
Detecting Duplicate Effort in GitHub Contributions

James Galbraith and Des Greer a

School of Electronics, Electrical Enginee University Belfast, Belfast, BT71NN, U.K.
{jgalbraith13, des.greer}@qub.ac.uk

Keywords: GitHub, Duplicate Detection, Issues, Pull Requests.

Abstract: The pull-based development model allows collaborators to develop and propose changes to a codebase. How-
ever, pull requests can often offer duplicate functionality and therefore duplicate effort. Users can also request
changes via issues, the text of which could provide clues, useful in determining duplicate pull requests. This re-
search investigates combining pull requests with issues with a view to better detecting duplicate pull requests.
The paper reviews existing related work and then extends this by investigating the use of natural language
processing (NLP) on combined issues and pull requests in order to detect duplicates. Using data taken from
15 popular GitHub repositories, an NLP model was trained to predict duplicates by comparing the title and
description of issues and pull requests. An evaluation of this model shows that duplicates can be detected with
an accuracy of 93.9% and recall rate of 90.5%, while an exploratory study shows that the volume of duplicates
detected can be increased dramatically by combining issues and pull requests into a single dataset. These
results show a significant improvement on previous studies and demonstrate the value in detecting duplicates
from issues and pull requests combined.

1 INTRODUCTION

The introduction of the pull-based development
model (Gousios et al., 2014; Gousios and Zaid-
man, 2014) in GitHub has facilitated the develop-
ment of open-source projects through the contribu-
tions of community developers (Jiang et al., 2017) and
has fundamentally changed the way in which projects
evolve. The open-source model allows anyone to
copy and redistribute the software solution, while the
pull-based development model allows anyone to con-
tribute changes to a project. The community develop-
ers who provide these changes need not have any par-
ticular relationship to, or experience with, the project
in question. These developers contribute to projects
for a number of reasons (Jiang et al., 2017; McClean
et al., 2021). When someone would like to contribute
a new feature or bug fix to a project, they do so by
forking the project and making the changes locally.
These changes are then submitted in the form of a pull
request to be reviewed and merged. This process of
review is carried out by a core team of reviewers who
decide to accept or reject the changes. Each pull re-
quest comes with a title and description detailing what
the code submitted in the pull request aims to achieve.

Users of an open-source project can also report

a https://orcid.org/0000-0001-6367-9274

bugs and contribute ideas and suggestions by raising
an issue. Issues, like pull requests, contain a title
and description detailing the bug or feature in ques-
tion, but issues do not provide any solution in terms
of code. One way of thinking about this is that is-
sues may be raised by users of a project to detail bugs
that they have found, or new features that they would
like to see, and who do not have the technical capa-
bility, or will, to carry out such work themselves. Pull
requests, by contrast, may provide the solution to an
issue, but they may also provide a solution to a bug
or a feature request that has not already been raised as
an issue. Simply, pull requests contain code changes,
and issues do not.

Issues are used in open-source software hosting
platforms to track bug reports, and propose new fea-
tures. They also provide a medium through which
users and maintainers of a product can communicate,
provide feedback, and track the progress of work. Pull
requests, by contrast, are used to manage the merging
of new code into a codebase. Pull requests display the
differences between the source code and the new code
being proposed, and they allow reviewers to provide
feedback on code changes.

As the number of users using an open-source
project increases, so, too, the volume of issues and
pull requests being submitted often increase. One

520
Galbraith, J. and Greer, D.
Detecting Duplicate Effort in GitHub Contributions.
DOI: 10.5220/0013289000003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 520-529
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

study from 2016 (Gousios et al., 2016) found that
135,000 repositories hosted in GitHub collectively
received more than 600,000 pull requests in a single
month. Many GitHub repositories can have thousands
of open issues and pull requests at any one time. At
the time of writing, Flutter has more than 12,000
open issues1, while Tensorflow has almost 2,000
open issues2. This makes it extremely difficult for
users, contributors, and reviewers of a project to keep
track of all of the changes that are being made to the
project. Thus, due to the open, distributed, and unco-
ordinated nature of pull-based development (Gousios
et al., 2016; Gousios et al., 2015) when used at
scale, a challenge presents itself where duplicate
work can be carried out in terms of development for
pull requests, reporting issues, and also in reviewers
reviewing submitted pull requests and issues. This
can drain reviewers’ resources. Since they have no
method of immediately identifying duplicate issues
and pull requests, these duplicates must undergo
the same review process as all other issues and pull
requests. Often, the review process will require some
back and forth communication between the reviewer
and the reporter to gather more information, so the
reviewer is not just wasting time through the code
review, but also through their interactions with the
reporter. Some work has been done previously on
creating a dataset of duplicate pull requests (Yu et al.,
2018) and some on automatically detecting duplicate
pull requests using machine learning (Li et al., 2017),
while Runeson et al. explored the possibility of auto-
matically detecting duplicate defect reports (Runeson
et al., 2007) from a database of defect reports used
by Sony Ericsson. These papers do not, however,
consider the possibility of collating pull requests and
issues into a single dataset. The machine learning
model created by Li et al. (Li et al., 2017) uses natural
language processing to calculate the textual similarity
between the title and description of pull requests in
order to find duplicates. Issues also contain a title
and description serving the same function as those
of pull requests, which leaves the question of why
these cannot be considered as a single entity when
training, implementing, and evaluating a machine
learning model. Thus, this paper will seek to answer
the following questions:
RQ1. What effect does combining pull requests and
issues have on the accuracy of a natural language
processing (NLP) model, used to predict duplicates,
when compared to pull requests only?
RQ2. When considering open and unresolved issues
and pull requests, can we find a greater volume of

