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Abstract: The improved capabilities of Large Language Models (LLMs) enable their use in various fields, including
education. Teachers and students already use LLMs to support teaching and learning.
In this study, we measure the accuracy of LLMs gpt-3.5, gpt-4o, claude-sonnet-20241022, and llama3 in
correcting and evaluating students’ programming assignments. Seven assessments carried out by 50 students
were assessed using three different prompting strategies for each of the LLMs presented. Then we compared
the generated grades with the grades assigned by the teacher, who corrected them manually throughout the
year.
The results showed that models such as llama3 and gpt-4o obtained low percentages of generated evaluations,
while gpt-3.5 and claude-sonnet-20241022 obtained interesting results if they received at least one example
of evaluation.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have
demonstrated significant versatility in addressing a
broad range of tasks, extending their utility well be-
yond generating natural language text. Indeed, LLMs
have been employed to address a variety of tasks, in-
cluding classification (Alahmadi et al., 2024), pro-
gram analysis, and code generation across multiple
programming languages (Jiang et al., 2024; Dong
et al., 2024). As their capabilities increase, and as
these tools become easier to use, they can also be used
by educational staff to support teaching or analysing
assignments.

In this study, we analysed the capabilities of
LLMs in evaluating programming assignments (writ-
ten in the C language) carried out by 50 students,
to understand the extent to which these tools can be
used to support teachers in correcting assignments,
or at least as support tools in student self-assessment.
We automatically invoked the various LLMs used in
this study: gpt-3.5 (OpenAI, 2022), gpt-4o (OpenAI,
2024), claude-sonnet-20241022 (Anthropic, 2024),
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llama3 (Meta, 2024). The prompts required for the
execution of the experiment are defined in a JSON
file, structured in such a way as to be able to test these
three different strategies: zero-shot (i.e. without pro-
viding any examples to the model), one-shot (i.e. with
an example provided to the LLM), few-shot (i.e. pro-
viding a few examples, five, to the model). One ex-
ample consists of the pair (assignment,vote).

During the experiment, a dataset composed of 350
assignments carried out during a Programming and
Data Structures course was used. The assignments
covered a range of programming concepts, including
basic data types, control structures, and simple algo-
rithms.

The results showed that the LLMs did not per-
form well in the assessment tasks, with a significant
gap compared to the human evaluation provided dur-
ing the lecture. The difference between the evalua-
tion generated by the LLMs and that of the correct-
ing teacher is approximately 1.5 points out of 10;
however, these models generally perform better with
the one-shot prompting strategy, in particular claude-
sonnet-20241022, which achieves an average differ-
ence of 1.17 (S.D. 1.25), and 60% of the marks with
a difference of 1 or less.

The remainder of the paper is structured as fol-
lows. Section 2 presents the related work, while Sec-
tion 3 describes the methodology, the research ques-
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tions and the software developed to carry out this ex-
periment. Section 4 presents the results and answers
to the research questions, while Section 5 presents the
implications of the results and describes some ethical
concerns. Finally, Section 6 presents the conclusions
and next steps.

2 BACKGROUND

Large Language Models are models trained on a very
large amount of data and can understand and gener-
ate text in different contexts. Communication with
the LLM takes place via instructions (which may be
simple or complex) that are commonly referred to as
prompts. Querying LLMs with appropriate prompts
is crucial to the quality of the expected response, as is
the number of parameters in the model itself (Brown
et al., 2020). An appropriate prompt generally con-
sists of some contextual information and a set of ex-
pected questions and answers (examples) that form
the knowledge base of the LLM. The following defini-
tions formalize key concepts related to the interaction
with large language models, including examples and
prompts, which are essential for effective communi-
cation and response generation.
Definition 1: Example. Let Q be the question to be
asked of the LLM and A the answer. Let us define the
pair (Q,A) as example E. In the case where the an-
swer is obtained from the language model, this will be
referred to as Aobtained ; conversely, in the case where
this answer is generated as training data, it will be re-
ferred to as Aexpected .
Definition 2: Prompt. A prompt P is defined as a
pair (C,E∗), where C represents the context instruc-
tions (also called system) while E∗ represents a list of
examples (0 or more examples).

