
Supporting Automated Documentation Updates in
Continuous Software Development with Large Language Models

Henok Birru, Antonio Cicchetti a and Malvina Latifaj b

hbu23001@student.mdu.se, {antonio.cicchetti, malvina.latifaj}@mdu.se

Keywords: Continuous Software Development, Continuous Documentation, Large Language Models, Retrieval
Augmented Generation.

Abstract: Nowadays software is ubiquitous in our society, making its role increasingly mission critical. Software ap-
plications need to be continuously maintained and evolved to keep up with the pace of market demands and
emerging issues. Continuous Software Development (CSD) processes are an effective technological coun-
termeasure to the mentioned evolutionary pressures: practices like DevOps leverage advanced automation
mechanisms to streamline the application life-cycle. In this context, while handling the application develop-
ment and implementation is adequately investigated, managing the continuous refinement of the corresponding
documentation is a largely overlooked issue.
Maintaining accurate technical documentation in CSD is challenging and time-consuming because the fre-
quent software changes require continuous updates and such a task is handled manually. Therefore, this work
investigates the automation of documentation updates in correspondence with code changes. In particular, we
present CodeDocSync, an approach that uses Large Language Models (LLMs) to automate the updating of
technical documentation in response to source code changes. The approach is developed to assist technical
writers by summarizing code changes, retrieving updated content, and allowing follow-up questions via a chat
interface.
The approach has been applied to an industrial scenario and has been evaluated by using a set of well-known
predefined metrics: contextual relevancy, answer relevancy, and faithfulness. These evaluations are performed
for the retriever and generator components, using different LLMs, embedding models, temperature settings,
and top-k values. Our solution achieves an average answer relevancy score of approximately 0.86 with Ope-
nAI’s gpt-3.5-turbo and text-embedding-3-large. With an emotion prompting technique, this score increases
to 0.94, testifying the viability of automation support for continuous technical documentation updates.

1 INTRODUCTION

The ever increasing ubiquity of software in our every-
day lives and the global market competition are ex-
acerbating the evolutionary pressures applications are
subject to. In particular, emerging demands and/or
issues related to a software application need to be
quickly addressed to avoid losing users or even worse
risking penalties due to malfunctions. The pressures
for frequent updates stress the effectiveness of the
adopted development process, since any friction in the
workflow tends to cause delays and additional work-
load.

Continuous software development (CSD) method-
ologies target specifically scenarios in which appli-

a https://orcid.org/0000-0003-0416-1787
b https://orcid.org/0000-0002-2754-9568

cations require frequent updates. In particular, CSD
proposes to maximize the automation for repetitive
and time-consuming tasks to both save time and also
to use skilled personnel for core aspects of the prod-
uct development (Bosch, 2014; Chui et al., 2016).
Among the software development phases an often
overlooked part should be devoted to prepare techni-
cal documentation (TD); TD is usually released to-
gether with the software product and is meant to in-
struct on how to effectively use the application.

Especially in industrial contexts, it is critical to
keep the documentation up-to-date; in this respect,
even though some approaches to manage fast-paced
release processes exist (e.g. Documentation as Code
(doc-as-code)), this task remains largely manual. No-
tably, documentation writers (also known as technical
writers) might need to rearrange the contents based

92
Birru, H., Cicchetti, A. and Latifaj, M.
Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models.
DOI: 10.5220/0013286800003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 92-106
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



on the code changes, update code snippets or screen-
shots, and other similar documentation refinements
that require advanced understanding of change con-
sequences (Khan and Uddin, 2023).

Large Language Models (LLMs) are increas-
ingly supporting and even completely replacing labor-
intensive tasks in software development processes.
Code generation (Austin et al., 2021; Chen et al.,
2021), code summarization (Ahmed and Devanbu,
2022), and code review (Lu et al., 2023) are just few
examples of powerful features that come in handy, es-
pecially in large and rapidly changing scenarios. Not
surprisingly, the application of LLMs has also been
investigated for handling software documentation (Su
et al., 2023; Khan and Uddin, 2022). Nonetheless, the
current solutions do not provide support for handling
the update of technical documentation due to source
code changes, a very common scenario in CSD that
makes such feature essential.

This paper proposes a methodology to set up an
end-to-end system, making it possible for technical
writers to quickly update technical documentation in
response to code changes. The proposed solution uses
LLMs and appropriate prompting techniques to pro-
vide the following three complementary components:
an automatic updater of the existing technical docu-
mentation based on source code changes; a change
descriptor summarizing how the modifications have
been interpreted; a chat replying to custom questions
posed by technical writers. The underlying aim is to
drastically reduce the effort required to manage the
documentation by technical writers and developers.

The proposed methodology is validated by instan-
tiating it within an industrial CSD scenario. The de-
veloped code is used as a basic framework on top
of which it is possible to create networking related
tools. In this respect, features are continuously added
and updated, making frequent documentation update
a critical requirement. The solution resulting from the
instantiation of our methodology is evaluated using
predefined metrics achieving an average answer rele-
vancy of 0.86 using OpenAI’s gpt-3.5-turbo LLM and
text-embedding-3-large embedding model. More-
over, the score reaches to 0.94 when emotion prompt-
ing technique is adopted in the query prompt.

The paper is structured as follows. Section 2 pro-
vides background information on the key concepts.
Section 3 describes the related work to this research.
Section 4 presents the proposed approach, while Sec-
tion 5 describes the instantiation of the approach in an
industrial case study and evaluation results. Section 6
concludes the paper and describes future research di-
rections.

2 BACKGROUND

This section provides basic information about the
technical solutions that underpin the proposed solu-
tion, notably LLMs and prompt engineering. More-
over, it highlights the needs for continuous documen-
tation and existing aids to clarify the motivation be-
hind this research work.

2.1 Large Language Models

In machine learning (ML), language models are solu-
tions tailored to predict the next word in a sentence
based on the rest of that is given as input. The pre-
diction is computed through a probability distribution
of the available vocabularies and an estimation of the
likelihood of each word in a given context. The tech-
nical realization of language models has been evolv-
ing over time1; the latest ones are called Generative
Pre-trained Transformer (GPT)-series LLMs and are
the base for the approach proposed in this paper.

