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Abstract: Organizations aim to transform raw data into valuable insights using advanced analytical methods. Since
data can be replicated and shared, multiple actors can simultaneously utilize the same information. This study
presents the Data Network, a theoretical framework representing potential collaborations among organizations
sharing data in large-scale big data projects, using Data Mesh as a supporting architecture. The Data Network
Game (DNG) extends this model by applying game theory to analyze inter-organizational collaborations, in-
corporating market-imposed constraints that limit compatibility. Various scenarios, defined by distinct benefit
and cost functions, are explored to understand their impact on coalition formation and market dynamics. A
simplified theoretical example shows how coalitions can achieve greater value through collaboration than by
acting independently. This model serves as a practical tool for assessing the trade-offs of cooperation and
offers insights into managing emerging data-driven markets.

1 INTRODUCTION

Data are raw informational assets that organizations
can transform into value to enhance business process
knowledge and support strategic decision-making
(Ylijoki and Porras, 2019; Ramchand and Mahmood,
2022; Wu et al., 2022; Gervasi et al., 2023b; An-
gelelli et al., 2024b; Catalano et al., 2024; Corallo
et al., 2023). Data that exceed specific thresholds in
characteristics such as velocity, variety, and volume
are designated as big data (Laney, 2001). Organiza-
tions extract value from big data primarily through
big data analytics (Gervasi et al., 2023b; Corallo
et al., 2023; Catalano et al., 2024), typically within
initiatives described in the literature as big data
initiatives (Braganza et al., 2017) or big data projects
(Tiefenbacher and Olbrich, 2015; Huang et al., 2015;
Louati and Mekadmi, 2019; Grander et al., 2022).
In fact, data can be considered the fundamental
resource for big data projects and, consequently, for
big data analytics (Ylijoki and Porras, 2019; Gupta
and George, 2016; Gervasi et al., 2023b; Catalano
et al., 2024). However, data and the information
derived from it differ from traditional resources as
they are non-exclusive, allowing multiple actors to
simultaneously utilize them (Hensler and Huq, 2005).
Consequently, organizations might collaborate by
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sharing their data (Bertsekas and Gallager, 2021)
to generate greater value than each could achieve
independently (Dong and Yang, 2020). For this
reason, data sharing across organizations must be
well-regulated, requiring suitable data architectures
that facilitate multi-actor data sharing, such as Data
Vault for data integration (Lindstedt et al., 2009) or
Data Mesh (Dehghani, 2022). Moreover, data may be
associated with a price that organizations would need
to pay in order to access and utilize it. In a dynamic
context, this price fluctuates based on supply and
demand within what is defined as a Data Market
(Koutroumpis et al., 2020).

To model collaboration among organizations
wishing to share data for common objectives, it is
necessary to calculate potential incentives arising
from such collaborations. This involves defining
different types of values associated with data, such as
the potential value of data (Angelelli et al., 2024b;
Corallo et al., 2023), the extractable value of data,
and the related business value (Gervasi et al., 2023b;
Angelelli et al., 2024b), while also understanding
how these values might change through sharing and
collaboration among multiple organizations. In this
study, we define a Data Network as the complex
structure of potential collaborations between or-
ganizations within the data market. To formalize
potential coalitions among organizations and analyze
the various interactions within the Data Network,
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we apply formalism and results from game theory
(Badewitz et al., 2020). Similar approaches have
been used for data markets (Agarwal et al., 2019)
to model data pricing (Bi et al., 2024; Liang et al.,
2018), trading, and protection (Liang et al., 2018).

Finally, the proposed model introduces con-
straints that limit coalitions between organizations,
addressing privacy, security (Van Panhuis et al., 2014;
Angelelli et al., 2024a; Gervasi et al., 2023a), data
valuation (Coyle and Manley, 2024; Angelelli et al.,
2024b), regulatory (Kathuria and Globocnik, 2020;
Graef et al., 2019), and market concerns.

The structure of the paper is as follows: The im-
portance of collaboration in big data projects is cov-
ered in Section 2, which also highlights the choice
of data mesh as an enabling architecture for inter-
organizational data sharing. The Data Network Game
concept is theoretically formalized in Section 3. Sec-
tion 4 offers an in-depth analysis of the model’s com-
ponents, underlying assumptions, and potential im-
plications. Lastly, a real-world examples from the
healthcare industries is presented in Section 5, which
also examine possible model expansions.