The size of the example set, denoted as |E ∗ |, sig-
nificantly influences LLM performance (Brown et al.,
2020). Using the number of examples, we can define
three distinct prompting strategies:

• zero-shot, which involves sending prompts to the
LLM without providing any examples;

• one-shot, which involves sending prompts to the
LLM with one example;

• few-shot, which involves sending prompts to the
LLM with a few examples (from less than 10 to
even a hundred)

There are several strategies for designing the ex-
ample set. One approach is to define a list of ex-
pected results. Alternatively, counterexamples can
be included, as demonstrated in the chain-of-thought
method (Wei et al., 2024), which helps LLMs better

understand the task at hand. Another effective strat-
egy involves providing verification messages for the
generated response, particularly useful when the re-
sponse must adhere to a specific syntax that can be
validated by a parser or validator (Tabari et al., 2025).

In addition to presenting examples as a list of
(Q,A) pairs, (Wang et al., 2023) explored the use
of meta-languages, such as context-free grammars
(CFGs), to define examples. This approach leverages
the recursive nature of CFGs, where a finite set of
rules can generate an infinite number of valid exam-
ples by repeatedly applying these rules. For instance,
a simple grammar rule like:

S → aSb | ε

can produce strings such as ‘ab,’ ‘aabb,’ ‘aaabbb,’ and
so on, without any predefined upper limit. This allows
for the representation of diverse and flexible exam-
ple structures in a compact manner, enabling the sys-
tematic generation of complex examples that would
otherwise be impractical to enumerate exhaustively.
This type of prompting, called grammar-prompting,
reached interesting results in working with domain-
specific languages. LLMs have also proven to be par-
ticularly useful in the understanding and translation
of programming languages (Eniser et al., 2024).

LLMs have also found a place in education and
teaching. In (Piscitelli et al., 2024), an empirical
study analysed students’ interaction with a gpt-4o-
based bot when solving programming assignments,
finding that students generally tend to rely on the
LLM in requesting solutions (which is something to
be discouraged) but also that several students tend to
use it as a kind of online help (which is something to
be encouraged). Similar conclusions were reached in
(Liffiton et al., 2024), particularly on the over-reliance
of students (and junior programmers) on LLM. Over-
reliance on LLMs is also an issue analysed in (Prather
et al., 2023), highlighting how in certain cases the
code generated by LLMs makes it difficult to analyse
and fix errors at later stages. In any case, these types
of tools, with appropriate modifications, can be useful
in student learning, as highlighted in (Qi et al., 2023),
where they limited LLMs to providing only code ex-
amples and never the solution to the problem, through
prompting (Dong et al., 2024).

The use of LLMs for student assessment repre-
sents a further use of these models, which on the
one hand can support the teacher in his work and on
the other hand can provide the student with a self-
assessment tool available during his studies.

In (Henkel et al., 2024), the use of gpt-4o to eval-
uate students’ answers to quizzes was analysed, and
the results showed comparable performance to human
evaluations. In the study of (Chiang et al., 2024), on
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the other hand, gpt-4o was again used to automati-
cally assess the assignments of around 1,000 students,
and the results were mixed. While the evaluations
obtained were acceptable, the model did not always
comply with the instructions for evaluating the assign-
ments. Not only that, in some cases, students were
able to manipulate the LLM-based assistant to still
obtain a high score, but without doing the assignment.

Studies specifically looking at the use of LLMs (of
various LLMs in particular) for the assessment of pro-
gramming tasks have not been carried out. However,
some studies have investigated the use of LLMs to
carry out program analysis. In (Mahbub et al., 2024)
gpt-4o was used to detect inconsistencies of com-
ments in the code, while in (Chapman et al., 2024)
prompting techniques were used to perform static pro-
gram analysis and detect anomalies.

3 METHODOLOGY

In this section, we will describe the research method-
ology used for this study, the software architecture,
the data used for the experiment, and the metrics that
were collected during the execution of the software.

3.1 Research Questions

This project aims to analyse the ability of the most
common LLMs to analyse student assignments and
assess them, generating a grade and a comment, based
on an evaluation grid provided to the LLM. This
study, therefore, will attempt to answer the following
research questions:

• RQ1 - What is the accuracy of LLMs in gener-
ating grades and comments for programming as-
signments?