LLMs represented a major breakthrough in natu-
ral language processing (NLP) research thanks to the
adoption of the transformer architecture and the atten-
tion mechanism (Vaswani et al., 2017). The discus-
sion of the technical details of LLMs from an AI/ML
perspective goes beyond the scope of this work. In our
scope, it is worth mentioning that the architecture and
the attention mechanism allow parallel computation
and the capture of long-distance sequences. These
features boost the precision of predictions and keep
the computation time relatively tractable; moreover,
they allow handling huge amounts of training data
(in the order of billions of parameters). Among the
usages for which LLMs have shown interesting per-
formances, it is worth mentioning the following auto-
mated software engineering tasks (ASET)(Shin et al.,
2023):

• Code Generation: generate code that fulfills a
given natural language description (requirement);

• Code Summarization: automatically create co-
herent, precise, and valuable code comments to
assist developers in understanding a chunk of
code given as input;

• Code Translation: convert code from one pro-
gramming language to another while keeping the
functionality intact;

• Code Review and Evaluation: perform static
analysis to identify potential faults in a program.

1https://www.appypie.com/blog/evolution-of-
language-models

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

93



In this work, we use LLMs to analyze code
changes originating from merge requests and update
technical documentation accordingly.

2.2 Prompt Engineering

The input submitted to LLMs is called a prompt and
has demonstrated to play a fundamental role for the
quality of the generated outputs (Shin et al., 2023).
In fact, since LLMs basic goal is predicting words
in natural language sentences, generating domain-
specific text (like for ASET) might require to direct
the LLM towards the correct interpretation of the in-
put and avoid erroneous outputs. Notably, there ex-
ists the very well-known problem of model hallucina-
tions, i.e. scenarios in which the LLMs generate non-
sense and/or unreliable results (Ji et al., 2023). In fact,
a discipline has recently emerged that targets the pro-
cesses of designing, building, and refining prompts
to obtain the most relevant response from an LLM,
called Prompt Engineering. (Sahoo et al., 2024).

A selection of prompt engineering techniques in-
cludes Zero-Shot Prompting, which uses only in-
structions without examples, and Few-Shot Prompt-
ing, which improves responses by providing exam-
ples in the prompt (Gao et al., 2023). Chain-of-
Thought (CoT) Prompting introduces intermediate
reasoning steps for handling complex tasks and gener-
ating explanations, while Self-Consistency Prompt-
ing extends CoT by exploring multiple reasoning
paths and selecting the most consistent outcome
(Wang et al., 2022). Prompt Chaining breaks tasks
into sub-tasks with detailed sub-prompts, aiding in
complex problem-solving. Tree of Thoughts (ToT)
Prompting explores multiple generation paths, eval-
uating and selecting the best option (Yao et al., 2023).
Expert Prompting improves LLM’s output by creat-
ing detailed, domain-specific prompts that guide the
model to respond as a distinguished expert in the rel-
evant field (Xu et al., 2023a). Emotion Prompting
incorporates emotional stimuli into prompts, improv-
ing LLMs’ performance across various tasks (Li et al.,
2023). Finally, Retrieval Augmented Generation
(RAG) incorporates information retrieval to provide
domain-specific knowledge, ensuring consistency and
reducing hallucinations (Sahoo et al., 2024).

As discussed in more detail in Section 5, our ap-
proach proposes to use RAG as a prompting tech-
nique.

2.3 Continuous Software Development
and Documentation

A well-maintained documentation is of paramount
importance, especially to support practitioners effec-
tiveness and keep an adequate level of users’ expe-
rience (Aghajani et al., 2020). This requirement is
even more relevant in the case of technical software
documentation, that is, the documentation associated
with the source code. For instance, software develop-
ment kit (SDK) and API documentation are examples
of documentation that are used to share information
among upstream and downstream developers. In this
respect, the accuracy of such information allows for
the proper construction of derived applications and
effective maintenance of the code itself (Rai et al.,
2022).

The evolutionary pressures modern software is
subject to have pushed development processes to-
wards enhancing speed. In particular, methodologies
like Agile and DevOps aim to compress the time re-
quired for tasks that do not add tangible value for the
user while improving the responsiveness of the pro-
cess to the need for changes (Bosch, 2014). These
trends apparently collide with an adequate mainte-
nance of the documentation, since this task is often
seen as a less valuable part of a software product re-
lease and can rapidly become a bottleneck when the
rate of changes increases. Aghajani et al. (Agha-
jani et al., 2020) highlight poor documentation related
challenges as reported by practitioners, like inaccura-
cies in information content, erroneous code examples,
incorrect comments, and lack of completeness. Addi-
tionally, outdated documentation is a commonly re-
ported issue negatively affecting the developer expe-
rience (Aghajani et al., 2019). In this respect, automa-
tion can play a crucial role in alleviating these issues
by enhancing the technical documentation process.

The remainder of this section illustrates some
countermeasures introduced with the purpose of sup-
porting continuous technical documentation mainte-
nance and positions the contribution of this paper.

2.4 Documentation as Code

Docs-as-code proposes to adopt a documentation
maintenance approach that goes hand-in-hand with
the development of the software; software develop-
ment and documentation shall use the same proce-
dures and tools, including issue trackers, version con-
trol systems, lightweight markup languages, auto-
mated testing, and incorporating documentation re-
views into the writing workflow. The underlying goal
is to promote the collaboration between developers

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

94



and technical writers in effectively producing techni-
cal documentation (Holscher, 2024).

Although most of the stages related to documen-
tation writing would benefit from the same automa-
tion mechanisms existing for code development, few
tasks require additional efforts from the developers
and technical writers. Notably, whenever new fea-
tures are added or large code changes occur, infor-
mation exchanges are required to clarify the purposes
of the new software. In this respect, either develop-
ers write the first draft of the documentation based on
the code change they have made, or technical writers
need to learn more about the technical details of the
changes before starting the actual writing.

This work explores the capability of LLMs to
analyze developers’ code changes and then modify
the existing documentation accordingly. The solu-
tion aims to replace the efforts required by developers
in writing the draft documentation content for every
code change in the docs-as-code approach. In addi-
tion, it limits the efforts of technical writers to learn
and understand the changes the source code has un-
dergone. This support allows documentation mainte-
nance to maintain the speed of source code develop-
ment and frees precious resources for other core tasks.

2.5 Code Summarization

Code summarization refers to the automated creation
of some form of source code documentation. In par-
ticular, the summarization can be extractive or ab-
stractive: the former extracts information directly
from the code (e.g., the name and type of parame-
ters passed to a function); the latter provides a more
advanced description of the code that is not limited
to the mere direct reading of the code (Mastropaolo
et al., 2023). As expected, many generative mod-
els including LLMs produce abstractive summariza-
tion, typically natural language summaries of code
snippets that can be used as inline comments or inte-
grated into technical documentation along with other
descriptions.

Code summarization can be performed at differ-
ent granularity levels, ranging from line-by-line to a
code module; correspondingly, for each granularity
level the summarization output will produce different
insights about the code, ranging from, e.g., the input
and output of a function to the features and interfaces
with other modules, respectively (Zheng et al., 2023).