2 THE IMPORTANCE OF
COOPERATION IN BIG DATA
PROJECTS

According to the various analogies in the literature,
we consider data as a raw resource with a potential
extractable value, such as metallic ores or oil (Ack-
off, 1989; Ylijoki and Porras, 2019; Saltz, 2015).
Thus, it is possible to associate data with the same
characteristics as other resources, following the VRIO
(Valuable, Rare, costly to Imitate, Organizationally
embedded) model (Barney, 1991). Like traditional
resources, even data are associated with facilitating
factors that enable a company to establish a com-
petitive advantage, such as exclusive access to data,
and exploitative access to data (Fast et al., 2021).
Moreover, while data have all the characteristics of
the VRIO model, the ease of duplicating and shar-
ing it with other actors is an atypical characteristic
compared with other resources, which often enjoy ex-
clusivity properties (Gervasi et al., 2023a). Beyond
data, the knowledge they generate can be consumed
by multiple actors, not only by its creator (Hensler
and Huq, 2005). This feature opens up positive con-
siderations regarding mutual data sharing for greater
value creation. Some challenges, such as the unavail-

ability of specific data or the lack of high-quality data,
could be overcome by architectures that can accom-
modate, manage, and make available a wide variety
of data from diverse sources and organizations (Chen
et al., 2017; Chen et al., 2014; Gervasi et al., 2023a).
Sharing expertise not only within firms but also across
firms, clearly under assumptions of complementarity
and connectivity, could lead to an evolution of the
classic big data value chain towards a value network
triggered by big data (Wu et al., 2022). System The-
ory, and in particular the concept of synergy, explains
how well-orchestrated and shared resource utilization
can generate greater value than the sum of the indi-
viduals; namely, the value is a super-additive set func-
tion:

Value(d1 ∪d2)≥ Value(d1)+Value(d2), (1)
with d1 and d2 being sets of shareable data/resources
(Dong and Yang, 2020). These aspects have signifi-
cant and tangible effects on firm performance (Dong
and Yang, 2020; Tanriverdi and Venkatraman, 2005).
The proliferation of interactions and the growing im-
portance of stakeholders become fundamental in the
distributed co-creation of value, accompanied by the
formation of ad-hoc ecosystems (Del Vecchio et al.,
2018; Malthouse et al., 2019; Roos, 2018). This leads
to a network of collaborations that produces value for
the involved entities. The definition of value network
we provide aims at formalizing the super-additivity
property (1) into a broader context of interdependence
and symbiosis among different actors. This collabora-
tion among the network’s members fosters additional
value that could not be derived from the mere effort
of organizations if they acted alone (Malthouse et al.,
2019; Roos, 2018). In practical terms, organizations
require the adoption of new data architectures that
enable such collaboration to establish a data-driven
strategy that can be implemented by multiple actors.

2.1 Data Mesh: A New Paradigm for
Data Sharing

The development of new data architectures for the
sharing and management of data across multiple
organizations is essential to preserve their potential
value, facilitate sharing among diverse actors, ensure
privacy and security, and support analytical processes
(Priebe et al., 2021; Hechler et al., 2023). In a data-
driven market, one of the key challenges is therefore
to preserve data quality without reducing its potential
(Reggio and Astesiano, 2020), which requires select-
ing the most suitable data architecture for specific
goals. We have identified and adopted the data mesh
as an enabling architecture for multi-actor data shar-
ing within the Data Network and the framework we
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define as the Data Network Game, as it decentralizes
data ownership, enhances scalability, and ensures
domain-driven accountability. This architecture is de-
signed for sharing data between domains that own it,
unlike other architectures, such as, data vault, which
focuses on historical data integration (Lindstedt et al.,
2009), or data fabric, which emphasizes centralized
orchestration of distributed data (Sharma et al., 2023).

The data mesh approach is particularly effective in
contexts of data sharing and reuse (Dehghani, 2022;
Azeroual and Nacheva, 2023), and it is based on four
foundational principles:

• Domain Ownership: each dataset is labeled with
the relevant information, including who is respon-
sible for its content.

• Data as a Product: data are treated as products,
which require investment and whose value is di-
rectly linked to their quality.

• Self-Serve Data Platform: data are stored on a
user-friendly platform, allowing each actor to lo-
cate accessible data that is ready for use without
requiring pre-analytics processing.

• Federated Computational Governance: decen-
tralized approach combining domain autonomy
with global standards, ensuring data security,
compliance, quality, and interoperability.

The principle of domain ownership aims to
decentralize the ownership of analytical data by
assigning it to business domains that are closest
to the data sources or primary consumers, thereby
segmenting the data and managing its life cycle
within each domain (Dehghani, 2022).

Assuming the adoption of a cross-domain data
mesh architecture for inter-organizational data shar-
ing, the big data value chain demands a fundamen-
tal redefinition. The linear value chain can evolve
into a graph structure by reusing the same data prod-
uct across multiple analytics processes (Gervasi et al.,
2023a).