1https://github.com/flutter/flutter/issues
2https://github.com/tensorflow/tensorflow/issues

duplicates than when considering pull requests only?

When considering these research questions, we will
adopt the following null hypotheses, respectively:
H01: & The accuracy of a given NLP model will
not increase when evaluated on the combined dataset
compared to pull requests only.
H02: & The volume of duplicates found when consid-
ering issues and pull requests combined will not be
significantly greater than when considering pull re-
quests only.

To test these hypotheses, we will adopt an ap-
proach similar to that of Li et al. (Li et al., 2017).
First, a console application will be developed to
gather a dataset of known duplicate issues and du-
plicate pull requests from a number of popular open-
source GitHub repositories, making use of GitHub’s
public API to do so. This application will use regular
expressions to search the comments of closed issues
and pull requests for strings identifying one issue or
pull request as a duplicate of another. This data will
then be used to train and evaluate a machine learning
model. The model will consider the title and descrip-
tion, and use natural language processing to calculate
the textual similarity between the items in our dataset,
and thus group these items where they are likely to be
duplicates of each other. This model will also then
be used to calculate the number of predicted dupli-
cates, from a snapshot of unresolved issues and pull
requests, relative to the size of the dataset.

This approach differs from that of Li et al. (Li
et al., 2017) in several ways. Our model will use a dif-
ferent regex pattern for finding comments identifying
duplicates, to allow for greater variety in the format of
such comments, following on from the findings from
Li et al. (Li et al., 2018). This program will also con-
sider a wider range of projects. However, critically we
will be combining pull requests and issues into a sin-
gle dataset when training our NLP model. Given the
nature of the data collected, it may be useful to ex-
plore the differences between pull requests only, and
then issues and pull requests combined, when detect-
ing duplicates in public projects and also in evaluat-
ing our machine learning model. We will also explore
the differences when the model is evaluated on each
project individually.

2 RELATED WORK

All the papers reviewed in the following section have
been taken from Google Scholar, IEEE Xplore, Sci-
ence Direct, Springer, and Scopus. The following
search strings composed of key words were used to

Detecting Duplicate Effort in GitHub Contributions

521

search these sites:
"GitHub" AND "Issues" AND ("Pull requests" OR
"Pull-requests")
"GitHub" AND ("Issues" OR "Pull requests" OR
"Pull-requests") AND "Duplicate"

This will exclude articles centred around other
source code hosting platforms. As an extension to
these search strings, articles that have not been peer
reviewed will be excluded, along with opinion pieces
and articles which have not been published in a known
and credible journal or conference paper. This will
provide a systematic approach to selecting papers for
review, and facilitate a study of the practices asso-
ciated with pull-based development and open-source
software firstly, followed by a review of the work car-
ried out thus far in finding and reducing duplicate con-
tributions.

2.1 Pull-Based Development

Through GitHub’s public REST API, given the name
and owner of a public repository, researchers can col-
lect vast amounts of data related to the issues, pull re-
quests, comments, contributors, and so on, connected
to said repository. This has, in part, enabled stud-
ies to be carried out on the processes and method-
ologies used to manage the continuous development
of software solutions, and how human resources, in
terms of contributors and integrators, can collabo-
rate to facilitate this development. An early study by
Kalliamvakou et al. (Kalliamvakou et al., 2014) in-
vestigating the perils of mining GitHub for data found
that almost 40% of all pull requests do not appear as
merged even though they have been. A more recent
study by Wessel et al. (Wessel et al., 2023) to investi-
gate the effects of GitHub Actions on the pull request
process found that the adoption of GitHub Actions
leads to more comments on accepted pull requests and
less comments in rejected pull requests. GitHub Ac-
tions is a continuous integration and continuous de-
livery platform that enables the automation of test-
ing and deployment workflows. From their sample
of 5,000 popular GitHub repositories, 1,489 of them
used GitHub Actions. These findings may pose the
possibility of a bias towards merged pull requests if
we analyse the comments on pull requests and issues.

2.2 Duplicate Contributions

Zhang et al. (Zhang et al., 2018) conducted a study
in 2018 on competing pull requests, wherein compet-
ing pull requests were defined as those that aimed to
"change the same piece of code" and were open for
overlapping periods of time. In 45 out of the 60 repos-

itories explored, over 31% of pull requests belonged
to competing pull requests. In 20 of the reposito-
ries, there were more than 100 groups of competing
pull requests, each of which were submitted by more
than five developers. However, it should be noted that
competing pull requests are not strictly the same as
duplicate pull requests, although in some cases com-
peting pull requests may also be duplicate pull re-
quests.