This work investigates the use of summarization
techniques to analyze source code changes, and by
taking into account existing documentation automat-
ically generate appropriate updates. The changes are
given in terms of merge requests, and their impact is

determined by examining the entities involved in the
changes and their interdependencies with the existing
code (and hence documentation). Moreover, the sum-
marization is used to provide the users with a human-
friendly description of the changes and leveraged by
a chatbot answering technically detailed questions
about the modifications.

3 RELATED WORK

Automated documentation has been investigated at
length, even before the advent of AI/ML techniques:
for example, the Automatic Summary Comment Gen-
erator (Sridhara et al., 2010) and Automatic Code
Summarization (Moreno et al., 2013) are solutions
that leverage heuristics and/or predefined rules to ex-
tract and summarize source code information. More-
over, there exist solutions using text retrieval tech-
niques to derive documentation from the structure and
syntactical characteristics of the code(Haiduc et al.,
2010a; Haiduc et al., 2010b). Although potentially ef-
fective, these techniques are less resilient to the evolu-
tion of the codebases, since heuristics and rules need
to be kept up to date with the evolution history of the
source code.

AI/ML first and the advent of LLMs recently have
triggered a bursting interest for solutions aiming at
the automation of repetitive tasks in the software de-
velopment process (Batarseh et al., 2021; Nguyen-
Duc et al., 2023), including the handling of soft-
ware documentation (Khan and Uddin, 2022). In
general, these solutions can be distinguished between
learning-based and pre-trained: the former ones re-
quire a preliminary phase in which a typically large
dataset is used to build (i.e. train) the model support-
ing the ML solution (Hu et al., 2018; Moore et al.,
2019; Ahmad et al., 2020; Rai et al., 2022; Feng
et al., 2020); the latter ones rely on large pre-made
models that have demonstrated advanced capabilities
in natural language processing, including code gener-
ation and summarization (Phan et al., 2021; Ahmad
et al., 2021; Husain et al., 2019; Khan and Uddin,
2022). The learning-based solutions are intrinsically
more effective when working on the development sce-
narios they have been trained for. However, they tend
to degrade when the codebase is affected by extensive
changes (both from a size and a time perspective). On
the contrary, pre-trained solutions might show lower
effectiveness on specific scenarios, but have the ad-
vantage of providing more stable performances in the
general case.

With the recent boost of generative AI models
there has been an increasing interest in using pre-

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

95



trained transformer models to automate documenta-
tion tasks: models like Cotext (Phan et al., 2021) and
PLBART (Ahmad et al., 2021) outperformed existing
learning-based solutions like CodeBERT (Feng et al.,
2020) in code understanding and summarization. In
particular, Codex is a GPT-3 pre-trained model spe-
cialized towards natural language and programming
languages. The evaluation on CodeSearchNet dataset
by Khan et al (Khan and Uddin, 2022) shows that
Codex surpasses existing techniques with one-shot
learning. Moreover, building upon Codex’s capabili-
ties for code understanding and summarization, Khan
et al. also proposed an approach to generate code ex-
amples for documentation purposes (Khan and Uddin,
2023).

While the approaches discussed so far focus on
generating documentation or code examples for indi-
vidual program units such as functions, our approach
goes beyond that scope. It aims to address a broader
context by examining all code changes within a sin-
gle merge request to capture the inter-dependencies
and implications of each modification. Furthermore,
while most existing works utilize basic prompt tech-
niques such as zero-shot or few-shot prompt engineer-
ing for documentation automation tasks, which suf-
fice for their scenario, our approach uses advanced
prompting techniques such as RAG to enhance the
quality of the generated outcomes.

RepoAgent is an open-source framework that uses
LLMs to generate, maintain, and update code doc-
umentation (Luo et al., 2024). RepoAgent lever-
ages the entire code repository as context to deduce
the functional semantics of target code objects. In
particular, meta information, Abstract Syntax Tree
(AST) analysis, and project tree organization and ref-
erence relationships within the code are used to create
representations of code repositories. Subsequently,
such representations are used to construct prompts
devoted to documentation generation tasks. Our ap-
proach leverages merge requests as part of the gen-
eration prompts instead of AST; as such, using the
RAG prompting technique is critical to achieve ap-
propriate results. In this respect, RepoAgent is eval-
uated by means of human inspection, while we adopt
widespread metrics assessing the quality of the gen-
erated results. Besides, although the RAG prompt
technique is not central to the RepoAgent approach, it
is mentioned as a potential future investigation direc-
tion. Interestingly, also for RepoAgent it is planned as
future investigation a chat feature to support a better
understanding of code changes.

An ongoing open-source project called Autodoc,
similar to RepoAgent, uses LLMs to automatically
generate documentation directly from source code

(Alephium, 2023). Autodoc’s approach analyzes the
entire codebase with an LLM to produce inline doc-
umentation that explains the purpose and function of
each part of the code, embedding these explanations
directly within the source files. This documentation
is primarily focused on detailing code functionality at
a granular level. In contrast, our tool is designed to
update technical documentation maintained in a sep-
arate repository following a docs-as-code approach.
Instead of analyzing the entire codebase, our tool pro-
cesses specific MRs in the context of the existing doc-
umentation, allowing the LLM to efficiently generate
and update documentation based on recent changes.
This includes not only code explanations but also
broader context, such as usage guidelines and code
examples, all of which are important for maintaining
comprehensive and user-focused technical documen-
tation.

It is also worth mentioning that significant efforts
have been invested in identifying and correcting dis-
crepancies between the source code and correspond-
ing documentation. In particular, approaches have
been proposed to enhance the consistency between
code and comments (Wen et al., 2019; Liu et al.,
2023; Dau et al., 2023), and between software repos-
itory documentation and code references (Tan et al.,
2024; Tan et al., 2023).

4 APPROACH

Figure 1 provides a high-level overview of our pro-
posed approach. Since the approach assumes tech-
nical documentation is developed using the docs-as-
code methodology, documentation is treated as part
of the codebase and is placed within the same version
control system (VCS) as the source code and merge
request (MR). The tool connects to the VCS, retrieves
open MRs, analyzes the associated code changes,
and combines this information with existing docu-
mentation to generate context-aware prompts. These
prompts are designed to guide the LLM in fulfill-
ing the three core capabilities: automatically updating
documentation, summarizing code changes, and pro-
viding interactive support for technical writers. The
approach description is structured as follows. Sec-
tion 4.1 covers the preprocessing of input data. Sec-
tion 4.2 outlines the workflow for automated docu-
mentation updates, followed by Section 4.3, which
details the summarization feature. Section 4.4 ex-
plains the workflow for the chat engine, and Sec-
tion 4.5 provides an overview of the selected LLMs.
Eventually, Section 4.6 illustrates the metrics used to
evaluate the quality of both change retrieval and cor-

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

96



responding generation of documentation updates.

