
Automated Testing of Tezos Blockchain-Oriented Software

Afef Jmal Maâlej and Achraf Weli
ReDCAD Laboratory, Nation , BP 1173, 3038 Sfax, Tunisia

afef.jmal@redcad.org, achraf.weli@redcad.org

Keywords: Automated Software Testing, Test Results Analysis, Secure Smart Contracts, Tezos Blockchain.

Abstract: This research centers on the testing of smart contracts within the Tezos blockchain as a security verification and
validation activity, supporting thus its development life cycle. This specific blockchain type is recognized for
its self-modifying feature, which facilitates protocol upgrades without network splits. Despite Tezos advanced
technology, smart contracts may still harbor bugs and vulnerabilities, necessitating rigorous software testing
for quality and security assurance. The primary aim of this work is to develop a solution addressing the divide
between technical blockchain development and non-technical participants in the smart contract ecosystem.
Our ST2A testing tool, realized for SmartPy-developed smart contracts, offers a user-friendly platform catering
to individuals with limited blockchain or programming knowledge. Its overarching objective is to illustrate
the Tezos smart contract testing process, ensuring accessibility, comprehension, and actionable insights for
non-developers such as project managers, security auditors, and business stakeholders.

1 INTRODUCTION

Software testing of blockchain-oriented applications
plays a crucial role in ensuring the integrity, se-
curity, and reliability of these novel software sys-
tems. Given the unique characteristics and com-
plexities of blockchain technology, evaluation and
testing methodologies must be developed to address
the specific challenges and requirements inherent in
blockchain applications.

One of the primary focuses of software testing in
the context of blockchain is the validation of smart
contracts. Smart contracts are self-executing agree-
ments embedded within the blockchain, and thorough
testing is essential to identify vulnerabilities, logic
flaws, and potential security risks. Test scenarios
must be designed to cover a wide range of contract
conditions, including edge cases, to ensure their ac-
curate and secure execution.

Additionally, testing the consensus mechanisms
of a blockchain is critical. Consensus algorithms,
such as Proof of Work (PoW) or Proof of Stake (PoS),
ensure the agreement and validation of transactions
across the network. Testing these mechanisms in-
volves simulating various network conditions, evalu-
ating their performance, and assessing their resilience
against potential attacks or failures.

In summary, software testing of blockchain-
oriented applications involves specialized methodolo-

gies and approaches specifically tailored to the unique
characteristics of blockchain technology. The focus
includes validating smart contracts, testing consen-
sus mechanisms, performing integration and security
tests, and evaluating performance aspects. Organiza-
tions can increase confidence and trust among users
and stakeholders by establishing blockchain systems
through extensive tests to ensure their robustness and
dependability.

In this paper, we consider Tezos as a blockchain
platform that offers a unique set of characteristics and
advantages such as self-amendment, formal verifica-
tion, on-chain governance, scalability, performance,
and interoperability. In this context, we propose
ST2A, a tool for automated testing of smart contracts
on the Tezos blockchain. The fundamental aim of
our solution is to overcome the difficulties of the test-
ing procedures associated with Tezos smart contracts,
rendering them accessible, comprehensible, secure,
and actionable for non-developers, including project
managers, security auditors, and business stakehold-
ers. In particular, the application streamlines the test-
ing process through automation, enhancing efficiency
and user experience.

The remainder of this paper is organized as fol-
lows. Section 2 provides basic concepts about the
Tezos blockchain and software testing. Section 3
draws a literature review on software testing of Tezos
blockchain-oriented applications. Afterwards, we de-

Maâlej, A. J. and Weli, A.
Automated Testing of Tezos Blockchain-Oriented Software.
DOI: 10.5220/0013291000003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 541-548
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

541



scribe our proposed solution, the SmartPy Test Anal-
ysis Application (ST2A), in Section 4. Then, a case
study of "TicTacToe" Tezos smart contract testing is
presented in Section 5. Finally, in Section 6, we con-
clude with a summary of our contributions and iden-
tify prospective study areas for the future.