Much of the research conducted around duplicate
contributions concerns two or more pull requests that
are decided to add the same functionality, rather than
those which simply change the same articles of code.
This often manifests itself as pull requests which fix
the same bug, or add the same new piece of func-
tionality. A study by Li et al. (Li et al., 2020) found
that duplicate pull requests lead to the use of redun-
dant resources. Another study (Zhou et al., 2019)
found that as much as 51% of rejected pull requests
in some repositories were rejected due to redundant
development (i.e. they were duplicates of other pull
requests). Although the mean was only 3.4%, they
also found a high variance between the repositories
considered. This shows the potential value in explor-
ing our research questions on a project-to-project ba-
sis. Another study by Li et al. (Li et al., 2017) ex-
plored the possibility of using textual similarity be-
tween the titles and descriptions of pull requests to
detect duplicates. When this model was evaluated on
three GitHub projects, 55.3% - 71.0% of the dupli-
cates were found using a combination of title simi-
larity and description similarity. This evaluation has
only used data from three repositories however, which
does not allow for the potential discrepancies between
repositories in terms of reporting bugs, feature re-
quests, etc. Many open source projects provide con-
tribution guidelines (Li et al., 2022), while GitHub
also provides guidelines for contributions. Therefore,
the results of this study (Li et al., 2017) cannot ac-
count for these differences. Wang et al. proposed an
approach (Wang et al., 2019) in which they used nine
features of pull requests to train a machine learning
model to detect duplicates. Their model was trained
on data from 12 GitHub repositories and evaluated
on data from 14 different GitHub repositories and
demonstrated a recall rate of 88.7%.

A study (Yu et al., 2018) by Yu et al. has suggested
a method for collecting a dataset of duplicates con-
sisting of automatic identification followed by man-
ual verification. A program will use regex patterns to
search the comments for links between pull requests
and extract the links to said pull requests. Each pair of
pull requests were then manually verified to remove
possible false positives. This paper provides a good

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

522

starting point for collecting a dataset of duplicates;
however, this manual verification step would appear
to be superfluous. The article does not detail the num-
ber of false positives found, but given the contents
of the data collected, combined with GitHub’s tem-
plate for reporting such data3, the prediction is that
the probability of false positives being detected is sig-
nificantly small, provided that the program works as
expected. As shown, the comments left by contribu-
tors follow particular patterns depending on the rela-
tionship they are trying to convey (Li et al., 2018), and
hence manual verification becomes redundant. This
extracted dataset is publicly available and contains
duplicate pull requests from 26 popular open-source
projects in GitHub.

2.3 Combining Issues and Pull Requests

Again, studies (Yu et al., 2018; Li et al., 2017; Zhang
et al., 2018; Li et al., 2020) only consider pull requests
that may be duplicates of other pull requests. They
do not consider the impact of combining datasets of
issues and pull requests, when performing empirical
studies and evaluating their models. Some work has
been done on matching pull requests to commits, but
there are no studies exploring the automatic detection
of duplicate issues, or the potential value in detecting
duplicates from a combined dataset of issues and pull
requests.

When pull requests are submitted to GitHub, they
are sometimes submitted as a solution to an already
existing issue. In this scenario, the pull request will
contain an explicit link to the issue that it is resolving.
In the event where two users identify the same bug
in a software product, one user raises it as an issue,
while the other user forks the project and submits a
pull request resolving the bug unaware that an issue
has been raised concerning the same bug, then there
will be no link between the issue and pull request.
By predicting duplicates from a combined dataset of
issues and pull requests, the program will be able to
identify pull requests and issues which deal with the
same bug but are not known to do so. This can be
used to prevent duplicate pull requests.

These ideas are predicated on the assumption that
the title and description of issues serve the same pur-
pose as the title and description of pull requests. This
seems like a reasonable assumption to make, and one
which we will seek to verify in our empirical study, as
part of RQ2. However, one potential problem might
be how the level of detail presented differs between

3https://docs.github.com/en/issues/
tracking-your-work-with-issues/
marking-issues-or-pull-requests-as-a-duplicate

issues and pull requests. Any user who submits a
pull request must have some level of technical ability
along with some understanding of the codebase since
they are making changes to the code. A user who
submits an issue, though, need not necessarily have
any level of technical ability or understanding. They
only really need to be able to explain the bug they
have found with a system, possibly along with steps
to recreate the bug, or the feature which they would
like added. This poses the possibility that pull re-
quests may contain much more technical jargon, com-
pared to issues which may use simpler language to
provide a higher-level overview. If this is the case,
where the descriptions of pull requests provide much
lower-level detail compared to issues, then this could
reduce the effectiveness of any natural language pro-
cessing model when comparing the text between pull
requests and issues, and would advance the case for
null hypothesis H01.