4.1 MR Data Cleaning

To achieve accurate and contextually appropriate re-
sponses, it is crucial to provide the LLM with clean
and filtered data. In many MRs, certain changes –
such as third-party package installations in lock files
or modifications to unit and integration test files - are
not relevant and introduce unnecessary noise. Our
approach minimizes storage overhead and enhances
the LLM’s performance by filtering out non-essential
files (A), focusing exclusively on relevant data. In ad-
dition, it empowers technical writers to further refine
the data-cleaning process, allowing them to exclude
any extra files that do not contribute to the documen-
tation.

4.2 Automatic Documentation Update

Our approach employs the RAG technique to auto-
matically update the technical documentation. As
presented in Section 2, RAG is an advanced prompt
engineering technique that enhances the LLM’s out-
put by integrating external knowledge sources with
the model’s pre-existing training data. Sources can
include databases, repositories, or other knowledge
bases; in our implementation, the existing techni-
cal documentation serves as the external knowledge
source, enabling the system to reference existing doc-
umentation content before incorporating the changes.
As shown in Figure 1, the RAG pipeline consists of
three key stages: i) loading, ii) indexing, and iii)
querying.

4.2.1 Loading

The first stage of RAG entails retrieving the external
knowledge base which in our case is the existing tech-
nical documentation from its storage location (C), as-
suming a docs-as-code methodology is in place. In
this setup, technical documentation is stored as mark-
down files in a Git repository or accessed from local
storage. To enhance efficiency, the system identifies
the relevant content directory, excluding non-essential
files. The technical documentation is loaded using
the LlamaIndex SimpleDirectoryReader class, which
reads each file as a document object. The documen-
tation is typically organized into multiple files, each
discussing specific features or topics, and related files
are grouped under common directories. Rather than
dividing the content into very small chunks, we uti-
lize the existing file structure as our chunking strategy
to maintain contextual coherence. By default, Lla-
maIndex splits files into multiple nodes with a chunk

size of 1024 tokens and a 20-token overlap, result-
ing in files being segmented across multiple nodes for
efficient processing and retrieval. The chunking pa-
rameters are adjusted to retain context and minimize
information loss.

4.2.2 Indexing

The second stage of RAG is indexing, which involves
organizing the nodes into a structure optimized for
fast retrieval. This process enables efficient access to
relevant information based on semantic similarity. In-
dexes are built from the nodes created during the load-
ing phase, and once indexed, these nodes are fed to an
embedding model (D) and converted into vector em-
beddings stored in the VectorStoreIndex (E). Embed-
dings represent words or phrases as dense vectors of
real numbers in a continuous vector space. These vec-
tors are lists of floating point numbers. Unlike the tra-
ditional encoding techniques such as one-hot encod-
ing, embeddings encode semantic meaning and rela-
tionships between words which is very useful for the
LLMs to understand the similarities and differences
between words on their context. The embedding pro-
cess starts by tokenizing the given text. The size of the
vector used to represent each token in the embedding
space is called the embedding dimension. The dimen-
sion size or the number of values required to represent
a token is different across various models. Addition-
ally, embedding models have a maximum token size,
which refers to the number of tokens the model can
process at a time. For texts that have longer size than
the capacity of the embedding model, they need to be
broken down into smaller chunks before being con-
verted to embeddings.

The embedding process requires an embedding
model that transforms text into numerical represen-
tations to capture semantic meaning. The choice of
embedding model directly impacts both the perfor-
mance and cost-efficiency of the system. In this ap-
proach, we experimented with two different embed-
ding models. The first, BAAI’s bge-small-en-v1.5 2,
is a general-purpose embedding model ranked 37th
on the Massive Text Embedding Benchmark (MTEB)
Top-40 leaderboard. With 384 embedding dimen-
sions and a token capacity of 512, this model offers
a compact structure and is available for free on Hug-
gingFace, making it a cost-effective option. In con-
trast, OpenAI’s text-embedding-3-large model ranks
14th on the MTEB leaderboard and offers 3072 em-
bedding dimensions with a significantly higher token
limit of 8191. However, this advanced capability in-
curs additional costs, distinguishing it from the cost-

2https://huggingface.co/BAAI/bge-small-en

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

97



Figure 1: CodeDocSync workflow.

free alternative.

4.2.3 Querying

The last stage of RAG entails the querying process.
The technical writer’s query (1a) is combined with
the code diff from the filtered MR (2a) and addi-
tional instruction statements. To prepare the query
prompt, the approach employs prompt chaining, emo-
tion prompting, and expert prompting. Prompt chain-
ing directs the model through a series of prompts,
proving particularly useful for multi-step tasks (Gade-
sha and Kavlakoglu, 2024). Prompts are sequentially
sent to the LLM using the create and refine prompt
templates. The initial prompt employs the create tem-
plate to generate a first response from the LLM, which
is then refined through subsequent prompts using the
refine template. This process builds upon each re-
sponse, improving the model’s focus and precision
across steps until all nodes are processed. Emotion
prompting improves LLM’s performance by includ-
ing psychological principles into prompts through
emotional stimuli (Li et al., 2023). In our prompt
templates, phrases like “You’d better be sure” are em-
ployed, drawing on the social identity theory to im-
prove the quality of responses from the model. Ex-
pert prompting improves LLM’s responses by posi-
tioning it as an authoritative figure. Starting prompts
with phrases like “As a technical writer specializing
in developer documentation, your task is to update

the outdated part of the documentation”, we guide
the model to respond with the expertise needed for
technical documentation updates (Xu et al., 2023b).

The query prompt is initially processed by the Vec-
torIndexRetriever (3a), which employs the embed-
ding model (4a) to transform the query into vector
embeddings (5a). The next step is choosing the ap-
propriate searching strategy to find the relevant re-
sponse for the query. The search strategy has evolved
from keyword matching to semantic search. Key-
word matching looks for specific index words that
match the query words, whereas, semantic search-
ing focuses on the meaning of the query words and
finds contextually relevant data. The search is per-
formed on pre-existing data, and the number of rel-
evant data points returned is determined by setting
the value of k in top-k similarity search. In our ap-
proach, the VectorIndexRetriever performs a top-k se-
mantic retrieval (where k=2) from the VectorStoreIn-
dex containing the embeddings of the technical docu-
mentation. This retrieval is based on cosine similar-
ity, calculating the likeness between the query’s em-
bedding and those of the technical documents. This
identifies outdated sections of the documentation by
comparing the current technical documentation with
recent code changes. The top-k retrieved nodes (7a)
are then forwarded to the response synthesis compo-
nent (8a). The response synthesis component com-
bines the user’s query with nodes retrieved in the

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

98



previous step and sends a prompt to the LLM (9a).
Among the various methods for generating LLM re-
sponses, our solution uses the compact response gen-
eration technique. This technique is chosen because
it minimizes LLM calls while sending code changes
to the LLM by fitting multiple nodes into a single
prompt, up to the allowed prompt size. The interac-
tion is performed in a question-answer format using a
create and refine prompt template from LLamaIndex.
The result is the generation of the updated technical
documentation (10a).