2 BASIC CONCEPTS

In this section, we provide an introductory overview
of both Tezos blockchain technology and software
testing, contextualizing their significance within the
broader field.

2.1 Tezos Blockchain Technology

Blockchain is a distributed ledger technology that en-
ables transparent, secure, and decentralized storage
and transmission of information. It operates on a net-
work of participants, known as nodes, who validate
and record transactions in a distributed ledger, com-
monly referred to as a public ledger (Feng, 2023).

Fundamentally, the blockchain functions by
grouping transactions into blocks, which are subse-
quently added to a chain of blocks in chronologi-
cal order. Each block contains a set of transactions
along with a cryptographic hash link to the previ-
ous block, creating an immutable and tamper-resistant
structure (Gupta et al., 2023).

In this work, we consider Tezos blockchain tech-
nology (tez, 2023) as a novel approach to software
engineering, it presents a unique set of characteristics
and advantages. Here are some of the key characteris-
tics and advantages of the Tezos blockchain (Olivieri
et al., 2023):

• Self-Amendment: One of the distinctive fea-
tures of Tezos is its ability to self-amend through
on-chain governance. This means that the pro-
tocol can evolve and upgrade itself without re-
quiring hard forks or contentious community de-
bates. Tezos stakeholders can propose and vote on
changes, ensuring a more decentralized and adapt-
able blockchain ecosystem.

• Proof-of-Stake (PoS) Consensus: Tezos utilizes
a proof-of-stake consensus mechanism, where
validators, known as "bakers", are chosen to cre-
ate new blocks and secure the network based on
their stake in the system. PoS consensus ensures
energy efficiency, as it does not require intensive
computational power like Proof-of-Work (PoW)
systems, and encourages stakeholder participation
and security.

- Delegated Proof of Stake (DPoS): Within
the Tezos ecosystem, stakeholders possess the
capability to delegate their validation rights to
other participants without relinquishing owner-
ship. This sophisticated system fosters a more
democratic and decentralized approach to the
mining process.
- Liquid Proof-of-Stake (LPoS): Representing
an advancement beyond DPoS, the LPoS mecha-
nism in Tezos empowers token holders to engage
in the consensus process as either delegators or
validators, thereby contributing to the heightened
security of the network.

• Formal Verification: Tezos incorporates formal
verification, a technique used to mathematically
verify the correctness of smart contracts and pro-
tocol specifications. By employing formal meth-
ods, Tezos aims to enhance security, prevent bugs,
and ensure the integrity of the platform, making it
more robust and trustworthy.

• On-Chain Governance: Tezos features on-chain
governance, enabling stakeholders to actively par-
ticipate in the decision-making process regarding
protocol upgrades, parameter adjustments, and
the allocation of resources. This inclusive gov-
ernance model promotes decentralization, fosters
community engagement, and avoids the need for
contentious hard forks.

• Smart Contract Platform: Tezos serves as a
platform for developing and executing smart con-
tracts. It supports multiple programming lan-
guages, including Michelson, a Domain-Specific
Language (DSL) specifically designed for formal
verification of smart contracts. This flexibility and
security-oriented approach make Tezos an attrac-
tive choice for building Decentralized Applica-
tions (DApps) and deploying complex smart con-
tracts.

• Scalability and Performance: Tezos aims to ad-
dress scalability challenges through its design and
governance model. By allowing stakeholders to
propose and vote on protocol upgrades, Tezos
can potentially implement scaling solutions to im-
prove network performance and throughput, en-
suring the blockchain can handle a growing num-
ber of transactions.

• Interoperability: Tezos is designed to be inter-
operable, allowing it to interact and exchange in-
formation with other blockchain networks and de-
centralized systems. This interoperability enables
seamless integration with external protocols, fa-
cilitating cross-chain interactions and fostering a
broader blockchain ecosystem.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

542



These characteristics and advantages of the Tezos
blockchain make it an innovative and promising plat-
form for decentralized applications, governance, and
secure smart contract execution. Its self-amendment
capability, proof-of-stake consensus, formal verifica-
tion, on-chain governance, and focus on scalability
contribute to its potential as a robust and adaptable
blockchain infrastructure (Olivieri et al., 2023).