3 DATA COLLECTION

3.1 Projects Studied

15 open-source projects, hosted in GitHub, have been
selected to be studied, and from which we will gather
our data. The projects selected are: angular, angu-
lar.js, ansible, bootstrap, elasticsearch, electron, flut-
ter, freeCodeCamp, kubernetes, node, opencv, rails,
react, rust, and tensorflow. These projects have been
selected partly by design. As a starting point, projects
with less than 5000 closed issues or less than 5000
closed pull requests were not considered. This was
to ensure that there was sufficient data available, and
to maximise the probability of finding duplicate is-
sues and pull requests. Following this, projects with
less than 1000 contributors were also not considered.
Working off the assumption that a large number of
issues and pull requests, coupled with a large num-
ber of contributors, makes it difficult for users to keep
track of what work has been completed and hence in-
creasing the likelihood that duplicate efforts will be
submitted, the minimum contributor limit was hence
added. Projects where the spoken language was any
other than English were also not considered. Some ef-
fort was made to ensure that a range of programming
languages were represented in the projects selected to
remove the possibility that our machine learning algo-
rithm would place either too much or too little value
on language-specific keywords. To this end, 12 pro-
gramming languages have been represented in the 15
open-source projects chosen, as shown in Table 1.

Some of the projects selected therefore have been

Detecting Duplicate Effort in GitHub Contributions

523

Table 1: Project Characteristics.

Project Pulls? Issues? Language
Angular y y TS
Angular.js y n JS
Ansible y y Python
Bootstrap y y JS, CSS
Elasticsearch y y Java
Electron y y JS, Python,

C++, C
Flutter y y Dart, C, C++
FreeCodeCamp y y TS, React
Kubernetes y y Go
Node y y JS, Python,

C++, C
OpenCV y y Java, Python,

C++
Rails y y Ruby, JS
React y y JS
Rust y y Rust
TensorFlow y y Python, C++

taken from the research previously carried out on this
subject (Yu et al., 2018; Li et al., 2017). Beyond
that, the other projects were selected at random from
a list of the top 100 starred open-source projects in
GitHub4, provided they met the criteria in the preced-
ing paragraph. A breakdown of the numbers of is-
sues, pull requests, and contributors from the projects
selected can be seen in Table 2. Note that while some
effort was expended to try to maximise the numbers of
duplicates found in the selected projects, the data col-
lection method was designed to ensure no false pos-
itives were identified, and thus could not guarantee
that duplicates would be found in all of the projects.
Thus in the case of Angular.js no issues were found.

Table 2: Issue and PR Statistics from studied projects.

Statistic Mean Median Min Max
Open Issues 2571 1391 271 12165
Closed Issues 27156 21894 7901 79838
Open PRs 336 214 61 820
Closed PRs 36083 32138 7926 77660
Contributors 2889 1907 1249 5540

3.2 Method

In GitHub, there is no mechanism to check for dupli-
cate pieces of work. There is no mechanism, exter-
nal to an issue/pull request, by which duplicates can
be marked. Duplicates must be marked by leaving a
comment on the issue or pull request in question not-

4https://github.com/EvanLi/Github-Ranking/blob/
master/Top100/Top-100-stars.md

ing the issue or pull request which it is a duplicate
of, and guidelines have been provided for this5. To
find duplicates in the projects chosen, we will there-
fore need to dig through the comments for each issue
and pull request and check if the format of the com-
ment matches the format expected for marking a du-
plicate. GitHub has made available a public REST
API which can be used to retrieve data from GitHub
projects (Kalliamvakou et al., 2016; Mombach and
Valente, 2018). Simply by knowing the name and
owner of a repository, we can work through a series of
layers to retrieve all its issues and pull requests, and
subsequently retrieve all comments for each issue/pull
request. When an issue or pull request is marked as a
duplicate, it will also be closed, and so we will only
be looking at closed issues and pull requests when
searching for duplicates.

Since there is no requirement to follow the guide-
lines on marking duplicates, variations arise in the
format of the comments to identify duplicates (Li
et al., 2017; Gousios and Zaidman, 2014). As
shown in previous research, duplicates are sometimes
marked by leaving a comment of the format "Dupli-
cate of #11111". In this context, the number is a
unique identifier which can be used to identify the is-
sue or pull request in question. On GitHub’s website,
this number also contains a hyperlink to said issue or
pull request. When this data is retrieved through the
REST API the number is lost, and only the hyper-
link remains (on the latest version of the API). There-
fore, we need not check for comments of the format
"Duplicate of #11111" as has been done previously.
GitHub limits the number of requests which can be
made to its REST API by a single user within a spec-
ified period of time. As a result of this, we were
only able to make 5000 requests to the API in each
hour (one hour after the first request is made, the limit
would be reset). Given that some of the projects to
be studied have many tens of thousands of closed is-
sues and pull requests, it would be impossible to re-
trieve and process all issues and pull requests for each
project in a reasonable time frame. Therefore only the
5000 most recently closed issues and 5000 most re-
cently closed pull requests were considered for each
project.