4.3 MR Summary

The summary feature relies solely on MR data to gen-
erate a concise summary of the MR itself. Unlike the
previous approach applied for updating the technical
documentation where the MR was directly used as
a query, the current method involves converting the
MR into embeddings and storing them in a Vector-
StoreIndex for future retrieval. The initial step entails
indexing the filtered MR data by leveraging the Git-
Lab API, which provides a list of JSON objects rep-
resenting the modifications within an MR. For each
JSON object, a LlamaIndex document is created with
the main content sourced from the diff text. This doc-
ument is populated with the diff text and enriched
with metadata attributes such as new path, old path,
new file, renamed file, and deleted file to provide ad-
ditional context about the code changes.

The number of documents corresponds to the
number of filtered code change files. Consistently
with prior implementations, documents and nodes are
generated using a chunk size of 1,024 tokens and
a chunk overlap of 20 tokens. If a file’s content
exceeds 1,024 tokens, it is divided across multiple
nodes. These nodes are then processed by the em-
bedding model (B), and the resulting MR embeddings
are stored in a VectorStoreIndex for later use (E). This
embedding process occurs when an MR is selected for
analysis. When a technical writer requests a summary
of MR changes (1b), the SummaryIndexRetriever asks
for the relevant nodes (2b) from the VectorStoreIn-
dex where they are stored. Unlike the prior method
which returned only the top-k nodes, here, all nodes
are returned (3b) because each contributes to the sum-
mary feature. The returned nodes are then passed
to the response synthesis component (4b). To gen-
erate the LLM response, a tree summarization gener-
ation technique is employed, where nodes are recur-
sively sent to the LLM using a summary prompt tem-
plate (5b). Depending on the variety of changes, mul-
tiple responses may be generated. The final summary
is constructed by organizing these responses into a

tree structure, with the root node providing a com-
plete summary (6b).

4.4 MR Chat

The MR chat functionality, like the summary fea-
ture, relies solely on MR data to perform its oper-
ations. When a technical writer poses a question
about MR changes through the MR chat (1c), the Vec-
torIndexRetriever employs the embedding model (2c)
to convert the question into vector embeddings (3c).
Following this, a top-k semantic retrieval process (4c)
occurs within the VectorStoreIndex, the repository for
MR embeddings generated in advance. Here, only
the top-k nodes (where k=2) are retrieved (1c), as
they contain the most relevant segments of the MR
data necessary for answering the technical writer’s
question. These selected nodes are then passed to
the response synthesis component (6c), which formu-
lates and sends a prompt to the LLM (7c), leverag-
ing a compact response generation technique, similar
to that used in the query engine. This process ulti-
mately generates an answer to the technical writer’s
question (8c).

4.5 Large Language Model

The three LLMs selected for this study, as detailed in
Table 1, are chosen based on factors such as cost and
context window. However, our approach is not tied to
these specific models; it is designed to be adaptable,
allowing easy integration of additional LLMs via an
API endpoint.

Table 1: LLMs and their utilized parameters in our imple-
mentation.

Model Provider Context Window
gpt-3.5-turbo-
0125

OpenAI 16,385 tokens

llama-v2-34b-
code-instruct

Meta 16k - 100k tokens

llama-v3-70b-
instruct

Meta 8k tokens

• The gpt-3.5-turbo-0125 model, developed by
OpenAI, features a substantial context window of
16k tokens. This model is designed for conver-
sational tasks, allowing it to handle extensive in-
puts effectively, making it ideal for applications
that require a deep understanding of context, such
as documentation generation and summarization.
The cost is $0.0005 for every 1,000 input tokens
and $0.0015 for every 1,000 output tokens.

• The llama-v2-34b-code-instruct model from Meta

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

99



is an open-source model specifically designed for
code-related tasks. It features a context window
that ranges from 16k to 100k tokens, enabling effi-
cient handling of large merge requests This model
is specifically trained for general code synthesis
and comprehension, essential for our goal of ana-
lyzing diff outputs to identify necessary documen-
tation updates.

• The llama-v3-70b-instruct model from Meta is an
open-source model that shows excellent perfor-
mance in reasoning, code generation, and follow-
ing instructions(Meta, 2024). It features a context
window of around 8k tokens, which is sufficient
for handling merge requests that are of moderate
size.

4.6 Quality Measures

The RAG pipeline forms the backbone of our so-
lution, with separate evaluations performed on both
the retriever and response synthesis components us-
ing pre-defined metrics.

The contextual relevancy metric is used to evalu-
ate the performance of the retriever component. Dur-
ing the retrieval phase, the query is converted into an
embedding, followed by a similarity search to locate
the most relevant documents from the vector store.
This metric is calculated as the ratio of the relevant
statements retrieved by the retriever for a given query
to the total number of statements.

The answer relevancy and faithfulness metrics are
used to evaluate the performance of the response syn-
thesis component, otherwise also referred to as the
generator component. The answer relevancy metric
measures how relevant the generated answer is com-
pared to the input query. Unlike contextual relevancy,
this metric is calculated as the ratio of relevant state-
ments generated by the chosen LLM for a given query
to the total number of generated statements. The
faithfulness metric measures the factual consistency
of the output by assessing how accurately its content
aligns with the information from the retrieved docu-
ments. This metric is calculated by first extracting all
claims from the generated output. Then, among these
claims, those that do not contain any factual contra-
dictions when compared to the retrieved documents
are identified as truthful claims. This metric is the ra-
tio of truthful claims to the total number of claims in
the generated output.

It is worth noticing that our approach proposes the
use of standard metrics measuring the quality of the
generated output based on the characteristics of the
prompts. In this respect, our approach does not re-
quire a ground truth dataset to evaluate the quality of

the generated documentation.