2.2 Cooperative Game Theory for Data
Sharing

In the literature, among related models, we find ex-
amples such as the Data Provision Game (Badewitz
et al., 2020) and the Data Marketplace (Agarwal
et al., 2019), which focus on data pricing and revenue
sharing. Notably, the Data Network Game moves
beyond the concept of directly assigning a specific
price to a data domain. Instead, the model proposes

that individual organizations select others with which
to share their data, thereby recognizing value even
potential value in such data. The selection of do-
mains, and consequently of organizations, becomes
an integral part of the decision-making process,
serving as a guarantee for security, reliability, and,
above all, data quality. In this context, adopting a
data mesh as an enabling architecture for multi-actor
data sharing unlike the traditional big data value
chain (Badewitz et al., 2020; Gervasi et al., 2023b)
represents an innovative approach.

The total benefit generated by a coalition depends
on the combined resources and efforts of its mem-
bers. In the context of data sharing, these benefits of-
ten display increasing returns to scale, meaning that
the value derived from the shared data grows more
than proportionally as the amount or diversity of data
shared increases (Konsynski and McFarlan, 1990).
A key question in this context is how to fairly dis-
tribute the collective benefits among the members of
a coalition in a way that encourages active partici-
pation. Various methods for distributing payoffs are
found in cooperative game theory, such as in profit-
sharing games (Kleinberg and Oren, 2022; Bilò et al.,
2023b; Bilò et al., 2023a), where each player (e.g., a
domain) selects a resource (e.g., a coalition) to max-
imize their individual payoff. Our model adopts a
mechanism where each agent’s payoff is proportional
to their data contribution. Specifically, each agent’s
reward is calculated based on the relative value of
their data compared to the total data value within the
coalition. This proportional distribution ensures that
agents are compensated according to the value they
add to the coalition, motivating them to share valu-
able data and engage in collaborative efforts. How-
ever, agents may face certain incompatibility con-
straints that prevent them from collaborating with oth-
ers. These constraints could stem from legal restric-
tions, privacy concerns, or competitive interests (My-
erson, 1980). Such limitations reduce the pool of fea-
sible coalitions and must be taken into account when
modeling coalition formation. For a coalition struc-
ture to be sustainable, it must be stable, meaning no
agent or group of agents has any incentive to leave
and form a new coalition.

3 DATA NETWORK GAME

The Data Network Game is a conceptual frame-
work designed to represent collaborations among
organizations that share their data. As previously
discussed, we posit that the data mesh serves as
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an enabling data architecture for multi-actor data
sharing and management. Within the context of the
Data Network Game, the domains of the data mesh
are thus considered as players, or “actors”, engaged
in a cooperative or competitive game system aimed
at maximizing the value derived from data sharing.

In the foundational version of the Data Network
Game presented in this study, we assume that each or-
ganization owns only one data domain. Consequently,
each domain is viewed as representing an individual
organization that operates autonomously but is incen-
tivized to collaborate with other domains (organiza-
tions) to increase the total value generated. In this
model, domain coalitions enable each participant to
achieve a potential gain greater than what could be
realized independently, reflecting the principles of co-
operative game theory. The primary assumptions un-
derlying the model are as follows:

• Single-Domain Ownership: each organization is
associated with a single domain.

• Incompatibility Constraints: the model ac-
counts for market-imposed incompatibility con-
straints that limit coalition formation between do-
mains. These constraints represent legal, ethical,
or competitive limitations, ensuring that the Data
Network Game reflects realistic conditions for co-
operation.

• Coalition Formation: domains are permitted to
form coalitions, provided they adhere to incom-
patibility constraints.

• Incremental Value Through Coalition: it is as-
sumed that participation in a coalition generates
incremental value for the involved domains, ex-
ceeding the sum of values they would achieve in-
dependently.

The cost function associated with coalition for-
mation considers configuration costs, data integration
expenses, and compliance requirements. The bene-
fit function reflects the added value from data sharing
and access to larger and more diverse datasets. Fi-
nally, the distribution of gains among coalition mem-
bers is proportional to each domain’s contribution,
fostering balanced and sustainable collaboration. Un-
der these assumptions, the Data Network Game seeks
to model a collaborative network of domains that
maximizes the value of shared data while respecting
market restrictions and promoting fair and dynamic
competition among actors.

3.1 Domains and Market Structure

We consider a market M as a set of n organizations,
M = {O1,O2, . . . ,On} where each organization Oi
manages a set of domains Di. In the model presented
we assume that each organization has only one
domain. Consequently, the total set of domains
in the market is D = {d1,d2, . . . ,dn}. Specifically,
a domain di ∈ D is a business entity within an
organization responsible for managing a certain
quantity of data, and v(di) ≥ 0 denotes the value of
the data owned by di. Therefore, we identify each
di with the set of data it manages and v(di) with its
overall value. Table 1 provides the nomenclature used
in the modeling of the Data Network Game for clarity.