To collect the data needed, a console application
was created and hard-coded with the name and owner
of the projects selected for study. When the issues and
pull requests were retrieved for each project, and the
comments for each issue/pull request were retrieved,
regex was used to search the comments for messages

5https://docs.github.com/en/issues/
tracking-your-work-with-issues/
marking-issues-or-pull-requests-as-a-duplicate

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

524

which match one of the patterns known to be used to
mark duplicates. As per previous research (Yu et al.,
2018; Li et al., 2017; Li et al., 2018), comments can
take several forms including "duplicate of...", "closed
by...", and "addressed in...". Taking this into con-
sideration, the following regex pattern has been con-
structed to find such strings in pieces of text:

(dup|addressed|close|duplicate|duplicated|closed)
(w+)?(by|of|in) (http)

A separate regex pattern, following the same for-
mat, was then used to extract the URLs of the du-
plicates from the text. From each URL, the GitHub
API was used once again to retrieve the full details
of the item, and thus, a pair of duplicates had been
identified. In the event where an issue or pull re-
quest is a duplicate of multiple other issues/pull re-
quests, the second regex pattern can allow for this
to extract multiple URLs, provided the URLs are
separated by commas. From a string such as "Du-
plicate of https://github.com/..., https://github.com/...,
https://github.com/...", each of the URLs would be ex-
tracted and processed and hence a tuple of duplicates
would be recorded. When the console application had
run its course and all processing was complete, the re-
sultant data was stored in a database.

To answer the research questions, a natural lan-
guage processing model must be trained such that
given two pieces of text, it will predict them to be
either duplicates or non-duplicates. To train such a
model, we would need data containing sets of both
duplicates and non-duplicates, but the data gathered
to this point consisted only of sets of duplicates. To
gather sets of non-duplicates, the existing sets of du-
plicates were simply shuffled to generate sets of non-
duplicates. Since there was a possibility, as allowed
for by our console application, that sets of duplicates
containing more than two items were collected, some
effort was required to ensure that the non-duplicates
were truly non-duplicate, and not simply an inversion
of an existing set of duplicates. The result of all of this
was a dataset containing 393 sets of duplicate issues,
312 sets of non-duplicate issues, 510 sets of duplicate
pull requests, and 509 sets of non-duplicate pull re-
quests. To ensure a more even balance in the datasets,
some pull requests were also taken from the dataset
produced by Yu et al. (Yu et al., 2018). These figures
are not intended to be reflective of the proportion of
duplicates which exist in the projects, either identified
(closed) or unidentified (open and unresolved).

4 EXPERIMENTS

In considering the research questions previously laid
out, we might summarise them to ask, is it possible
to predict duplicates from a combined dataset of pull
requests and issues, and if so, is there any value in
it. RQ1 is concerned only with the dataset collected,
used as a source of truth, from which we might train
and evaluate a machine learning model. RQ2, by con-
trast, concerns itself with how this machine learning
model might be deployed and used to explore the ex-
tent to which duplicates exist in open-source GitHub
projects, and how it’s deployment might be used to
identify these automatically.

4.1 Setup

Once sufficient data had been collected, a natural lan-
guage processing model would be trained to identify
duplicates from two pieces of text. To do this, the
NLP model would convert each piece of text to a se-
quence of vectors, so that the two sequences could be
compared. Following on from previous research (Ma
et al., 2019; Muennighoff et al., 2022; Devlin et al.,
2018), it was decided that a MiniLM (Wang et al.,
2020; Reimers and Gurevych, 2019) based model
should be used. A pre-trained model would be se-
lected, and fine-tuned using our own data. The Mas-
sive Text Embedding Benchmark (MTEB) leader-
board (Muennighoff et al., 2022) was, in part, used
to find a suitable model. Many of the models listed in
this leaderboard however would only accept text in-
put up to a few hundred tokens (equivalent to a few
hundred words), which would be a problem since the
title and descriptions of some of the issues and pull re-
quests in our dataset contained (an estimated) tens of
thousands of tokens. Some of the models are able to
handle larger pieces of text, however this often came
at the cost of unreasonably large and complicated
models, which required substantially more comput-
ing resources to use. Another way around this issue
is to split the text up into chunks, generate a sequence
of embeddings for each chunk, and then take an aver-
age across all the embeddings to get a single sequence
which would be representative of the entire piece of
text. To do this, we split the text into chunks of 250
characters, while also ensuring words do not get split
across chunks. Thus, by applying these techniques, a
single sequence of embeddings could be generated to
represent the semantics of each piece of text.

Detecting Duplicate Effort in GitHub Contributions

525

4.2 Predicting Duplicates

To predict duplicates from the data, some measure
would be needed to compare each of the two se-
quences of embeddings and generate a score of simi-
larity between them. As per Li et al. (Li et al., 2017),
we will be using a cosine similarity measure (Man-
ning and Schutze, 1999) to do this. This will give a
single score between 0 and 1 representing how similar
the two pieces of text are, where 1 is identical and 0 is
completely unlike. To classify duplicates from this, a
threshold therefore needs to be applied whereby two
pieces of text whose similarity score meets the thresh-
old are duplicates. Varying duplicate threshold values
were tested and used as appropriate.