5 INDUSTRIAL CASE STUDY

CodeDocSync is applied in Nokia’s industrial CSD
environment, where frequent code changes require
continuous updates to technical documentation. Here,
we focus on Nokia’s Network as Code (NAC) project
to demonstrate CodeDocSync’s capability to auto-
mate technical documentation updates in response to
changes in the Software Development Kit (SDK).
Nokia’s NAC project enables developers to dynam-
ically control network performance directly from
downstream applications. Although Nokia currently
employs a docs-as-code approach, this method of-
ten requires developers to draft updates and techni-
cal writers to finalize them, making the process both
time-consuming and inefficient. Given its frequent
feature enhancements, the NAC project serves as an
ideal case for evaluating CodeDocSync’s effective-
ness in ensuring accurate, up-to-date documentation.
The interested reader can access further details on the
implementation code discussed in this paper in the
GitHub repository3.

5.1 Implementation

CodeDocSync is integrated with NAC’s SDK and
technical documentation repositories, leveraging Git-
Lab’s API to automatically retrieve code changes
from open MRs and existing technical documen-
tation. The existing documentation comprises ap-
proximately 40 technical markdown files, including
concise API references, general concepts, and in-
structions. It features nested structures and domain-
specific terminology related to 5G networking, re-
flecting the complexity nature of the content. The
size of the codebase is less than 1000 files. The
MR changes are processed through a custom pipeline
that filters the original JSON data and performs sev-
eral pre-processing steps: i) extracting the Git diff, ii)
cleaning the data by removing irrelevant changes that
introduce noise, and iii) chunking the changes based
on file paths. The documentation repository cate-
gorizes content into separate markdown files, each
dedicated to specific topics, such as network slicing.
These files are loaded and filtered to exclude unneces-
sary files, and then chunked into distinct nodes, typ-
ically with each node representing a markdown page
on a particular topic. After preprocessing, both the

3https://anonymous.4open.science/r/codedocsync-
85F2/README.md

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

100



code changes and documentation nodes are converted
to embeddings and stored in a VectorStoreIndex, en-
abling efficient retrieval and alignment during query
processing.

For evaluation purposes, we focused on the net-
work slice attachment feature within NAC. First, an
MR is created in the SDK repository to modify the
existing attach() and detach() methods of this fea-
ture. The existing technical documentation, which
does not yet reflect these changes, is stored in the Vec-
torStoreIndex. As shown in Figure 2, selecting the
MR displays a page listing the files that are ready for
analysis. This page also includes three tabs - one for
each of the core CodeDocSync features.

The fetch summary tab provides concise informa-
tion for each modified file, with a concluding para-
graph to give an overall explanation of the changes as
shown in Figure 3. The summarization can be cus-
tomized to focus on specific files by excluding se-
lected files from the first tab.

The fetch updated documentation tab provides the
updated documentation reflecting the recent changes.
As shown in Figure 4, the new feature? flag is avail-
able to generate documentation for a new feature that
has not been previously covered in the existing docu-
mentation. If the option new feature? is selected, the
prompt will be updated to generate new documenta-
tion content based on the data from the code changes.
The generated content is formatted in Markdown syn-
tax for easier integration into the final documentation.

The MR-chat tab is designed to assist the technical
writer in understanding changes in the selected merge
request by enabling follow-up questions. As shown in
Figure 5 , the technical writer can ask questions about
details such as the new method signature or request a
general explanation of the changes and the chat will
provide the required response.

5.2 Evaluation

This section presents the evaluation results for our
chosen case study. The evaluation is performed using
the DeepEval 4 tool by applying the predefined met-
rics outlined in Section 4.6, and the OpenAI’s gpt-4o
model.

5.2.1 Contextual Relevancy

The retriever component of the RAG pipeline is eval-
uated based on contextual relevancy using three dif-
ferent values of k, which represent the number of rel-
evant nodes expected in the top-k similarity search.
Figure 6 shows that the retriever component of our

4https://docs.confident-ai.com

solution performs more effectively as the k value de-
creases. The average contextual relevancy score in-
creases from 0.53 at k = 5 to 0.83 at k = 2. This
improvement suggests that lower k values allow the
retriever to focus more precisely on the most relevant
nodes, reducing noise from less relevant results.

5.2.2 Answer Relevancy

The answer relevancy metric is used to evaluate the
performance of the response synthesis component
which in DeepEval is referred to as the generator
component with assessments conducted for two in-
dependent variables: temperature and LLM - embed-
ding model combination. Temperature is set to ensure
creative but accurate outputs. Both contextual and
answer relevancy metrics are calculated using Equa-
tion 1.

Relevancy =
Number o f Relevant Statements

Total Number o f Statements
(1)

Figure 7 shows the answer relevancy scores for
different LLM - embedding model combinations. The
combination of the gpt-3.5-turbo-0125 LLM with the
text-embedding-3-large embedding model achieves
the highest average score of 0.86, which increases
to 0.94 when the emotion-prompting technique de-
scribed in Section 4.2.3 is applied to the prompt tem-
plate5. In contrast, the combination of the llama-v3-
70b-instruct LLM with the BAAI/bge-small-en-v1.5
embedding model reaches a highest average score
of only 0.3. The combination of the llama-v3-70b-
instruct LLM with the text-embedding-3-large em-
bedding model improved the score to 0.68. These re-
sults highlight the impact of the LLM - embedding
model combinations on performance.

5.2.3 Faithfulness

The faithfulness metric is used to assess the factual
accuracy of the LLM’s response in relation to the con-
tent retrieved by the retriever component. The LLM -
embedding model combination serves as the indepen-
dent variable. It is calculated using Equation 2.

Faith f ulness =
Number o f Truth Claims
Total Number o f Claims

(2)

Figure 8 shows the faithfulness scores, where
the combination of the gpt-3.5-turbo-0125 LLM with
the text-embedding-3-large embedding model has an
average score of 0.82. This is lower than the

5For the sake of space limitations we do not report the
results in full details. The interested reader is referred to
(Birru, 2024) for the complete information about the used
prompts and corresponding results/performances

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

101



Figure 2: List of filtered changes for Network Slice Attachment.

Figure 3: MR-summary for Network Slice Attachment.

combination of the llama-v3-70b-instruct LLM with
the BAAI/bge-small-en-v1.5 embedding model, which
achieves an average score of 0.95. This difference
may be due to the llama-v3-70b-instruct model’s bet-
ter alignment with the retrieved content, leading to
more factually accurate responses.