• RQ2 - Which LLM achieves the best performance
in terms of evaluation time for programming as-
signments?

• RQ3 - What is the difference between LLM-
generated grades and those assigned by educators
for programming assignments?

3.2 The ClueLLM4Eval Platform

To achieve the objectives presented in the RQ sec-
tion, we implemented a software, ClueLLM4Eval, us-
ing the Java language, that would allow the different
LLMs to be queried with the different prompt strate-
gies available in the system. The various classes for
querying the following LLMs were implemented by

adopting a Strategy Pattern. In addition to the strat-
egy pattern, a workflow was also implemented that
reads from a JSON file the sequence of instructions to
be sent to the LLM. The JSON file takes up the struc-
ture of the ‘conversation’ with the model, having the
following structure:
[{

"role": "system",
"content": "You are a teacher who has

to evaluate with a mark
from 0 to 10 the
following assignment."

}, {
"role": "user",
"content": "C code of the assignment"

},{
"role": "assistant",
"content": "10; The work done is correct

and all points have been
completed."

}]

This structure, appropriately configured according
to the prompting strategy adopted, is then loaded at
runtime and sent to the LLM together with the actual
task to be done by the system.

3.3 Prompting Strategies

During this experiment, three different prompting
strategies were used, described below:

• zero-shot: No example is given to the LLM, only
the system prompt.

• one-shot: an example of a well-done assignment
for the LLM (graded 10), and the system prompt.

• few-shot: two examples: one assignment well
done (graded 10) and another assignment incom-
plete and rated 0 at the LLM, and the system
prompt.
The initial system prompt included both the de-

scription of the task (in our case, evaluating student
assignments) and the evaluation grid that the sys-
tem had to consider when grading the various assign-
ments. Table 1 reports the text of the system prompt
used for the experiment.

The grid was designed to provide the evaluation
criteria for assigning a score to each assignment, with
scores ranging from a maximum of 10 to a minimum
of 0. Table 3 describes the grid used for the evalu-
ation: we defined with grade ten an assignment that
was correctly done and well documented through in-
line and block comments, while the grade zero de-
fined an assignment that was not done, or done incor-
rectly or incompletely.

CSEDU 2025 - 17th International Conference on Computer Supported Education

536



Table 1: System prompt used in this study.

You are a teacher who has to evaluate with a mark from 0 to 10 the following assignment.
Describe the evaluation of the assignments using this format: GRADE;COMMENT.
0 totally wrong assignment.
10 totally correct assignment.
Grade must respect the following grid, and ALL criteria for a grade must be met to assign
that grade: To evaluate, use the following grid:
{{EVALUAT ION GRID}}
Before assigning a grade, evaluate each required function separately, noting its presence and
correctness. Then, based on these individual evaluations, assign an overall grade that matches
ALL criteria for that grade level. Provide a brief justification (less than 100 words) for the
assigned grade, referencing the specific criteria met or missed.
This is the assignment: {{ASSIGNMENT}}

Table 2: Aggregate results of LLMs in evaluation tasks, combining performance across all three prompting strategies.

LLM Valid Response Format Non-Compliant Grade Invalid Response
gpt-3.5 62.76% 28.57% 8.67%
gpt-4o 5.43% 29.71% 64,86%
claude-sonnet-20241022 47.36% 35.08% 17.56%
llama3 0% 0% 100%

Table 3: Evaluation grid used for the correction of the as-
signments and described in the prompt.