4.3 Model Evaluation

To explore RQ1, the sentence-transformers (Reimers
and Gurevych, 2019) model all-MiniLM-L6-v26, as
in the MTEB leaderboard7, was selected as a starting
point and a base model. This model was fine-tuned on
our data using an 80:20 train/test split. The model was
fine-tuned on both issues and pull requests. The test
data consists then of a dataset containing only pull re-
quests, and a dataset containing both issues and pull
requests. In evaluating the model, we will explore
the accuracy of the model when varying the threshold
value by which duplicates are determined, and com-
pare and contrast the results when doing this for each
of the two datasets. To disprove the null hypothe-
sis, we would expect the accuracy to increase for the
combined dataset. This experiment will then be re-
peated on a per-project basis to investigate how the
results vary between projects and whether the tech-
niques used are equally applicable to all projects.

4.4 Empirical Study

To answer RQ2 we will take a snapshot of all the
issues and pull requests open and unresolved in the
projects studied, and use our fine-tuned model to pre-
dict sets of duplicates from among these, and investi-
gate what proportion of pull requests are (predicted)
duplicates, in comparison with the proportion of (pre-
dicted) duplicates found with the issues and pull re-
quests combined. The alternative hypothesis is that
the duplicates, as a proportion of the whole, should
increase when the pull requests and issues are com-
bined. To make the investigation more manageable,

6https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

7https://huggingface.co/spaces/mteb/leaderboard

only 525 issues and 525 pull requests have been con-
sidered as part of this experiment, with an even dis-
tribution from each project. In comparing the results
for a dataset of pull requests only to a dataset of is-
sues and pull requests combined, the latter dataset will
be larger and therefore would be expected to contain
more duplicates, which is why the volume of dupli-
cates found will be represented relative to the size of
the dataset, otherwise the results will lose their value.
This experiment will also be repeated on a per-project
basis to explore how the number of duplicates found
vary by project, and whether the impact of combining
issues and pull requests into a single dataset has an
equal impact across projects. Since an equal number
of issues and pull requests have been taken from each
project, it would be expected that the relative increase
in duplicates found would be similar across projects.

5 RESULTS

5.1 Model Evaluation

The accuracy measured across various duplicate
thresholds for each of pull requests only, and issues
and pull requests combined, can be seen in Fig. 1.
The results for the two datasets follow the same pat-
tern, with both peaking at the same point, and the
combined dataset returning better results across most
duplicate thresholds. The combined dataset achieved
a peak accuracy of 93.9%, which occurred when the
threshold was set at 0.38. The pull requests dataset
achieved a peak accuracy of 90.6%, which also oc-
curred when the threshold was set at 0.38. The ac-
curacy of the model was on average 4.25 percentage
points higher when using the combined dataset. A
recall rate of 90.5% was observed for the combined
dataset with the duplicate threshold set at 0.38, while
the dataset of pull requests only displayed a recall rate
of 83.2% for the same duplicate threshold. The re-
sults from both of our datasets are a significant im-
provement on those from Li et al. (Li et al., 2017)
(who considered only pull requests) in that our model
can predict duplicates with a significantly greater ac-
curacy and recall rate.

Fig. 2 shows the accuracy in predicting duplicates
from the combined dataset compared to pull requests
only, when evaluated for each repository individually.
In doing this, the threshold for duplicates was set to
0.38 which was found to produce the greatest overall
accuracy. In 11 out of the 15 projects, the accuracy
was higher when evaluated on the combined dataset.
The results are reasonably consistent between the two
datasets, and also between projects. The highest accu-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

526

Figure 1: Accuracies for Varying Thresholds.

Figure 2: Accuracy evaluated for each repository.

racy is 100%, which occurs for multiple projects and
for both datasets. Angular returned an accuracy of
only 50% when considering pull requests only, which
is significantly less than its accuracy for the combined
dataset, meanwhile opencv returned 100% accuracy
across both datasets.

5.2 Duplicate Prediction

Fig. 3 shows the volume of (predicted) sets of dupli-
cates found, relative to the size of the input data (num-
ber of issues and pull requests considered), across
several duplicate thresholds. The two datasets largely
follow the same trend, albeit with clear separation be-
tween the results for each. For a sensitivity thresh-
old of 0.38 (for which we achieved the greatest ac-
curacy in the previous section), there was a signif-
icant difference between the two datasets. Fig. 4
shows the volume of duplicates found at this thresh-
old for each on a per-project basis. The median of
the differences was 7.84 with a 95% confidence inter-
val ranging from 8.81 to 6.43 (Wilcoxon signed-rank

Figure 3: Sets of Duplicates Predicted Relative to Input
Size.

test V=0, p≪0.001). This implies that the dataset
comprised of issues and pulls produces a consistently
higher volume of duplicates relative to the size of the
input over the pulls-only dataset. Indeed, in all of the
projects studied, the volume of duplicates found were
much greater for the combined dataset compared to
the dataset of pull requests only. The greatest ob-
served percentage difference between the two datasets
was for Angular.js where using the combined dataset
improved the detection by a factor of 2.8.