2.2 Software Testing

Software testing forms a vital aspect of the software
development lifecycle, guaranteeing the quality, reli-
ability, and functionality of software systems. It en-
tails a methodical examination, evaluation, and val-
idation of diverse components and functionalities to
detect defects, errors, and vulnerabilities. The fun-
damental objective of software testing is to identify
potential issues and discrepancies at an early stage
of development, enabling developers to rectify them
before releasing the software to end-users (Koskinen,
2023).

The necessity for software testing arises due to the
inherent complexity of software systems, which en-
compass interdependent modules, sophisticated algo-
rithms, and intricate user interactions. As software
applications gain increasing significance in critical
domains like finance, healthcare, and transportation,
the importance of rigorous testing practices becomes
ever more apparent. A solitary software failure or de-
fect can result in severe consequences, including fi-
nancial losses, compromised data security, and even
endangering human lives (Sugianti et al., 2023).

Software testing includes a broad spectrum of ac-
tivities, including test planning, test design, test ex-
ecution, defect tracking, and test result analysis. It
employs diverse techniques such as black-box testing,
white-box testing, and gray-box testing to evaluate the
software’s functionality, performance, usability, and
security. Additionally, various types of testing, such
as unit testing, integration testing, system testing, and
acceptance testing, are performed at different stages
of the software development process (Zheng, 2023).

The evolution of software testing has been pro-
pelled by advancements in testing methodologies,
tools, and automation frameworks. Testers employ
both manual and automated testing approaches to
ensure comprehensive coverage and maximize effi-
ciency. Furthermore, agile development methodolo-
gies and DevOps practices have revolutionized the
testing landscape, emphasizing continuous integra-
tion and continuous testing to support frequent soft-
ware releases and updates (Sugianti et al., 2023).

2.3 Software Testing of Tezos
Blockchain-Oriented Applications

Software testing of Tezos blockchain-oriented appli-
cations in particular ensures the integrity, security,
and reliability of these specialized software systems.
Considering the characteristics of Tezos blockchain
technology, testing methodologies must be proposed
to address the specific challenges and requirements
existing in these applications.

One of the primary objectives of software testing
in the context of Tezos blockchain is the validation
of smart contracts. Smart contracts are self-executing
agreements embedded within the blockchain, and
thorough testing is essential to identify vulnerabili-
ties, logic flaws, and potential security risks. Test sce-
narios must be designed to cover a wide range of con-
tract conditions, including edge cases, to ensure their
accurate and secure execution.

Additionally, testing the consensus mechanisms
of a blockchain is critical. Consensus algorithms,
such as Proof of Work (PoW) or Proof of Stake (PoS),
ensure the agreement and validation of transactions
across the network. Testing these mechanisms in-
volves simulating various network conditions, evalu-
ating their performance, and assessing their resilience
against potential attacks or failures.

Besides, integration testing is another crucial
aspect of Tezos blockchain software testing. As
blockchain systems typically interact with exter-
nal systems, such as wallets, exchanges, or other
blockchain networks, it is essential to verify the seam-
less integration and interoperability of these compo-
nents. Integration tests validate the proper flow of
data, the accurate processing of transactions, and the
adherence to established standards and protocols.

In addition, security testing is of utmost impor-
tance in Tezos blockchain-oriented applications. This
involves conducting vulnerability assessments, pene-
tration testing, and code reviews to identify potential
security loopholes or weaknesses in the blockchain
network and associated applications. Thorough se-
curity testing helps mitigate the risk of malicious at-
tacks, unauthorized access and data breaches.

Furthermore, performance testing is also signifi-
cant in the context of Tezos blockchain applications.
The ability of the blockchain network to handle a
high volume of transactions, scalability, and respon-
siveness is essential to ensure its practical usabil-
ity. Performance tests simulate real-world conditions
and stress the system to evaluate its response time,
throughput, and overall performance under varying
loads.