The market imposes incompatibility constraints
(I ), where I ⊆ {{di,d j} : di,d j ∈ D, i ̸= j}. When-
ever {di,d j} ∈ I , it means that domains di and d j
cannot belong to the same coalition due to legal,
ethical, or other competitive considerations. These
constraints prevent certain domains from collaborat-
ing and must be respected when forming coalitions.
In realistic scenarios, constraints that limit the free
sharing of data among organizations are imposed to
protect competition, consumers, and their personal
data (Graef et al., 2019). Although the replicability
of data is an incentive for building a confederate, it
is clear that multiple incompatibility factors related,
for example, to privacy and security must be taken
into account (Cavanillas et al., 2016; Gervasi et al.,
2023a). Indeed, incompatibility constraints include
legal and political issues, such as restrictive policies,
data ownership, and privacy protection. Incompati-
bility constraints derive from rules that are external
to organizational choices, as they are the responsi-
bility of public authorities (Kathuria and Globocnik,
2020; Graef et al., 2019), which ensure compliance
with laws, both administrative and financial. In the
context of collaborative settings, partial information
availability about sensitive data is also a source of un-
certainty that may influence decision-making regard-
ing security constraints and prioritization of interven-
tions, which requires appropriate methodologies for
their evaluation (Angelelli et al., 2024a). Lastly, it
is important to highlight that technical, economic, or
technological issues due to inefficient data manage-
ment or lack of resources are not constraints of in-
compatibility.

3.2 Game Structure

Each domain di ∈ D is treated as a player in the coop-
erative game. The objective of each domain is to max-
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imize its payoff by joining a coalition that adheres to
the market-imposed incompatibility constraints. For
this reason, we consider a feasible coalition structure
C = {C1,C2, . . . ,Ck} as a partition of D, where each
coalition Ch satisfies the incompatibility constraints
(namely, each coalition Ch is feasible). Here, k is
the total number of coalitions in the structure, while h
(with 1 ≤ h ≤ k) is simply an index denoting the h-th
coalition within the partition. So, the feasible strategy
space Si of each domain di consists of all coalitions
C ⊆ D that include di and respect the incompatibility
constraints:

Si = {C ⊆ D | di ∈C,∀d j ∈C {di,d j} /∈ I}. (2)

This set represents all possible coalitions di that can
feasibly join, given the incompatibility constraints.

Table 1: DNG: Terminological Foundations.

Description
M Market: set of organizations
D Set of domains in M
Oi i-th organization
di Domain of i-th organization

v(di) Value by domain di
C Coalition structure
Ci i-th coalition
Si i-th strategy

b(Ci) Benefit function for coalition Ci
c(Ci) Cost function for coalition Ci
ui(C j) Payoff of i-th domain in coalition C j

3.3 Benefit and Cost Functions

Once some domains are part of the same coalition,
we need to define a function capable of expressing
the individual return to each individual domain as a
function of its own value and that generated by the
coalition. This return will depend on the domains of
the same coalition. In the first step, we define a benefit
function b(C j) for a coalition C j as:

b(C j) = f

(
∑

di∈C j

v(di)

)
, (3)

where f : R≥0 → R≥0 is a non-decreasing convex
function with f (0) = 0 that depends on the big data
characteristics, such as volume, variety, velocity, and
other factors (Geerts and O’Leary, 2022). This for-
malizes the super-additivity property (1) and ensures
increasing returns as the quantity of data increases,
capturing the power of data value generation. There-
fore, the total benefit of the market for a coalition

structure C = {C1,C2, . . . ,Ck} is:

SUMb(C ) =
k

∑
j=1

b(C j). (4)

This represents the aggregated benefit generated by
all coalitions in the market.

Regarding the costs for domains to participate in
the coalition, including configuration, data integra-
tion, and compliance costs, we define a cost function
c(C j) for a coalition C j as:

c(C j) = c0 + ck · |C j|γ, (5)

where c0 is a fixed cost, ck is the marginal cost for
domains in the coalition C j, |C j| denotes the number
of domains in coalition C j, and γ > 0 is a parameter
that adjusts cost growth as a function of coalition size.
This captures both the coalition formation costs and
the incremental cost of adding new domains to the
coalition. The total cost of the market for a coalition
structure C = {C1,C2, . . . ,Ck} is:

SUMc(C ) =
k

∑
j=1

c(C j). (6)

3.4 Payoff Function and Stability

Considering that each coalition produces a benefit for
all the participating domains, it is interesting to deter-
mine a feasible way to distribute the benefit among all
of them. To take into account the contribution given
by each domain di in coalition C j to the total benefit,
we propose the following payoff function:

ui(C j) = wi(C j) · [b(C j)− c(C j)] , (7)

where wi(C j) := v(di)
∑dh∈Cj v(dh)

∈ [0,1] is the weight

that models the fraction of total value produced by
domain di in coalition C j.