Grade Meaning

0 The assignment was not carried out
1 The assignment is incorrect and incomplete
2 The assignment is incorrect and incomplete,

with some sketched parts
3 The assignment is incorrect and incomplete,

with several sketched parts
4 The assignment is mainly incorrect and incom-

plete, with some parts almost completed
5 The assignment is partially incorrect and in-

complete, with many parts almost completed
6 The assignment is partially correct and well de-

signed, with several syntactic and semantic er-
rors

7 The assignment is correct and well designed,
with few semantic errors

8 The assignment is correct and well designed,
but with not a good structure and poorly com-
mented

9 The assignment is correct and well designed,
but with several parts not commented

10 The assignment is entirely correct, well de-
signed, and well commented

3.4 Datasets

For this experiment, we created a dataset consisting
of 7 assignments completed by 50 students each, re-
sulting in a total of 350 assignments. This dataset

consists of assignments carried out by real students
attending the first year of the Bachelor of Science
in Computer Science in the Programming and Data
Structures course, who voluntarily granted the use of
the assignments for this experiment. The assignments
covered the implementation of abstract data types, ar-
ray sorting algorithms, and data structures such as
lists, queues, stacks, and trees. The evaluation and
errors of these assignments are also known, as they
were manually checked and assessed by the course
assistant lecturer. The manual evaluations are used
during the results analysis phase as a comparison to
the evaluations provided by the LLM.

3.5 Response Classification

To assess the outputs produced by LLMs, a well-
defined taxonomic framework is essential to differen-
tiate between responses based on their conformity to
the required format and level of completeness. This
classification system partitions responses into valid,
partially valid, and unusable categories, facilitating a
structured evaluation of the models’ performance and
their suitability for educational applications.

1. Valid Responses
• Definition: A Valid Response is an LLM re-

sponse which adhere to the required format, a
numerical grade followed by a text comment.

• Example. 8;well-structured code with minor
issues in commenting
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2. Format Non-Compliant Responses
• Definition. A Format Non-Compliant Re-

sponse is an LLM response that contain both
a grade and a comment but fail to comply with
the exact required format. These responses are
still interpretable, but require further parsing or
manual correction to be converted into a com-
pliant format.

• Example. Grade: 8. Comments: Well-
structured code with minor issues.

3. Incomplete or Empty Responses
• Definition. An Incomplete Response is an

LLM response that do not contain both required
elements (grade and comment) or are entirely
off-task.

• Examples. The code looks good but could be
improved. (missing grade) or I cannot process
this assignment. (off-task response).

3.6 LLMs Used

In this experiment, the following LLMs were used:

• gpt-4o (OpenAI, 2024)

• gpt-3.5 (OpenAI, 2022)

• llama3 (Meta, 2024)

• claude-sonnet-20241022 (Anthropic, 2024)

For all these LLMs we used the same prompt and
we set the temperature : 0.5. Temperature is a pa-
rameter used to control the randomness and creativity
of responses generated by a language model, gener-
ally between 0 and 2. It determines how the model
assigns probabilities to different possible outputs. A
higher temperature (e.g., 1.0 or above) results in more
diverse and unpredictable outputs, as the model gives
less priority to the most probable next word and ex-
plores a wider range of possibilities. Conversely, a
lower temperature (e.g., close to 0) makes the model
more focused and deterministic, favoring highly prob-
able outputs and reducing variability.

3.7 Metrics

Each session of this experiment involved three
prompting strategies, four different LLMs, and the
dataset of assignments provided by students. The
metrics that will be measured are as follows:

• Correction Time: the time required by the LLM
to evaluate the assessment given in input;

• Assessment Difference: difference between the
grade generated by LLMs and the grade given by
the course assistant lecturer.

• Valid Responses: number of valid responses gen-
erated by LLMs;

• Format Non-Compliant Grades: number of
Format Non-Compliant responses;

• Invalid Responses: number of incomplete or
empty responses;

3.8 Procedure

Before conducting the experiment, the dataset was
prepared by organizing the assignments. Subse-
quently, we generated the JSON file containing the
prompts, which incorporated the evaluation grid and
the assignment track, as presented in Table 1.

Throughout the experiment, the platform executed
the prompt against all the LLMs described in Section
3.6. To respect the token limitations of each platform,
the platform implemented a ten-second timeout be-
tween each execution.

At the end of the experiment, the collected data
were analysed and categorised into three groups:
valid responses, format non-compliant grades, and in-
valid responses. After enumerating the results and in-
corporating them into Table 2, a data cleansing pro-
cess was performed to refine the incorrectly formatted
grades, thereby generating valid responses from them.