Figure 4: Relative duplicates found for each project.

5.3 Threats to Validity

One threat to the internal validity of this work lies in
the method of identifying duplicates from resolved is-
sues and pull requests. The regex pattern searches the
comments of issues and pull requests for messages
of the format ’duplicate of https://github.com/...’. If
a comment were to be found which asks, rather than
asserts, whether a particular contribution is a dupli-
cate of another, then this could be incorrectly identi-
fied as a duplicate. Although the console application

Detecting Duplicate Effort in GitHub Contributions

527

searched for duplicates in the same number of issues
and pull requests from each project, the numbers of
duplicates found were not evenly distributed among
projects. This might therefore be a threat to the va-
lidity of the per-project results. Given the relatively
small sample size of 15 projects, a post-hoc power
analysis (Cohen, 2013) was conducted to evaluate sta-
tistical power. The observed effect size between com-
bined dataset versus the pulls-only dataset was 7.84,
and the resulting power of the test was 1, indicating
that the study had an very high probability of detect-
ing a true effect if one exists. The splitting of the
text into chunks of 250 characters when training and
testing the NLP model may also pose a threat to the
validity of this work since sections of meaning may
be split between chunks and hence lost. This might
reduce the effectiveness of a NLP model trained on
these chunks.

Affecting the external validity, while efforts have
been made to ensure that a range of programming lan-
guages, technologies, and application domains were
represented in the projects studied, there remains
some potential that these results are not entirely re-
flective of the wider GitHub community. Further-
more, only open source GitHub projects were stud-
ied, so we cannot claim validity outside of this. For
example in a smaller co-located agile team there may
be a better inherent understanding of the relationship
between issues and pulls (Taylor et al., 2006).

6 CONCLUSION

The aim of this paper is to assess the feasibility
of automatically detecting duplicates in open-source
GitHub projects using natural language processing
techniques, and the potential benefits of applying
these techniques on issues and pull requests alike.
A Sentence Transformers model was evaluated on a
dataset of known duplicate issues and pull requests
and found it to be 93.9% accurate in detecting dupli-
cates. The accuracy was also found to be 4.25 per-
centage points higher when considering issues and
pull requests together, compared to pull requests only,
thus supporting the alternative hypothesis that com-
bining issues and pull requests into a single dataset
will show an increase in the accuracy of our NLP
model.This verifies the assumption that the title and
description of issues serve the same purpose as the
title and description of pull requests, and that the
level of technical detail is similar between both. This
model was then used to predict duplicates from a
snapshot of unresolved issues and pull requests, and
found that the volume of duplicates found when con-

sidering issues and pull requests together was consis-
tently higher compared to when considering pull re-
quests only, which supports the alternative hypothe-
sis that by combining issues and pull requests into a
single dataset the volume of duplicates found will in-
crease significantly.

These results demonstrate the practical value of
automatically detecting duplicates using semantic
similarity techniques in that not only can we detect
duplicates with great accuracy, but by considering is-
sues and pull requests together we can detect a sig-
nificantly greater volume of duplicates than we would
if we were only considering pull requests. Our re-
call rate of 90.5% was 20.0 percentage points higher
than that demonstrated by Li et al. (Li et al., 2017),
while our model was evaluated on a larger number of
GitHub repositories. Our recall rate is also 1.8 per-
centage points higher than that displayed by Wang et
al. (Wang et al., 2019), with their model being eval-
uated on 14 GitHub repositories. Lazar et al. (Lazar
et al., 2014) displayed a recall rate of 100% in de-
tecting duplicate bug reports from three open-source
systems, although it is unclear the degree to which
the choice of open-source systems studied affects the
results. Our model was evaluated on GitHub bug re-
ports where theirs was evaluated on bug reports from
other systems.

Extending our study to include other sources of
bug reports would strengthen the work and consti-
tutes future work. Further, as opposed to detecting
duplicates from issues and pull requests which have
already been submitted, one avenue of potential fur-
ther study lies in detecting duplicate pieces of work at
their inception. In the case of pull requests in partic-
ular, there may be some value in incorporating a ma-
chine learning model into the GitHub forking process
through which contributors can check if their ideas or
bug fixes have already been added as part of another
pull request, thus detecting potential duplicates before
development work has begun. In thinking about is-
sues, a machine learning model might be incorporated
into the submission process. Such work along with
the findings in this paper could inform and then be
used to alleviate the current waste of resources caused
by duplicate pull requests and the resultant burned on
those reviewing open source code.

REFERENCES

Cohen, J. (2013). Statistical power analysis for the behav-
ioral sciences. Routledge.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

528

formers for language understanding. arXiv preprint
arXiv:1810.04805.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An
exploratory study of the pull-based software develop-
ment model. In Proceedings of the 36th international
conference on software engineering, pages 345–355.

