77 0.74

LoRA, Uninstructed, Task-Specific 0.02 0.06 0.07 0.00 0.18 0.02 0.00 0.03 0.41 0.06 0.08

LoRA, Uninstructed, Combined 0.11 0.10 0.31 0.12 0.13 0.16 0.05 0.17 0.38 0.27 0.18

LoRA, Instructed, Task-Specific 0.00 0.03 0.02 -0.01 0.23 0.08 0.07 0.15 -0.07 0.00 0.05

LoRA, Instructed, Combined 0.05 0.03 0.22 0.09 0.28 0.26 0.16 0.08 0.14 0.04 0.13

Uninstructed Baseline BERT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Instructed Baseline BERT 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

Kumar et. al. (2020) 0.87 0.82 0.75 0.74 0.85 0.86 0.73 0.62 0.84 0.83 0.79

LoRA is considered computationally less intensive
and each epoch trains faster, it requires significantly
more epochs to reach the early stopping criterion,
which full fine-tuning meets way faster. At each up-
date, LoRA updates only a limited number of updates,
thereby, the variance of the data is captured more
gradually, whereas the full fine-tuning approach man-
ages to converge in only a few epochs1.

5.4 Discussion

The models of this study achieve comparable or in one
case superior (essay task 8) performance, compared to
the state-of-the-art machine learning model of Kumar
et al. (2020). A significant advantage of this research
is that no prior feature engineering was done, which
is an integral process of traditional machine learning
systems deployed in the field of ASAG.

The action of hand-engineering variables to auto-
mate short-answer responses involves selecting lexi-
cal, syntactic, and grammatical features that encap-
sulate the interpretation and evaluation of students’
answers. Nonetheless, this process fails to take con-
text into consideration, is prone to human bias, and
has limited flexibility across domains. For instance,
the random forest-based model of Kumar et al. (2020)
extensively defines lexical diversity, content overlap,
and vector embeddings as an attempt to effectively
capture relevant aspects of student responses. While
it is a state-of-the-art automated grading model, it is
constrained by domain assumptions.

1Epochs are not included in the comparative analysis
due to the large number of models. For full training statis-
tics, see the Jupyter Notebook in the repository.

In contrast, the BERT-based models in this paper
do not rely on feature engineering but rather are fine-
tuned on the essay sets without modifications (unin-
structed experiments), or the inputs are slightly al-
tered as a way of instruction-engineering the mod-
els, which is favorable in certain tasks, as highlighted
previously. This leverages the use of a pre-trained
foundational model, which allows the methods in this
study to capture various and contextualized represen-
tations without manually defined features or explicit
instructions regarding the underlying grading criteria.

Table 5: Runtime of all experiments (NVIDIA V100 GPU,
16GB of RAM, 8 CPU cores).

Experiment
Configuration

Runtime
(hh:mm:ss)

Full, Uninstructed, Task-Specific 00:23:30
Full, Uninstructed, Combined 00:24:54
Full, Instructed, Task-Specific 00:28:24

Full, Instructed, Combined 00:24:56
LoRA, Uninstructed, Task-Specific 01:13:01

LoRA, Uninstructed, Combined 01:11:50
LoRA, Instructed, Task-Specific 01:19:34

LoRA, Instructed, Combined 01:00:46

We believe the LLM approach in the field of
ASAG is highly beneficial for that specific reason. In
an educational setting, students’ responses can vary
widely across and within tasks, depending on previ-
ous education, level of preparation, and overall back-
ground. The ability of BERT-based models to capture
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those variances is a substantial advantage as it allows
for a scalable solution across domains without cus-
tomization for each specific task.

Going deeper in this direction, conventional ma-
chine learning approaches often rely on task-specific
models and systems, requiring adjustments when
used in a different setting. This need for specificity
arises from the overfitting problem in machine learn-
ing and even earlier neural models like LSTMs (Saha
et al., 2019) - generalization across tasks without risk-
ing performance remains a challenging objective of
those methods. The use of a foundational model
eliminates the need for expected response structure or
recognition of specific features.

The combined BERT models in the experiments
show strong and promising generalizability across the
essay tasks, which were in the domain of English liter-
ature, Science (Chemistry, Biology, Physics), and Art.
The combined models effectively discern relevant as-
pects of the grading task and achieve nearly identical
performance to the task-specific configuration. This
suggests that the embeddings in the combined BERT
model are robust enough to capture task-specific grad-
ing criteria without compromising performance. In
educational settings, this aspect is particularly valu-
able whenever there is a demand for a single, scalable,
and efficient solution.

For instance, in the sphere of online courses and
assessments, educators could utilize the generalizabil-
ity of an LLM to be responsible for the participants’
evaluation during the course on several assignments,
varying in grading scales, descriptions, and expec-
tations, without customizing it for every single one.
Moreover, deploying such a system would result in
significant cost and labor savings. Another strong
point of LLMs is the ability to generate text, which
could be used to also provide comprehensive and con-
structive feedback to students. This is discussed in the
Limitations and Future Directions section.

Another important consideration is the impact of
instruction-prompting observed in the study. While
task-specific fully fine-tuned models benefited from
the addition of an instruction in the prompt (sets 5, 6,
10), its overall role remains vague. In particular, the
inclusion of instruction in the inputs, when applied to
the combined fully fine-tuned models, resulted in a
barely noticeable effect. This suggests that the com-
bined models already generalize enough so that the
instruction can be discarded in the specific case. This
could be somewhat expected, considering the simplic-
ity of the instruction used in this study. Nonethe-
less, instruction-tuning remains an effective approach
across tasks (Zhang et al., 2024), and a suggested im-
provement is presented in the Future Directions sec-

tions, emphasizing the use of the task description in
the fine-tuning process.