To sum up, software testing of Tezos blockchain-

Automated Testing of Tezos Blockchain-Oriented Software

543



oriented applications involves specialized approaches
made to the unique characteristics of blockchain tech-
nology. The focus includes validating smart contracts,
testing consensus mechanisms, conducting integra-
tion and security testing, besides evaluating perfor-
mance aspects. By ensuring the reliability and ro-
bustness of Tezos blockchain systems through com-
prehensive testing, organizations can build trust and
confidence among users and stakeholders.

3 RELATED WORKS

In this section, an exhaustive analysis delves into var-
ious methodologies applied to test blockchain-based
applications, with a specific emphasis on those rooted
in Tezos technology.

In their research, (Rahouti et al., 2023) present
a blockchain-centric strategy for visual navigation,
meticulously crafted for a heterogeneous team of
robots navigating an extensive visual domain. Note-
worthy is its elimination of the dependence on map
data structures, catering to robotic platforms with lim-
ited computing resources. The approach leverages
real-time visual information, fostering resilient path
selection and adaptive navigation. Additionally, a
streamlined Proof-of-Work (PoW) mechanism is in-
troduced to enhance consensus within the untrusted
visual network.

Expanding on this, (Arts et al., 2023) articu-
late the use of Property Based Testing (PBT) tech-
niques to automate testing of fundamental compo-
nents of the Aeternity blockchain, ensuring its robust-
ness and high-quality performance. PBT, though po-
tent, poses challenges in the intricate task of testing
blockchains. The Aeternity property-based testing
model aligns with the blockchain structure, system-
atically separating diverse functionalities into distinct
model sections, enhancing clarity, and reducing boil-
erplate test code. The focus revolves around identify-
ing valid blockchain transactions, with meticulous in-
strumentation enabling a comprehensive observation
of feature combinations and their frequencies during
tests. This documentation offers insights applicable
not only to Aeternity but also to the testing of other
blockchains and complex feature-based systems.

Moving forward, (Nishida et al., 2022) delin-
eate the Helmholtz type-based static verification tool
for Michelson, a statically typed stack-based lan-
guage for Tezos smart contracts. Built on an ex-
tended Michelson type system enriched with refine-
ment types, Helmholtz stands as a robust tool for
verification. It scrutinizes a Michelson program’s
type adherence to a user-defined specification, of-

floading verification conditions to the SMT Z3 solver.
Helmholtz’s refinement types cover the foundational
Mini-Michelson calculus, incorporating complex fea-
tures like compound data types and higher-order func-
tions. Its efficacy is demonstrated through successful
verification of diverse Michelson programs.

Transitioning to broader perspectives, (Do et al.,
2022) advocate for a sharding-based blockchain as a
strategic solution to enhance blockchain effectiveness
within large-scale networks. The proposal involves
partitioning the network into distinct shards, enabling
parallel transaction processing and reducing the quo-
rum size for quicker consensus. Addressing unifor-
mity challenges in existing sharding-based networks,
the authors propose a system with heterogeneous con-
sensus algorithms, showcasing substantial improve-
ments in experimental results.

Furthermore, (Milo et al., 2022) contribute three
insightful case studies, examining vulnerabilities
within smart contracts, including the Dexter1 token
swap, iToken, and Brave’s BAT token ICO. Demon-
strating the potential efficacy of property-based test-
ing, they utilize ConCert, an executable model for
smart contracts. This amalgamation of formal verifi-
cation and property-based testing proves compelling
for fortifying smart contract security and reliability.

In the domain of Internet of Drones (IoD), (Al-
samhi et al., 2022) introduce a blockchain-based ap-
proach to manage multi-drone collaboration, address-
ing challenges of energy efficiency and information
security. Blockchain serves as a communication
tool, enhancing consensus acquisition in swarm op-
erations, ultimately improving security, energy ef-
ficiency, and connectivity in multi-drone collabora-
tions. This strategic integration aims to advance sta-
bility and feasibility in real-world challenges within
the smart world.