Gousios, G., Storey, M.-A., and Bacchelli, A. (2016). Work
practices and challenges in pull-based development:
The contributor’s perspective. In Proceedings of the
38th International Conference on Software Engineer-
ing, pages 285–296.

Gousios, G. and Zaidman, A. (2014). A dataset for pull-
based development research. In Proceedings of the
11th Working Conference on Mining Software Repos-
itories, pages 368–371.

Gousios, G., Zaidman, A., Storey, M.-A., and Van Deursen,
A. (2015). Work practices and challenges in pull-
based development: The integrator’s perspective. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 358–368.
IEEE.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., and Zhang,
L. (2017). Why and how developers fork what from
whom in github. Empirical Software Engineering,
22:547–578.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., Ger-
man, D., and Damian, D. (2016). An in-depth study
of the promises and perils of mining github. Empirical
Software Engineering, 21(4):2035–2071.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., Ger-
man, D. M., and Damian, D. (2014). The promises and
perils of mining github. In Proceedings of the 11th
working conference on mining software repositories,
pages 92–101.

Lazar, A., Ritchey, S., and Sharif, B. (2014). Improving
the accuracy of duplicate bug report detection using
textual similarity measures. In Proceedings of the
11th Working Conference on Mining Software Repos-
itories, pages 308–311.

Li, L., Ren, Z., Li, X., Zou, W., and Jiang, H. (2018). How
are issue units linked? empirical study on the linking
behavior in github. In 2018 25th Asia-Pacific Soft-
ware Engineering Conference (APSEC), pages 386–
395. IEEE.

Li, Z., Yin, G., Yu, Y., Wang, T., and Wang, H. (2017).
Detecting duplicate pull-requests in github. In Pro-
ceedings of the 9th Asia-Pacific symposium on inter-
netware, pages 1–6.

Li, Z., Yu, Y., Wang, T., Lei, Y., Wang, Y., and Wang, H.
(2022). To follow or not to follow: Understanding
issue/pull-request templates on github. IEEE Trans-
actions on Software Engineering, 49(4):2530–2544.

Li, Z., Yu, Y., Zhou, M., Wang, T., Yin, G., Lan, L., and
Wang, H. (2020). Redundancy, context, and prefer-
ence: An empirical study of duplicate pull requests
in oss projects. IEEE Transactions on Software Engi-
neering, 48(4):1309–1335.

Ma, X., Wang, Z., Ng, P., Nallapati, R., and Xiang, B.
(2019). Universal text representation from bert: An
empirical study. arXiv preprint arXiv:1910.07973.

Manning, C. and Schutze, H. (1999). Foundations of statis-
tical natural language processing. MIT press.

McClean, K., Greer, D., and Jurek-Loughrey, A. (2021).
Social network analysis of open source software: A
review and categorisation. Information and Software
Technology, 130:106442.

Mombach, T. and Valente, M. T. (2018). Github rest api vs
ghtorrent vs github archive: A comparative study.

Muennighoff, N., Tazi, N., Magne, L., and Reimers, N.
(2022). Mteb: Massive text embedding benchmark.
arXiv preprint arXiv:2210.07316.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.

Runeson, P., Alexandersson, M., and Nyholm, O. (2007).
Detection of duplicate defect reports using natural lan-
guage processing. In 29th International Conference
on Software Engineering (ICSE’07), pages 499–510.
IEEE.

Taylor, P. S., Greer, D., Sage, P., Coleman, G., McDaid,
K., Lawthers, I., and Corr, R. (2006). Applying
an agility/discipline assessment for a small software
organisation. In Product-Focused Software Process
Improvement: 7th International Conference, PRO-
FES 2006, Amsterdam, The Netherlands, June 12-14,
2006. Proceedings 7, pages 290–304. Springer.

Wang, Q., Xu, B., Xia, X., Wang, T., and Li, S. (2019).
Duplicate pull request detection: When time matters.
In Proceedings of the 11th Asia-Pacific symposium on
internetware, pages 1–10.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. (2020). Minilm: Deep self-attention distillation for
task-agnostic compression of pre-trained transform-
ers.

Wessel, M., Vargovich, J., Gerosa, M. A., and Treude, C.
(2023). Github actions: the impact on the pull request
process. Empirical Software Engineering, 28(6):1–35.

Yu, Y., Li, Z., Yin, G., Wang, T., and Wang, H. (2018). A
dataset of duplicate pull-requests in github. In Pro-
ceedings of the 15th international conference on min-
ing software repositories, pages 22–25.

Zhang, X., Chen, Y., Gu, Y., Zou, W., Xie, X., Jia, X., and
Xuan, J. (2018). How do multiple pull requests change
the same code: A study of competing pull requests
in github. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
228–239. IEEE.

Zhou, S., Vasilescu, B., and Kästner, C. (2019). What the
fork: A study of inefficient and efficient forking prac-
tices in social coding. In Proceedings of the 2019 27th
ACM joint meeting on european software engineering
conference and symposium on the foundations of soft-
ware engineering, pages 350–361.

Detecting Duplicate Effort in GitHub Contributions

529