4 RESULTS

This section describes the results obtained for the
three research questions guiding this study. The en-
tire experiment took approximately one day to run,
the majority of which was required by the llama3
model, as it was run locally on the researchers’ ma-
chines. The other models analysed in this study took
approximately one hour each to run for the analysis
of the dataset described in the previous section.

Based on the results obtained, it was determined
that the llama3 model did not generate any accurate
responses, as indicated in Table 2. As a result, the
discussion and comparison of the research questions
in the subsequent sections will exclude any references
to this model.

4.1 RQ1: Accuracy of LLMs

In this section of the study, we will attempt to an-
swer the question RQ1: What is the accuracy of
LLMs in generating grades and comments for pro-
gramming assignments?. Table 2 shows the results
obtained from individual LLMs, aggregated for all
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Table 4: Overall results of prompting strategies in evaluation tasks.

LLM Strategy Valid Response Format Non-
Compliant
Grade

Invalid Responses

gpt-3.5
zero-shot 0.57% 80.57% 18.86%
one-shot 93.14% 3.43% 3.43%
few-shot 94.57% 1.71% 3.72%

gpt-4o
zero-shot 1.14% 41.43% 57.43%
one-shot 2.57% 20.29% 77.14%
few-shot 12.57% 27.43% 60.00%

claude-sonnet-
20241022

zero-shot 0.00% 61.53% 38.47%
one-shot 78.95% 10.53% 10.52%
few-shot 64.86% 32.43% 2.71%
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Figure 1: Overall results of prompting strategies in evaluation tasks. The blue bars depict the valid responses generated, the
yellow bars represent the grades produced in an incorrect format, and the red bars illustrate the invalid responses generated.

prompting strategies (which will be discussed in Sec-
tion 4.3). The prompt required to assess the assign-
ment and provide the result of the grade in the format
GRADE;COMMENT where the first value was the

grade (numerical) and the second was the comment.
The valid response column shows the percent-

age of answers that complied with the required for-
mat, while the Format Non-Compliant Grade column
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shows the percentage of answers that contained both
the grade and the commentary but did not strictly
comply with the required format (many answers were
of the type GRADE:8, or ##Grade:8).

Table 2 shows that gpt-4o was able to provide a
valid response (that corresponded to the format de-
scribed in the prompt’s request) in 5 percent of the
cases. When including responses that contained both
a grade and a comment but were non-compliant with
the required format, the total percentage of responses
increased to 35 percent. The llama3 model did not
provide correct answers: in none of the analysed
prompt strategies did the model provide a numerical
evaluation, always limiting itself to a descriptive eval-
uation of the assigned exercise.

The other two models analysed, however, gpt-3.5
and claude-sonnet-20241022, gave better results. gpt-
3.5 was able to provide answers that respected the
required format in 62.76% of the evaluations, while
28.57% of its evaluations included errors in format-
ting but still contained both a score and a comment.
Claude-sonnet-20241022, on the other hand, pro-
vided formally correct answers in 47.36% of cases,
while about 35% of the time it produced answers with
a grade preceded by additional textual commentary,
which were non-compliant with the expected format.
This analysis pertains to formal correctness, while the
substantive correctness of the scores and comments is
examined separately in Section X (or elsewhere, if ap-
plicable).

Table 4 instead shows the results obtained from
the various models, highlighting the prompting strat-
egy used. The first result that emerges from these
results is that the prompting strategy zero-shot, with-
out examples, rarely succeeds in providing a correctly
formatted response, while still performing the as-
signed task and evaluating the work performed (80%
for gpt-3.5 and 61% for claude-sonnet-20241022).
Already providing a single evaluation example in-
creases the model’s ability to provide an answer in
the required format and to reduce the number of null
values, i.e. failed evaluations. The graph in Figure
1 makes it clear that as the number of examples in-
creases, the number of responses that comply with the
format increases, and errors generally decrease.

4.2 RQ2: Time Analysis

This section examines the second research question,
Which LLM achieves the best performance in terms of
evaluation time for programming assignments?. Ta-
ble 5 exhibit varying performance across the differ-
ent prompting strategies. Specifically, the assignment
evaluation on gpt-3.5 took approximately 30 min-

utes, gpt-4 required over an hour, and claude-sonnet-
20241022 required around two hours. Furthermore,
the average time required to evaluate each assignment
was 1.81 seconds for gpt-3.5, 3.73 seconds for gpt-4,
and 6.66 seconds for claude-sonnet-20241022. These
results suggest that the gpt-3.5 model provided the
fastest execution times among the three LLMs tested
in this study.