To sum up, the studied approaches for testing
Tezos blockchain-based applications bring notable
advantages. Tezos, with its unique features and
architecture, provides a robust foundation for the
development and testing of decentralized applica-
tions. The use of a formal verification mechanism
in Tezos, which includes a self-amending blockchain
and Michelson as its smart contract language, en-
hances the reliability and security of applications.
The ability to employ property-based testing tech-
niques ensures a thorough evaluation of the core com-
ponents, contributing to the overall software quality
of the Tezos blockchain.

Our proposed solution for automated testing of
smart contracts under the Tezos blockchain permits
to narrow the divide between intricate blockchain de-
velopment and non-technical stakeholders engaged in

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

544



the smart contract ecosystem. It provides an intuitive
platform designed for the testing and analysis of smart
contracts, catering specifically to individuals lacking
an extensive grasp of blockchain technology or pro-
gramming.

4 DESCRIPTION OF OUR
TESTING SOLUTION

The fundamental aim of our solution is to eluci-
date the intricacies of the testing procedures asso-
ciated with Tezos smart contracts, rendering them
accessible, comprehensible, and actionable for non-
developers, including project managers, security au-
ditors, and business stakeholders. Notably, our pro-
posed tool, ST2A, streamlines the testing process
through automation, enhancing efficiency and the
user experience.

4.1 Used Technologies

Our solution seamlessly integrates various technolo-
gies to achieve its goal:

• Electron: At the forefront is Electron, a frame-
work for creating native applications with web
technologies like JavaScript, HTML and CSS.
Electron is employed to build the desktop applica-
tion interface, providing a modern and accessible
user experience.

• SmartPy CLI: SmartPy CLI is utilized for exe-
cuting the tests of the smart contracts. It serves
as the bridge between the smart contract code and
the application, enabling the execution of tests and
generation of results in a standardized format.

• Python: Python scripts form the backbone of the
application’s logic. They are used for process-
ing and analyzing the test results generated by the
SmartPy CLI. Python’s versatility and ease of use
make it ideal for handling complex data process-
ing while maintaining code readability and sim-
plicity.

4.2 General Architecture of Our
Proposed Solution

The application architecture is designed to be intuitive
and efficient, consisting of the following components
(see Figure 1):

• User Interface (UI): Developed using Electron,
the UI provides a clean and straightforward layout
where users can load smart contract files (written

in SmartPy) and define expected test outcomes.
The interface is designed to be intuitive, requiring
minimal technical knowledge.

• Test Execution and Result Processing: Upon
user input, the application utilizes SmartPy CLI to
execute the smart contracts’ tests. The results are
then processed by custom Python scripts, which
extract and analyze the data, transforming it into
a more digestible format.

• Result Comparison and Analysis: Another set
of Python scripts compares the extracted test re-
sults with user-provided expected outcomes. This
comparison is crucial for verifying the smart con-
tract’s functionality against predefined expecta-
tions

• Graphical Report Generation: Finally, the ap-
plication generates a comprehensive report in a
PDF format. This report includes detailed anal-
yses, such as success and failure rates and com-
parative evaluations, presented through easy-to-
understand graphs and charts. This step is crucial
for non-technical users, as it translates complex
test results into visually understandable informa-
tion.

In summary, the application stands out by provid-
ing a streamlined, non-technical interface to the pow-
erful testing capabilities of SmartPy, thereby opening
up the world of blockchain and smart contract test-
ing to a broader audience. Its architecture smartly in-
tegrates various technologies to ensure that the com-
plexities of smart contract testing are abstracted away,
leaving users with clear insights and actionable infor-
mation.

5 TESTING OF "TicTacToe"
TEZOS SMART CONTRACT

In this in-depth section, we delve into the testing pro-
cess of the "TicTacToe" Tezos smart contract using
our proposed tool, highlighting its ability to facilitate
error detection and correction, particularly for non-
technical testers.

5.1 Test Setup

• Smart Contract Tested: "TicTacToe", a classic
game implementing various interactions.