The inclusion of such payoff functions defines an
interaction among agents that could potentially lead to
stable coalition structures, where no player (or group
of players) has any incentive to deviate. The resulting
strategic interaction can be modeled by resorting to
some tools from cooperative game theory. We point
out that our model fits in the general structure of hedo-
nic games (Bogomolnaia and Jackson, 2002). Then,
we propose to apply to our model two notions of sta-
bility widely adopted for the general class of hedonic
games: the core stability and the Nash stability.

Definition 1 (Core-stability). A coalition structure
C = {C1, . . . ,Ck} is core-stable if, for any subset
C′ ⊆ D that respects the incompatibility constraints,
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there exists at least one domain di ∈ C′ such that
ui(C(di))≥ ui(C′), where C(di) denotes the coalition
of C containing di.

A coalition structure is core-stable if, for any
possible subset of domains C′ that decides to form a
separate feasible coalition, there exists at least one
domain in C′ whose individual payoff would not
increase by deviating. This means that the coalition
structure is resilient to group deviations because no
subset of domains can collectively break away to
form a new coalition that would make all its members
strictly better off. Therefore, in a core-stable struc-
ture, there is no incentive for any group of domains
to leave and form a better arrangement.

If the strategic environment among agents is not
highly cooperative, it might happen that agents inde-
pendently choose which coalitions to join. In such a
scenario, we can adopt a (often weaker) stability con-
dition by assuming that a coalition structure is stable
if no domain can improve its utility through unilateral
deviations only (i.e., by moving from its current coali-
tion to another). This form of stability is typically
referred to as Nash-stability (or individual stability),
and it suggests that, while domains might not be able
to prevent group deviations, they have no incentive
to leave their coalition individually to join another, as
doing so would not improve their utility.
Definition 2 (Nash stability). A coalition structure
C = {C1, . . . ,Ck} is Nash-stable if, for any domain
di ∈ D, (i) ui(C(di)) ≥ ui(C j ∪ {di}) holds for any
C j ∈ C and (ii) ui(C(di))≥ ui({di}), where C(di) de-
notes the coalition of C containing di.

We observe that the first condition of the above
definition ensures that no domain has an incentive
to leave its current coalition to improve its utility
by joining another group (i.e., jumping into another
coalition). The second condition states that no
domain can improve its utility by forming a coalition
where it is the sole participant. This implies that
being alone, or acting independently, would not
provide a better outcome compared to remaining
in the current coalition. Together, these conditions
ensure that the coalition structure is stable with
respect to both unilateral shifts to other groups and
complete isolation.

In the literature related to hedonic games, it has
been shown that core-stable or Nash-stable coalition
structures do not always exist, and their computa-
tion can be intractable (see, for instance, (Woeginger,
2013b; Woeginger, 2013a; Peters and Elkind, 2015;
Sung and Dimitrov, 2010)). Nevertheless, investigat-
ing the existence and computation of stable coalition

structures within our specific model remains worth-
while, as this research could lead to a deeper under-
standing of cooperative behavior in our strategic en-
vironment and its implications for overall system ef-
ficiency (e.g., measured by total benefit or total cost).

3.5 Theoretical Case Study

In Table 2 we present a theoretical case in which there
are 10 domains D = {d0,d1, . . . ,d9} and their incom-
patibility constraints. For illustrative purposes, the
value of each domain, denoted v(di), is assigned ran-
domly from a predefined range (e.g., via a uniform
distribution) to capture variability in data quality, vol-
ume, and synergy potential.

Table 2: The value and the incompatibility constraints of
each domain in the market.

Domain Value Constraints
d0 42.33 d1,d6,d7
d1 32.57 d0,d3,d8
d2 43.49 d3,d9
d3 51.41 d1,d2,d4,d5
d4 70.23 d3,d6,d9
d5 30.13 d3,d7,d9
d6 40.22 d0,d4,d7,d8
d7 49.40 d0,d5,d6,d9
d8 69.85 d1,d6
d9 44.30 d2,d4,d5,d7

The fixed costs c0 used in this example are equal
to 5, γ = 0.3, and the marginal costs ck related to
the coalitions that will form were considered as
uniformly random amounts in the range [1,30]. The
cost function used is c(C j) = 5 + ck | C j |0.3. The
selection of γ = 0.3 ensures scalability across do-
mains, emphasizing shared architectures’ efficiency.
Its general applicability requires empirical parameter
estimation based on defined data and enabling
technologies. For the benefit function relative to
coalition C j, we used a non-decreasing and convex

function b(C j) =
(

∑di∈C j v(di)
)1.2

. The benefit

function f (x) = x1.2 satisfies the super-additivity
property of data value and grows with the number of
organizations in the coalition under ideal conditions.
In real-world scenarios, however, a threshold may
emerge beyond which the benefits significantly
decrease.