The time required for evaluating the assignment
does not appear to be significantly impacted by the
prompting strategies employed, except for the gpt-3.5
model. In the case of the gpt-3.5 model, the execu-
tion time was reduced from 1.99 seconds for zero-
shot prompting to 1.71 seconds when utilizing one
and few-shot prompting strategies. This suggests that
the prompting strategies can affect the performance of
the gpt-3.5 model, leading to a noticeable decrease in
the execution time for the assignment evaluation.

The analysis of the prompting strategies indicates
that sending samples to the large language mod-
els may also be beneficial for execution time, but a
more in-depth analysis is required. Specifically, for
the models gpt-3.5 and claude-sonnet-20241022, the
one-shot strategy demonstrated the fastest execution,
while no significant differences were observed for the
gpt-4o model. The low variability exhibited in the
Standard Deviation column suggests a high level of
consistency across the executions. Further investiga-
tion is needed to fully understand the impact of the
prompting strategies on the execution time of these
language models, as the current findings suggest po-
tential performance advantages, but more comprehen-
sive testing is required to draw definitive conclusions
(see Section 5).

4.3 RQ3: Comparison with Human
Assessment

This section investigates the third research question,
What is the difference between LLM-generated grades
and those assigned by educators for programming as-
signments?. As reported in Table 6, the rating dis-
crepancies across the various large language models
and prompting strategies vary, with some models and
strategies showing substantial differences, while oth-
ers are more closely aligned with human assessments.
The smallest average difference of 1.17 (S.D. 1.25)
points was achieved by the claude-sonnet-20241022
model using the one-shot prompting approach, fol-
lowed by the zero-shot strategy with a 1.38 (S.D.
1.28) point difference out of 10, and the one-shot
strategy of gpt-4o with a 1.58 (S.D. 1.21) point dif-
ference. However, other strategies and models exhibit
larger disparities, in some cases approaching 2 points,
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Table 5: Time analysis on evaluation tasks performed by LLMs across the different prompting strategies.

LLM Strategy Total Time (s) Mean Time (s) S.D. (s)

gpt-3.5 1901,40 1,81 1,81
zero-shot 695,86 1,99 6,89
one-shot 606,89 1,73 4,91
few-shot 598,66 1,71 4,01

gpt-4o 3916,23 3,73 1,63
zero-shot 1302,45 3,72 4,62
one-shot 1303,60 3,72 3,75
few-shot 1310,18 3,74 6,04

claude-sonnet-20241022 6989,49 6,66 2,57
zero-shot 2305,21 6,59 1,26
one-shot 1777,85 5,08 3,02
few-shot 2922,67 8,35 2,04

which can be considered a significant deviation for an
evaluation.

The claude-sonnet-20241022 model demon-
strated the best performance in terms of the number
of evaluations that matched those of human raters,
and overall, this model had the highest rate of
evaluations that were quite close to the human
grades. The one-shot strategy attained 31.58% of
evaluations that were identical to the human ones
for program assignments, and 28.95% of evaluations
that differed from the human evaluation by between
0.5 and 1 point, for a total of 60.53% of grades that
differed from the human evaluation by less than 1
point. In general, the claude-sonnet-20241022 model
achieved good results across each strategy, followed
by the gpt-3.5 model, which obtained the best results
using the zero-shot strategy, with 38.86% of grades
differing from the human evaluation by less than 1
point.

The LLMs generally exhibit moderate discrepan-
cies in their evaluations compared to human assess-
ments, although certain models and prompting strate-
gies demonstrate larger deviations. However, claude-
sonnet-20241022 demonstrates a stronger capacity to
emulate human-like evaluations, particularly in the
one-shot strategy. Conversely, gpt-3.5 and gpt-4o ex-
hibit more substantial deviations, implying that their
calibration to mimic human evaluations could be en-
hanced, especially in the zero-shot and few-shot ap-
proaches.