5.3 Discussion

The RAG prompt engineering technique is used in
our solution, which enables responses to be gener-
ated directly from existing technical documentation
and code change data. In addition to RAG, we incor-
porated advanced techniques such as emotion prompt-
ing and expert prompting within the prompt templates
used in the RAG pipeline. Initially, we experimented
with simpler techniques, such as zero-shot and one-
shot prompts; however, given the size of the docu-
mentation data and the context window limitations of
LLMs, RAG proved to be the optimal approach. This
choice not only maximized context utilization but also
opened up opportunities to integrate MR-summary
and MR-chat features, improving the solution’s func-

tionality and user experience.
Our solution updates documentation affected by

code changes by embedding the “diff” from MRs
into the RAG pipeline. To handle the token limits
of the embedding model, we filter irrelevant infor-
mation from MRs and then apply chunking to di-
vide large MR size, preserving all content without
exceeding limits. Each chunk’s embedding is then
combined into a single vector using a weighted av-
erage, ensuring proportional representation based on
chunk length. This approach optimizes the embed-
ding process, enabling effective similarity searches
against technical documentation even when handling
large MRs.

Even though a thorough empirical assessment for
the value of our proposed automated documentation
generation goes beyond the scope of this work, we
performed interviews with a technical writer and a de-
veloper at Nokia, who tested the tool and provided
feedback. While they appreciated the overall preci-
sion and usability of the documentation update sup-
port, they also suggested the improvement of certain
features. Notably, they expressed the need for visual

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

102



Figure 4: Updated documentation section for Network Slice Attachment.

Figure 5: MR-chat for Network Slice Attachment.

Figure 6: Contextual relevancy score at various k values.

indicators or explanations able to distinguish specific
changes in updated documentation. Such distinction
would significantly improve clarity and usability by
allowing to isolate specific changes and correspond-
ing updates.

While our solution primarily focuses on updating
existing documentation, some MRs introduce entirely

Figure 7: Answer relevancy scores for LLM - embedding
model combinations.

new information not covered in current documenta-
tion. To address this, our solution offers a “New Fea-
ture” flag that, when enabled, allows technical writers
to generate documentation for new features. When
this flag is active, the system applies a prompt specif-
ically designed to create new content, ensuring docu-
mentation coverage for new features.

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

103



Figure 8: Faithfulness metric scores for LLM - embedding
model combinations.

Our approach relies on the quality of source docu-
mentation, and its effectiveness may be limited if the
documentation is poorly organized, potentially im-
pacting the overall results. In a broader perspective,
it would be important to test our solution across di-
verse project types, especially those with varying pro-
gramming languages and technical writing styles. Al-
though the solution is not inherently dependent on
any specific programming language, the evaluation
has been conducted using only Python-based projects.
Expanding testing to include projects in other lan-
guages would help assess the solution’s versatility. In
this respect, it is worth noticing that the research com-
munity is missing a standard procedure to evaluate
the automated generation of documentation. There-
fore, establishing standard benchmarking procedures
would be valuable to enable the validation and refine-
ment of the proposed solutions.

6 CONCLUSIONS AND FUTURE
WORKS

In CSD settings, keeping updated the technical docu-
mentation of software is critical, especially when such
software is used further in upstream and downstream
developments. Despite the availability of techniques
to support documentation updates, this task is still
largely manual. As a consequence, when software is
changed frequently keeping the pace for documenta-
tion becomes rapidly intractable.

We presented CodeDocSync, an approach devoted
to enhancing documentation updates in CSD. The ap-
proach leverages LLMs to provide: an automatic up-
dater of the existing technical documentation based
on source code changes; a change descriptor summa-
rizing how the modifications have been interpreted; a
chat replying to custom questions posed by technical
writers.

The concretization in an industrial case study
demonstrates the potentials of the proposed approach
in terms of quality of generated documentation and
corresponding support. Nonetheless, further investi-
gations are required to empirically measure the gains
provided by the automation as well as its applicabil-
ity to diverse kinds of applications and programming
languages. These empirical validations would explore
deeper qualitative feedback from domain experts in-
volved in documentation handling.

From a more technical perspective, our approach
improves the existing state of the art by avoiding a
training phase for the automation support. However,
it would be interesting to provide a more structured
and detailed comparison between pre-trained models
and those fine-tuned on appropriate datasets to mea-
sure the gaps in quality of the generation. Addition-
ally, improvements to the RAG system, such as in-
tegrating re-ranking mechanisms or advanced index-
ing techniques, should be explored to enhance perfor-
mance.

REFERENCES

Aghajani, E., Nagy, C., Linares-Vásquez, M., Moreno, L.,
Bavota, G., Lanza, M., and Shepherd, D. C. (2020).
Software documentation: the practitioners’ perspec-
tive. In Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering, ICSE
’20. ACM.

Aghajani, E., Nagy, C., Vega-Marquez, O. L., Linares-
Vasquez, M., Moreno, L., Bavota, G., and Lanza,
M. (2019). Software documentation issues unveiled.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE.

Ahmad, W., Chakraborty, S., Ray, B., and Chang, K.-W.
(2020). A transformer-based approach for source code
summarization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics.

Ahmad, W. U., Chakraborty, S., Ray, B., and Chang, K.-W.
(2021). Unified pre-training for program understand-
ing and generation.

Ahmed, T. and Devanbu, P. (2022). Few-shot training llms
for project-specific code-summarization. In Proceed-
ings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. arXiv.

Alephium (2023). AI-Powered Improved Docs: Explain-
ing Alephium Full Node Code — alephium.
https://medium.com/@alephium/ai-powered-
improved-docs-explaining-alephium-full-node-
code-6795667fac02. [Accessed 15-11-2024].

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q.,
and Sutton, C. (2021). Program synthesis with large
language models.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

104



Batarseh, F. A., Mohod, R., Kumar, A., and Bui, J. (2021).
The application of artificial intelligence in software
engineering: a review challenging conventional wis-
dom.

Birru, H. (2024). Exploring the use of llms in agile technical
documentation writing. Master’s thesis, Mälardalen
University, Västerås, Sweden.

Bosch, J. (2014). Continuous Software Engineering: An
Introduction, page 3–13. Springer International Pub-
lishing.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brock-
man, G., Ray, A., Puri, R., Krueger, G., Petrov, M.,
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S.,
Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P.,
McGrew, B., Amodei, D., McCandlish, S., Sutskever,
I., and Zaremba, W. (2021). Evaluating large language
models trained on code.

Chui, M., Manyika, J., and Miremadi, M. (2016). Where
machines could replace humans-and where they can’t
(yet). The McKinsey Quarterly, pages 1–12.

Dau, A. T. V., Guo, J. L. C., and Bui, N. D. Q. (2023). Doc-
checker: Bootstrapping code large language model
for detecting and resolving code-comment inconsis-
tencies.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M.,
Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou, M.
(2020). Codebert: A pre-trained model for program-
ming and natural languages.