Finally, the incentive for each domain di ∈ D to
participate in coalitions is determined by the pay-
off function ui defined in (7). In Table 3, we report
for each organization the respective benefit, cost, and
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payoff, assuming that each organization is a coalition
in its own right.

Table 3: The benefits, costs, and payoffs referred to coali-
tions formed by a single domain.

Coalition Benefit Cost Payoff
{d0} 89.52 21.99 67.53
{d1} 65.36 34,70 30.66
{d2} 92.50 29.44 63.06
{d3} 113.05 21.04 92.01
{d4} 164.37 13.45 150.92
{d5} 59.54 12.17 47.37
{d6} 84.20 31.63 52.57
{d7} 107.75 18.59 89.16
{d8} 163.30 12.52 150.78
{d9} 94.56 17.36 77.20

Given the above parameters, all possible coalition
structures were evaluated. Among all admissible
coalition structures, a core-stable coalition structure
CE = ({d2,d4,d7,d8},{d1},{d3,d6,d9},{d0,d5})
was identified. In Figure 1, for each domain di,
the payoff without participating in any coalition is
compared with the payoff generated by the same
domain within the coalition CE that includes it,
showing that the payoff is greater when the domain is
part of a coalition.

Figure 1: Comparison of Payoffs Inside and Outside Coali-
tions.

Clearly, the value of data is extractable, quantifi-
able, and realizable only in the presence of a big data
initiative. It is not possible to think of data value as
agnostic and not contextualized. In this sense, the in-
tangible nature of data value relates to value percep-
tion by those involved in the Data Network; in spe-
cific contexts, such perception can be quantified, e.g.,
through information-theoretic notions (Corallo et al.,
2020). Thus, in the example, we assume that each
coalition is engaged in a set of big data initiatives
where the data they share are recognized as having
potential and extractable value.

Figure 2 represents the core-stable coalition struc-

Figure 2: Core-stable coalition structure of the example.

ture identified in the example. The configuration
is CE = {C1,C2,C3,C4}, where C1 = {d2,d4,d7,d8},
C2 = {d1}, C3 = {d3,d6,d9}, and C4 = {d0,d5}. The
dotted lines represent the incompatibility constraints
between the various domains. The constraints of do-
main d5 have been highlighted as an example.

4 DISCUSSION

The Data Network Game models the dynamics
of potential collaborations between organizations
interested in data sharing. At the core of this model,
the concept of data mesh emerges as a key element
for data sharing, promoting domain-oriented man-
agement, the use of a self-serve data platform, the
adoption of shared governance among all members
of the coalition, and the view of data as products
(Dehghani, 2022). A potential extension of the model
could include the sharing of additional resources. Be-
yond data, the sharing of technologies (Technology
Mesh) could further increase the value extracted from
the data, fostering greater interoperability between
domains (Gervasi et al., 2023a). In addition to the
exchange of digital resources, the model could be
extended to include the sharing of human resource
skills available to each domain, with a mutual knowl-
edge transfer (Angelelli et al., 2024b) and exchange
of abilities.

Within the Data Network Game, there exists a
wide range of possible configurations due to the
numerous parameters that characterize it, such as the
potential value attributed to the data, the extractable
or generable value, the corresponding business value
(Angelelli et al., 2024b), benefit and cost functions,
and incompatibility constraints. Organizations are
therefore called upon to analyze various scenarios
and assess the utility of collaborations, considering
not only specific big data initiatives but also the pos-
sible temporal evolution of the coalitions themselves.

Data Network Game: Enabling Collaboration via Data Mesh

87



Indeed, a coalition should not be understood as a
temporary collaboration between organizations with
a common and defined goal. Rather, a coalition in the
market should be viewed as a stable strategic alliance
that exists within the market, aimed at consolidating
its position or emerging as a new key player.

In the Data Network Game, each domain aims to
maximize its own yield, namely the value generated
through the strategic sharing and utilization of data
via targeted collaborations with other domains, in
line with the principles of hedonic games. For
simplicity, the proposed model assumes a one-to-one
correspondence between organizations and domains,
treating them almost as synonyms. However, it is
plausible to extend this representation by assuming
that an organization may manage multiple domains
(or business units) and consequently participate
simultaneously in multiple coalitions. A crucial
constraint of the model establishes that each domain
can share its data exclusively with one coalition at a
time, ensuring the exclusivity of the data within each
coalition. However, it is possible for two domains
belonging to the same organization to be part of the
same coalition. This scenario opens new perspectives
for the model, where organizations do not merely
optimize the performance of individual domains but
aim at maximizing the overall returns derived from
all the domains under their control.