5 DISCUSSIONS

The results presented so far show that using Large
Language Models to generate automatic corrections
of programming assignments does not offer consis-
tent results compared to the assessment given by the
teacher, deviating rather markedly from the intended
assessment. This evidence encourages the pursuit
of more prompting strategies to enhance the quality
of assessments and align them as closely as possible
with the desired outcomes.

Although the activity of correcting 350 assign-
ments took quite some time, reaching around two
hours claude-sonnet-20241022 to correct the assign-
ment, it must be said that this time is far less than
the time a teacher would spend correcting 350 assign-
ments: time reduction has the advantage of provid-
ing students with feedback quickly, with the undeni-
able advantages this has on learning. However, as-
sessments must also be consistent and as close to the
grading grid as possible; otherwise, there is a risk of
creating barriers to student learning. The reliability
highlighted shows that LLMs alone are not usable in
a self-assessment context, as the assessments may de-
viate widely from the grid with which they would be
assessed by the teacher himself.

The models analysed in many cases did not com-
ply with the required format: the 2 table high-
lighted in the Format Non-Compliant Grade column
the grades obtained in a different format: this phe-
nomenon occurs in the majority with the zero-shot
strategy, which suggests that providing examples al-
lows LLMs to better consider the required response
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Table 6: Analysis of the rating differences between the ratings generated by the language models and those assigned by
humans, based on different prompting strategies. This table shows the mean difference (Average Diff) and standard deviation
(S.D.) between the ratings, the percentage of identical ratings ( Equal Grade) and the percentage of differences of less than 1
point (0 < Difference ≤ 1) calculated over the total number of assignments, including those for which the LLM was unable to
give an evaluation.

LLM Strategy Average Diff S.D. Equal Grade 0 < Difference ≤ 1

gpt-3.5 1.86 1,40 8,86% 24,19%
zero-shot 1.72 1,41 10,29% 28,57%
one-shot 1.86 1,22 7,71% 21,14%
few-shot 1.98 1,52 8,57% 22,86%

gpt-4o 1.82 1,48 2,57% 11,90%
zero-shot 1.72 1,31 2,86% 14,57%
one-shot 1.58 1,21 2,29% 8,00%
few-shot 2.06 1,74 2,57% 13,14%

claude-sonnet-20241022 1,41 1,28 18,42% 28,07%
zero-shot 1,38 1,28 12,82% 28,21%
one-shot 1,17 1,25 31,58% 28,95%
few-shot 1,67 1,28 10,81% 27,03%

format. In this direction, the addition of further exam-
ples including invalid formats, or even an agent veri-
fying the syntax of the response, possibly alerting the
model to errors to be corrected, can be analysed.

Moreover, the analysis of the comments generated
in natural language by the various LLMs indicated
that high variability was associated with difficulties
in comprehending the code under evaluation. When
the assessment diverged by more than 1.5 points from
the human judgment, the LLMs tended to penalize the
structure of the comments or excessively emphasize
secondary elements. Future research will involve a
more detailed examination of the models’ responses
during the evaluation process.

In general, the claude-sonnet-20241022 model
was seen to obtain the best results, despite being
slower than the gpt-3.5 gpt-4o and llama3 models.
llama3 in particular did not obtain analysable results
for this study: the same prompts used for the other
models, with llama3 did not generate acceptable an-
swers in any case, but only comments on the code.
Again, as mentioned above, the system could bene-
fit from the use of a validator that requests consistent
responses from the LLM concerning the format and
task required.

The findings of this study suggest that prompt-
ing alone is inadequate for managing the complex-
ity of assignment evaluation and generating consis-
tent results. To address this limitation, future work
should explore new prompting strategies and develop
a model specifically tailored for this purpose. Ad-

ditionally, future research should consider incorpo-
rating other large language models beyond those in-
cluded in this study to further enhance the evaluation
and generation of consistent results.