Gadesha, V. and Kavlakoglu, E. (2024). What is prompt
chaining? — IBM — ibm.com. https://www.ibm.
com/topics/prompt-chaining. [Accessed 14-05-2024].

Gao, S., Wen, X.-C., Gao, C., Wang, W., Zhang, H., and
Lyu, M. R. (2023). What makes good in-context
demonstrations for code intelligence tasks with llms?
In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE.

Haiduc, S., Aponte, J., and Marcus, A. (2010a). Supporting
program comprehension with source code summariza-
tion. In Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume
2, ICSE ’10. ACM.

Haiduc, S., Aponte, J., Moreno, L., and Marcus, A. (2010b).
On the use of automated text summarization tech-
niques for summarizing source code. In 2010 17th
Working Conference on Reverse Engineering. IEEE.

Holscher, E. (2024). Docs as Code — writethe-
docs.org. https://www.writethedocs.org/guide/docs-
as-code/. [Accessed 28-01-2024].

Hu, X., Li, G., Xia, X., Lo, D., Lu, S., and Jin, Z. (2018).
Summarizing source code with transferred api knowl-
edge. In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence,

IJCAI-2018. International Joint Conferences on Arti-
ficial Intelligence Organization.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. (2019). Codesearchnet challenge:
Evaluating the state of semantic code search.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E.,
Bang, Y. J., Madotto, A., and Fung, P. (2023). Survey
of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38.

Khan, J. Y. and Uddin, G. (2022). Automatic code docu-
mentation generation using gpt-3.

Khan, J. Y. and Uddin, G. (2023). Combining contexts from
multiple sources for documentation-specific code ex-
ample generation.

Li, C., Wang, J., Zhu, K., Zhang, Y., Hou, W., Lian, J.,
and Xie, X. (2023). Emotionprompt: Leveraging psy-
chology for large language models enhancement via
emotional stimulus. ArXiv, abs/2307.11760.

Liu, Z., Xia, X., Lo, D., Yan, M., and Li, S. (2023). Just-
in-time obsolete comment detection and update. IEEE
Transactions on Software Engineering, 49(1):1–23.

Lu, J., Yu, L., Li, X., Yang, L., and Zuo, C. (2023).
Llama-reviewer: Advancing code review automa-
tion with large language models through parameter-
efficient fine-tuning. In 2023 IEEE 34th International
Symposium on Software Reliability Engineering (IS-
SRE), pages 647–658.

Luo, Q., Ye, Y., Liang, S., Zhang, Z., Qin, Y., Lu, Y., Wu,
Y., Cong, X., Lin, Y., Zhang, Y., Che, X., Liu, Z., and
Sun, M. (2024). Repoagent: An llm-powered open-
source framework for repository-level code documen-
tation generation.

Mastropaolo, A., Cooper, N., Palacio, D. N., Scalabrino,
S., Poshyvanyk, D., Oliveto, R., and Bavota, G.
(2023). Using transfer learning for code-related
tasks. IEEE Transactions on Software Engineering,
49(4):1580–1598.

Meta (2024). Introducing Meta Llama 3: The most capable
openly available LLM to date — ai.meta.com. https:
//ai.meta.com/blog/meta-llama-3/. [Accessed 03-06-
2024].

Moore, J., Gelman, B., and Slater, D. (2019). A convo-
lutional neural network for language-agnostic source
code summarization. In Proceedings of the 14th In-
ternational Conference on Evaluation of Novel Ap-
proaches to Software Engineering, ENASE 2019,
page 15–26, Setubal, PRT. SCITEPRESS - Science
and Technology Publications, Lda.

Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock,
L., and Vijay-Shanker, K. (2013). Automatic genera-
tion of natural language summaries for java classes. In
2013 21st International Conference on Program Com-
prehension (ICPC). IEEE.

Nguyen-Duc, A., Cabrero-Daniel, B., Przybylek, A., Arora,
C., Khanna, D., Herda, T., Rafiq, U., Melegati, J.,
Guerra, E., Kemell, K.-K., Saari, M., Zhang, Z., Le,
H., Quan, T., and Abrahamsson, P. (2023). Genera-
tive artificial intelligence for software engineering – a
research agenda.

Supporting Automated Documentation Updates in Continuous Software Development with Large Language Models

105



Phan, L., Tran, H., Le, D., Nguyen, H., Anibal, J., Peltekian,
A., and Ye, Y. (2021). Cotext: Multi-task learning
with code-text transformer.

Rai, S., Belwal, R. C., and Gupta, A. (2022). A review
on source code documentation. ACM Transactions on
Intelligent Systems and Technology, 13(5):1–44.

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and
Chadha, A. (2024). A systematic survey of prompt
engineering in large language models: Techniques and
applications.

Shin, J., Tang, C., Mohati, T., Nayebi, M., Wang, S., and
Hemmati, H. (2023). Prompt engineering or fine tun-
ing: An empirical assessment of large language mod-
els in automated software engineering tasks.

Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., and
Vijay-Shanker, K. (2010). Towards automatically gen-
erating summary comments for java methods. In Pro-
ceedings of the IEEE/ACM international conference
on Automated software engineering, ASE10. ACM.

Su, Y., Wan, C., Sethi, U., Lu, S., Musuvathi, M., and Nath,
S. (2023). Hotgpt: How to make software documen-
tation more useful with a large language model? In
Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, HOTOS ’23. ACM.

Tan, W. S., Wagner, M., and Treude, C. (2023). Wait, wasn’t
that code here before? detecting outdated software
documentation. In 2023 IEEE International Confer-
ence on Software Maintenance and Evolution (IC-
SME). IEEE.

Tan, W. S., Wagner, M., and Treude, C. (2024). Detecting
outdated code element references in software reposi-
tory documentation. Empir. Softw. Eng., 29(1).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. (2022). Self-
consistency improves chain of thought reasoning in
language models.

Wen, F., Nagy, C., Bavota, G., and Lanza, M. (2019). A
large-scale empirical study on code-comment incon-
sistencies. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC).
IEEE.

Xu, B., Yang, A., Lin, J., Wang, Q., Zhou, C., Zhang, Y.,
and Mao, Z. (2023a). Expertprompting: Instructing
large language models to be distinguished experts.

Xu, B., Yang, A., Lin, J., Wang, Q., Zhou, C., Zhang, Y.,
and Mao, Z. (2023b). Expertprompting: Instructing
large language models to be distinguished experts.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. (2023). Tree of thoughts: De-
liberate problem solving with large language models.

Zheng, Z., Ning, K., Chen, J., Wang, Y., Chen, W., Guo, L.,
and Wang, W. (2023). Towards an understanding of
large language models in software engineering tasks.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

106