Lastly, the LoRA fine-tuning approach showed
significant limitations when applied to the ASAG
task. Even though this method is designed for com-
putational efficiency and reduced memory usage, it
took longer to execute, compared to full fine-tuning.
The underlying cause of this was that even though
each epoch took a shorter amount of time, the over-
all number of epochs before the early-stopping mech-
anism was significantly larger, as LoRA had a more
gradual drop in validation loss per epoch (see Jupyter
Notebook in the repository for full experimental in-
formation). Moreover, it introduced several hyper-
parameters, which have to be further tuned for best
performance. Practically, this also makes the LoRA
approach harder to implement in a real setting, where
simplicity of solutions would be preferred.

Additional hyperparameter tuning of a LoRA
model would require a sophisticated search (e.g.
grid, random, or Bayesian) to identify optimal con-
figurations, necessitating additional resources. As
discussed previously, educational environments re-
quire models that perform consistently across vari-
ous domains of tasks with minimal or no reconfig-
uration. Lastly, its underperforming results could be
further explained by the fact that low-rank adaptations
are less capable of capturing detailed, nuanced, and
context-sensitive patterns, common in ASAG. This
makes the LoRA approach unsuitable for scalable and
efficient grading systems with minimal tuning, as re-
quired in the automated grading field.

6 CONCLUSION

6.1 Summary of Contributions

While many works on automated short-answer grad-
ing rely on hand-crafted feature engineering to cap-
ture superficial linguistic features, more recent ap-
plications of large language models often struggle
to generalize across diverse tasks. Our work ad-
vances the ongoing discussion by implementing a
fine-tuned LLM approach tailored specifically to the
task of short-answer grading. By leveraging the deep
contextual understanding of LLMs, our model cap-
tures nuanced aspects of meaning and coherence in
student responses, going beyond the limitations of
surface-level feature extraction. This reduces the re-
liance on human-engineered features and mitigates
the biases they can introduce, allowing the model to
learn directly from data. The experimental results in
this study showed that fine-tuned models are able to
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achieve high agreement with human graders, deliver-
ing robust scoring outcomes closely aligned with ex-
pert evaluations. Furthermore, this study considers a
combined model experimental strategy, enabling the
model to handle a variety of tasks with differing grad-
ing rubrics and scales without the need for separate
fine-tuning, enhancing the adaptability and scalabil-
ity of the grading process.

6.2 Limitations and Future Work

The impact of instruction-prompting on model per-
formance remains unclear. While some essay sets
showed improvements, others experienced perfor-
mance degradation. Current prompting strategies in-
clude only brief task descriptions, excluding the spe-
cific question answered by the student. This limita-
tion hinders the model’s ability to differentiate well-
written but irrelevant answers from those that are ac-
curate and relevant. Future work could expand input
contexts to include task descriptions, but this will re-
quire models with longer context windows, increas-
ing computational demands. Research into memory-
efficient methods for managing extended contexts
while preserving accuracy could address this chal-
lenge. The lack of a rigorous evaluation of gener-
alization remains a concern. The data split used in
this study shuffled samples across training, valida-
tion, and test sets, precluding an unbiased assessment
of model performance on entirely unseen tasks. Fu-
ture studies could evaluate models on new, unseen es-
say tasks to better understand their zero-shot capabil-
ities. This would provide insights into their adapt-
ability and support the development of ASAG sys-
tems robust enough for deployment across diverse ed-
ucational contexts. Additionally, exploring contin-
ual learning approaches could ensure sustained per-
formance on previously learned tasks while adapting
to new ones.

Moreover, current models only provide a score,
limiting their educational utility. Effective feed-
back is crucial for student learning, and future work
could leverage LLMs’ text-generation capabilities
to provide personalized, actionable feedback along-
side grades. However, this approach must be rig-
orously validated to ensure accuracy and reliability.
Poorly designed feedback risks being misleading or
overly simplistic, potentially harming learning out-
comes. Conversely, responsibly implemented feed-
back mechanisms could transform automated grad-
ing systems into comprehensive educational tools that
serve as both assessors and tutors. The deployment
of LLMs in educational settings raises critical eth-
ical concerns. These systems influence students’

academic and professional trajectories, necessitating
measures to address biases, quantify uncertainties,
and ensure transparency in training data and proto-
cols. Future research should prioritize the develop-
ment of bias assessment techniques to ensure fair out-
comes across diverse student populations, fostering
trust in the system’s reliability and equity.

Key strategies for implementing explainability
and interpretability include posthoc explainability
methods like SHAP and Integrated Gradients, as ex-
plored in Tornqvist et al. (2023) to connect model
predictions with interpretable token- or sentence-level
justifications. Additionally, Aggarwal et al. (2024)
introduce the EngSAF dataset, containing questions
and responses from multiple engineering domains,
and use it along the Label-Aware Synthetic Feed-
back Generation (LASFG) strategy to provide de-
tailed, content-focused synthetic feedback alongside
grades. Further research should be aimed at assess-
ing various strategies for feedback generation in the
interest of equipping teachers with a valuable tool for
providing systematic feedback and improving learn-
ing efficiency.
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