Furthermore, the evaluation of an assignment is a
multifaceted task that involves more than simply as-
signing a grade. In this study, we asked the large lan-
guage models to provide the rationale behind the as-
signed grades. However, a preliminary analysis sug-
gests that the LLMs’ responses either merely reiterate
the comments from the evaluation rubric or offer an
extended analysis of the provided code, which may
not be particularly useful in an educational context.
Instead, students require constructive feedback that
enables them to comprehend their errors and enhance
their solutions, a consideration that will be further
explored in future work. (Hundhausen et al., 2013;
Huang et al., 2018)

5.1 Ethical Concerns

In this study, assignments carried out by students in
an academic year 2023 class were used: none of
these generated assessments were provided to stu-
dents. However, the dissemination of increasingly ac-
curate LLM models also requires ethical evaluations
of how such a tool should be used by a teacher or a
student, in the case of self-assessment. The teacher
establishes a relationship with the learner and in the
correction of assignments may detect progressions
or regressions that a model might not highlight, or
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worse, provide, unless he or she is adequately trained
for this. LLM alone could compromise this relation-
ship, impacting the effectiveness of didactic personal-
isation.

However, these tools have undeniable potential as
valuable allies in personalising teaching and support-
ing student self-assessment. Leveraging techniques
such as Retrieval-Augmented Generation (RAG),
which combines the generative power of language
models with the precision of retrieving relevant and
up-to-date information from external sources (such
as teacher-provided learning materials), they can pro-
vide students with quick, accurate and personalised
feedback on their level of preparation, improving
learning outcomes and adaptability. (Lewis et al.,
2020).

6 CONCLUSIONS

In this study, we presented an experiment on the use
of Large Language Models for correcting and evalu-
ating student assignments from the Programming and
Data Structures course. In the course of the experi-
ment, 7 assignments carried out by 50 students, total-
ing 350 submissions, were evaluated using four dif-
ferent LLMs: gpt-4o, gpt-3.5, llama3, claude-sonnet-
20241022. The experiment aimed to measure the
ability of the LLMs to generate answers in the re-
quired format (GRADE;COMMENT ) and to measure
the distance between the evaluation generated by the
LLMs and the evaluation already in the possession of
the researchers provided by the teacher who carried
out the manual corrections. The results showed that:

• RQ1: Evaluating LLM Accuracy on Task-
Based Assessments. For this type of task,
the LLMs showed difficulties in complying with
the format, particularly in the zero-shot strategy.
llama3 did not provide any evaluation but only
comments. In contrast, the other LLMs (in par-
ticular gpt-3.5 and claude-sonnet-20241022 pro-
vided valid evaluations in 94.57% and 78.95%,
for the few-shot and one-shot strategies, respec-
tively).

• RQ2: Timing Results of LLMs: Performance
Insights. For this type of task, the gpt-3.5 model
was generally faster (taking on average 1.81s per
evaluation, S.D. 1.81s), followed by gpt-4o (mean
3.73s, S.D. 1.63s) and claude-sonnet-20241022
(mean 6.66s., S.D. 2.57). No significant differ-
ence in timing was observed between the various
prompting strategies.

• RQ3: The Gap Between LLMs and Human
Evaluation. For this type of assignment, the
average distance between the LLMs’ assessment
and that previously provided by the teacher is
around 1.7 points out of 10, with claude-sonnet-
20241022 having the lowest distance (1.41, S.D.
1.28) and the greatest number of assessments no
more than one point out of 10 apart with the one-
shot strategy (60.53%). Analysing the comments
on the evaluations, it emerged that a high-grade
difference is often related to the evaluators having
a different interpretation of the assessment grid or
to them perceiving errors that are not present in
the work being evaluated. This variability sug-
gests, however, that these instruments need further
improvement before they can be used for these
tasks.

Future work will attempt to analyse the limita-
tions already presented in the previous section. We
will first try to analyse the reasons why the proposed
prompting strategies did not work with llama3. We
will also analyse the impact of other prompting strate-
gies, increasing the number of evaluation examples.
Moreover, Retrieval-Augmented Generation (RAG)
has been shown to be suitable in several fields and also
in education (Liu et al., 2024). We plan to analyse the
impact of RAG in the evaluation of assignments in
order to automatically obtain the best evaluation grid
for different types of assignments. In addition, other
scenarios will be analysed. Finally, we will integrate
additional LLMs, and assess the possibility of train-
ing an ad hoc model for this type of task.
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