• Tests Conducted: Several game moves, includ-
ing forbidden moves and victory validations.

• Oracle (Expected Values): A JSON file contain-
ing the expected results for each game action.

Automated Testing of Tezos Blockchain-Oriented Software

545



Figure 1: General Architecture of our Solution.

5.2 Execution and Extraction of Results

• Using SmartPy CLI: Executing the contract gen-
erates detailed logs.

• Result Extraction: The script extract_a_json.py
processes the logs to extract key results, saved in
extract.json.

5.3 Comparison of Results and Report
Generation

• Comparison: Matching the results with ex-
pected values using compare_results.py, creating
results_comparison.json.

• PDF Report: analyse_tests.py produces a de-
tailed PDF report, illustrated with explanatory
graphs.

5.4 Analysis of Results

• Generated Graphs:
- Success/Failure Bar Chart: Visually presents
successful and failed operations (see Figure 2).
- Circular Chart: Distribution of successful and
failed tests (see Figure 3).

• Key Observations:
- Error Detection: The analysis revealed a diver-
gence in the play_9 test. The expected value in-
dicated that the second player’s move should have

been blocked (as the first player had already won),
but the obtained value showed the move was ex-
ecuted. This finding is crucial as it suggests the
code might be improved to include conditions that
prevent such moves once the game is concluded.

Following this observation, the tester can recom-
mend the developer to revise the game functions to
better handle end-of-game logic.

5.5 Benefits for Testers

Our solution easily identified an inconsistency in the
smart contract’s behavior, which might have been
challenging to detect without the graphs and detailed
report. Thus, the tool proves extremely useful, of-
fering a user-friendly platform for complex analysis,
making smart contract testing accessible even to non-
technical users.

In conclusion, this test example with "TicTacToe"
demonstrates the efficiency and added value of our ap-
plication in the Tezos smart contract testing process.
It not only simplifies the testing procedure but also
offers helpful details for the ongoing improvement of
smart contracts.

5.6 Improvement Lifecycle of a Tezos
Smart Contract

This section demonstrates how our application facil-
itates an iterative testing and improvement cycle for

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

546



Figure 2: Success/Failure Bar Chart.

Figure 3: Success/Failure Circular Chart.

Tezos smart contracts, using the "TicTacToe" smart
contract example, particularly focusing on the play_9
test case.

5.6.1 Error Identification

• In the initial testing cycle, the application revealed
a discrepancy in the play_9 test.

• Identified issue: After the first player won, the
second player’s move should have been disal-
lowed, yet it was executed.

5.6.2 Referral Back to Development

• Following this discovery, the tester recommends
revising the code to properly handle the game’s
conclusion. The developer then amends the smart
contract to address the identified error.

5.6.3 New Testing Cycle

• With the corrections made, the "TicTacToe" smart
contract undergoes another round of testing. The
objective is to ascertain whether the modification
has effectively resolved the issue.

5.6.4 Post-Correction Results

• The tests are rerun using the modified version of
the smart contract. The application again con-
ducts the extraction, comparison, and report gen-
eration.

5.6.5 Analysis of Revised Results

• Test results now show a significant improvement.
Particularly, the play_9 test now displays the ex-
pected behavior, validating the developer’s cor-
rection.

5.6.6 100

• A circular graph generated by the application now
shows a 100% success rate (see Figure 4).

• This result not only indicates the effective resolu-
tion of the issue but also our approach capability
in facilitating the iterative testing process.

6 CONCLUSION & FUTURE
WORKS

In this paper, we propose our ST2A solution, based
on best practices and experience in applying novel

Automated Testing of Tezos Blockchain-Oriented Software

547



Figure 4: Success/Failure Circular Chart.

approaches, as a testing mechanism for secure Tezos
smart contracts. It significantly enhances the testing
process for smart contracts on the Tezos blockchain
and thus can be applied to large-scale industrial
projects in the context of such software architectures.