Within the Data Network Game, data are con-
ceived as products that organizations seek to enhance
and combine strategically. While in the data mesh
paradigm the principle of data as a product empha-
sizes data quality and usability, in the Data Network
Game the focus shifts to the value generated by the
data itself. The value of a domain depends on the
intrinsic potential of the data it contains and on the
opportunities to integrate them with data from other
domains, thereby increasing their overall information
value. Therefore, it is essential to formally define a
value function associated with the data, considering
both its raw form and the transformation processes
it may undergo. Additionally, it is necessary to
understand how the value of data may evolve over
time and in relation to market dynamics (Angelelli
et al., 2024b). For example, in the theoretical case
study, the value function was not explicitly defined,
nor was a temporal dependency considered. Such a
dependency is crucial in big data initiatives to model
the obsolescence of extracted information in relation
to the market and its impact. In this context, domains,
based on the value recognized by the market, can be
assimilated to stocks in a data market (Agarwal et al.,

2019). The value of these stocks could fluctuate
based on the number of coalitions interested in
integrating that domain, and the value attributed to it
by those coalitions.

It thus becomes crucial to identify the factors that
influence the formation and stability of coalitions so
that the potential value extracted from the data can
be maintained over time and across multiple big data
initiatives. The theoretical example presented was
constructed to show how domains benefit more by
participating in coalitions CE rather than operating
independently. An aspect that could be useful to
analyze and possibly model concerns the dynamics
that could generate market polarization, favoring
some players over others. For instance, in a Data Net-
work Game, the market rules might favor coalitions
between smaller organizations, but it is also possible
that they could favor larger organizations (e.g.,
superstar firms (Fast et al., 2021)). In the latter case,
collaboration among market-leading organizations
could result in the creation of an almost monopolistic
market. However, antitrust authorities are placing
an increasing amount of emphasis on preventing
the concentration of knowledge and market power
in the hands of a few strong corporations, as this
could impede innovation and limit consumer choice
(Spulber, 2023). Therefore, the market rules, and
hence those of the Data Network Game, must be
refined to ensure a market that does not polarize and
does not favor any particular category of organization
in advance.

In the context of the Data Network Game, ad-
hering to strict data security and protection standards
plays a fundamental role. Although privacy and se-
curity are critical considerations for data sharing, it
is essential to integrate concrete methodologies to
strengthen the framework of the Data Network Game,
such as federated learning for model training with-
out sharing raw data and differential privacy for con-
fidentiality ensures robust practices and data gover-
nance compliance (Faroukhi et al., 2020). It is plau-
sible that such standards could become a key fac-
tor in coalition formation, potentially evolving into
a new type of incompatibility constraint. This con-
straint would no longer be imposed solely by market
regulators but would arise directly from the organiza-
tions themselves, which could set stricter security re-
quirements to access certain collaborations. This be-
havior could encourage organizations to adopt higher
and more restrictive security measures to avoid ex-
clusion from strategic coalitions. The federated com-
putational governance of the data mesh is pivotal in
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regulating coalitions and their associated constraints,
ensuring adherence to shared standards both within
coalitions and at the market level. Furthermore, it
enables the effective management of control issues,
a key challenge in coalition conflicts (Inkpen, 2005;
Gervasi et al., 2023a).

5 FUTURE WORK

The Data Network Game presents significant
prospects for development, aimed at refining the
theoretic model and enhancing its ability to represent
complex and evolving contexts. Among the proposed
extensions, a notable one is the possibility of allowing
each organization to participate in the Data Network
through a plurality of domains, thus providing a
more accurate modeling of the operational reality of
large multi-sector organizations. This generalization
would enable capturing the diversity and specificity
of the benefits arising from interactions between
distinct domains. Simultaneously, it becomes nec-
essary to introduce formal constraints regulating
the possibility for an organization to affiliate with
multiple coalitions simultaneously, specifying the
assumptions and operational conditions under which
such multiple affiliations are permissible in the
market while ensuring consistency in competitive
and collaborative dynamics within the model. Hy-
pergraphs of incentives and constraints, which
each represent the possible advantages of coalition
relationships and the restrictions imposed by the
market, might be used to expand the model in this
way.

Additional potential extensions of our model
might result from investigating potentially more
realistic payoff functions, in which payoffs are es-
tablished using a network that simulates the efficacy
of interactions within the same coalitions. Therefore,
investigating new generalizations of the Data Net-
work Game that incorporate graphs or hypergraphs
into their payoff structure (e.g., in (Aloisio et al.,
2020; Aloisio et al., 2021; Aloisio et al., 2024; Apt
et al., 2017; Bilò et al., 2022; Bogomolnaia and
Jackson, 2002)) would be a valuable direction for
further research. The formalization of constraints
is crucial to prevent excessive concentrations of
informational power within coalitions, reducing the
risk of non-competitive or asymmetric configura-
tions. Constraints define the restrictions that the
Data Network Game must adhere to. These can be
external, such as regulatory requirements related to
privacy and security, or internal, aimed at ensuring

market balance. External constraints may result in
incompatible configurations within the model, while
internal constraints can take the form of penalties
or incentives designed to promote specific coali-
tions over others. The implementation of external
constraints or the definition of mechanisms such as
penalties must be overseen by a designated authority
acting as the regulator and governor of the data
market. Consequently, the model must incorporate a
dynamic representation of constraints, capable of
adapting to new regulations without destabilizing the
market game, and integrating them into the cost and
benefit functions of participating organizations. Ad-
ditionally, the model must identify network structures
that violate fair play principles and detect coalitions
that may create power imbalances.