Our application automates various steps of the
Tezos smart contract testing process, significantly re-
ducing the time and effort required by testers. This
automation is particularly beneficial for repetitive or
complex testing scenarios. In addition, the ability to
generate detailed and graphical test reports is a no-
table feature of our application. This approach makes
test results more accessible and easier to interpret,
especially for testers who may not have a technical
background in blockchain technology. Moreover, by
making smart contract testing more approachable for
non-technical users, our application extends the ca-
pability to test and validate smart contracts on the
Tezos blockchain to a wider audience and thus leads
to more secure, robust, and reliable smart contract de-
ployments.

The potential impact of our application on the
smart contract testing process is substantial. As a soft-
ware security verification and validation approach,
it serves as a bridge between blockchain developers
and less technical stakeholders, ensuring better under-
standing and more thorough validation of smart con-
tracts.

As future works, we aim to automate expected or-
acle values using Artificial Intelligence and Machine
Learning, by developing a system that can automat-
ically generate expected values based on smart con-
tract analysis. This feature could significantly reduce
test preparation time and increase efficiency. Also, to
overcome the local environment dependency limita-
tion, integrating the application with cloud platforms
could offer greater flexibility and accessibility. Be-
sides, it would be interesting to expand the applica-
tion’s reach by adding support for multiple program-

ming languages used in smart contract development,
not just limited to SmartPy.

REFERENCES

(2023). Tezos blockchain. https://tezos.com/.
Alsamhi, S. H., Shvetsov, A. V., Shvetsova, S. V., Haw-

bani, A., Guizani, M., Alhartomi, M. A., and Ma, O.
(2022). Blockchain-empowered security and energy
efficiency of drone swarm consensus for environment
exploration. IEEE Transactions on Green Communi-
cations and Networking, 7(1):328–338.

Arts, T., Svensson, H., Benac Earle, C., and Fredlund, L.-
Å. (2023). Testing feature-rich blockchains. Software:
Practice and Experience, 53(5):1144–1173.

Do, Q. H., Souihi, S., Van Van, T., Tran, H. A., and Mhad-
hbi, S. (2022). How tezos blockchain can meet iot?
In GLOBECOM 2022-2022 IEEE Global Communi-
cations Conference, pages 2903–2908. IEEE.

Feng, R. (2023). Decentralized Insurance: Technical Foun-
dation of Business Models. Springer Nature.

Gupta, V., Gupta, C., and Pereira, L. (2023). Policies for
blockchain adoption in education. In Elgar Encyclo-
pedia of Services. Edward Elgar Publishing Limited.

Koskinen, J. (2023). Cloud security architecture.
Milo, M., Nielsen, E. H., Annenkov, D., and Spitters, B.

(2022). Finding smart contract vulnerabilities with
concert’s property-based testing framework. arXiv
preprint arXiv:2208.00758.

Nishida, Y., Saito, H., Chen, R., Kawata, A., Furuse, J.,
Suenaga, K., and Igarashi, A. (2022). Helmholtz: A
verifier for tezos smart contracts based on refinement
types. New Generation Computing, 40(2):507–540.

Olivieri, L., Jensen, T., Negrini, L., and Spoto, F. (2023).
Michelsonlisa: A static analyzer for tezos. In 2023
IEEE International Conference on Pervasive Comput-
ing and Communications Workshops and other Af-
filiated Events (PerCom Workshops), pages 80–85.
IEEE.

Rahouti, M., Lyons, D., Jagatheesaperumal, S. K., and
Xiong, K. (2023). A decentralized cooperative nav-
igation approach for visual homing networks. arXiv
preprint arXiv:2310.00906.

Sugianti, Y., Farida, E., and Athia, I. (2023). Pengaruh kom-
pensasi, motivasi dan komitmen organisasi terhadap
kinerja karyawan pada pt nuroho software consulting
surabaya. E-JRM: Elektronik Jurnal Riset Manaje-
men, 12(02).

Zheng, Q. (2023). Low-cost reality capture system for high-
fidelity unreal engine-based robot simulator, final year
project (FYP), Nanyang Technological University,
Singapore.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

548