A final central aspect in the generalization of the
Data Network Game concerns the possibility of struc-
turing a dynamic data market in which the data and
information generated are treated as tradable assets,
and their value fluctuates over time based on key pa-
rameters such as quality, rarity, and utility value. In
such a configuration, the value of data can be quanti-
fied through information metrics well suited to a dy-
namic setting (Angelelli et al., 2020), enabling real-
time evaluation of the effectiveness of coalitions and
monitoring the evolution over time of the benefits
generated by the big data projects implemented by or-
ganizations (Angelelli et al., 2024b). This approach
provides a flexible and adaptive framework capable
of optimizing the management of informational re-
sources and supporting strategic decisions based on
variations in value and demand in the market. Regard-
ing competition and cooperation strategies between
coalitions, the model could be enriched to account for
the balance between incentives for collaboration and
competitive pressures. This would allow for the ex-
ploration of more complex scenarios in which coali-
tions do not only operate as cooperative entities but as
actors in a strategic competition.

5.1 Healthcare Case Study: Insights
and Implications

The theoretical framework of the Data Network
Game requires validation through real-world appli-
cations, particularly in sectors such as healthcare,
finance, and public services. These domains face
significant challenges in balancing privacy, security
risks, and the benefits of data sharing among various
entities and actors (Cavanillas et al., 2016; Pellegrino
et al., 2024). For instance, Systems-of-Systems
approaches have been applied to hospital facility
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management across districts or regions to handle
events like pandemics (Pellegrino et al., 2024; Cheng
et al., 2022). In this context, extending the model to
multi-domain scenarios becomes essential. Despite
the advantages of data sharing in healthcare (Shen
et al., 2019), numerous barriers persist, especially
regarding the risks associated with sharing sensitive
data (Van Panhuis et al., 2014). These obstacles are
not always rooted in incompatibility constraints but
must be addressed to foster a high-quality, relevant
data ecosystem that generates community-wide value.

Defining a realistic value function for data do-
mains is a key challenge. Building on collabora-
tions with stakeholders and analyses of real-world use
cases, future work will propose and evaluate: (1) A set
of value functions centered on data quality, character-
ized across multiple dimensions (Xiang et al., 2013);
(2) constraints based on a multilayer approach for se-
curity issues (Faroukhi et al., 2020); and (3) modeling
and quantifying the information extracted from data
along with its temporal evolution, including obsoles-
cence. In particular, these aspects were selected be-
cause data quality is crucial in analytics, and the cost
associated with achieving specific quality standards is
offset by the benefits such data provide to the overall
system (Badewitz et al., 2020). Meanwhile, informa-
tion extracted from data often loses value over time.
Temporal effects on information can be effectively
addressed when data are collected over time, using
information-theoretic methods (e.g., cross-entropy-
based approaches) designed to balance previously ac-
quired information with newly collected data (An-
gelelli et al., 2020; Angelelli and Konopelchenko,
2021). This, in turn, could provide deeper insights
into how coalitions might evolve over time and, con-
sequently, how the data market itself may transform.

6 CONCLUSIONS

In conclusion, the Data Network Game provides an
advanced theoretical framework for modeling and
representing potential collaborations between orga-
nizations focused on data sharing within big data
projects. The model emphasizes the importance of
structuring stable strategic coalitions, in compliance
with regulatory, security, and market constraints, in-
tegrating both competitive and collaborative dynam-
ics. The potential value of data, treated as tradable
assets, and the informational value generated from
these, through the big data projects conducted by
the coalitions, are key elements of the Data Network
Game. The model is applicable both in community-

oriented sectors, such as public administrations and
healthcare institutions, and in profit-driven contexts,
such as through the creation of data markets. Future
perspectives include the expansion of the model to in-
clude multi-sector organizations, the creation of a dy-
namic data marketplace, the integration of adaptive
mechanisms to align constraints based on evolving
regulatory requirements, and the introduction of mul-
tivariate dynamic incentives and constraints within
the model. The ultimate goal is to identify market
configurations within real-world scenarios that ensure
an optimal balance between cooperation and com-
petition, promoting the stability and effectiveness of
coalitions in the long term and, therefore, the market
itself.
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