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Abstract: Serverless applications are based on Function-as-a-Service (FaaS) platforms where serverless functions in-
teract with other cloud-specific services. The integration of these components is crucial for the application’s
functionality and must be adequately tested. Testing criteria can help here by supporting developers in evalu-
ating test suites and identifying missing test cases. This paper presents a framework for evaluating integration
testing criteria in serverless applications by showing the processes needed for evaluating the criteria. The
process defined is shown for some control and data flow criteria and applied to some serverless applications
showing the feasibility of the approach.

1 INTRODUCTION

Serverless computing became popular with the intro-
duction of Amazon’s AWS Lambda in 2014 and is
now also provided by other cloud providers like Mi-
crosoft’s Azure Functions or Google’s Cloud Func-
tions (Baldini et al., 2017).

The serverless functions are the core of serverless
applications and are executed in an instance support-
ing the corresponding programming language where
the function is written. These instances are man-
aged by the cloud platform provider, which can de-
cide whether to create new instances or shut down
old instances after some time of inactivity. There-
fore, developers cannot rely on the instance’s state
between two function calls and have to assume that
the instance is stateless. This statelessness enables
the cloud platform provider to scale the functions au-
tomatically.

However, since the state is not guaranteed to be
kept between serverless function calls, other services
have to be used to keep the state of the application.
These are typically other cloud platform services like
data storage services where data can be stored be-
tween function calls. The combination of serverless
functions with other cloud services builds a serverless
application.

However, the complexity that arises from the com-
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bination of serverless functions and other cloud ser-
vices needs to be tested. Since it is difficult for de-
velopers to know if a test suite is complete, integra-
tion testing criteria can help evaluate test suites and
support the identification of missing test cases. By
interviewing experts in the domain of serverless com-
puting, integration testing was identified as a crucial
problem in (Lenarduzzi et al., 2021). Furthermore,
the need for coverage criteria on the integration level
and the challenge of measuring coverage was identi-
fied in (Lenarduzzi and Panichella, 2021).

In our recent work, we tackled these problems
by introducing a model for serverless applications
in (Winzinger and Wirtz, 2019b) and establishing
testing criteria for integration testing in (Winzinger
and Wirtz, 2019a; Winzinger and Wirtz, 2020). Fur-
thermore, we showed how the testing criteria can
be measured in (Winzinger. and Wirtz., 2021) and
how test cases can be automatically generated in
(Winzinger and Wirtz, 2022). The criteria were fi-
nally evaluated in (Winzinger and Wirtz, 2023).

In this work, we present our framework for eval-
uating integration testing criteria in serverless appli-
cations that summarizes the previous work and con-
tributs the processes needed for the evaluation of the
criteria. In contrast to other work (Frankl and Weiss,
1991; Hutchins et al., 1994), where test criteria were
evaluated at the code level, our approach focuses on
integration test criteria and supports the automatic
generation of test cases.
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2 FRAMEWORK FOR
EVALUATING INTEGRATION
TESTING CRITERIA

We provide an approach for the evaluation of inte-
gration testing criteria in serverless applications. A
rough overview of the creation of test cases and their
evaluation of their fault detection potential is given in
Figure 1 showing the workflow.
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Figure 1: Workflow of framework.

The testing criteria require certain aspects of an
application to be tested. The aspects required for the
testing criteria can be abstracted away in a model rep-
resenting the application which builds the foundation
of the process. This model should contain all relevant
information required for the identification of coverage
criteria and later steps in the evaluation process. By
using the source code of the serverless functions of
the application and the infrastructure file, the file can
be created semi-automatically.

Based on the model and testing criteria, testing
targets that need to be covered to meet the correspond-
ing coverage criteria can be identified. Depending on
the testing criteria, a more or less descriptive model is
required.

These testing criteria are used in the next step to
create test cases, where at least one test case is cre-
ated for each testing target. Ideally, these test cases
are created automatically to support the objectivity of
the created test cases. The automatic creation requires
additionally an instrumented version of the serverless
application which can measure the testing targets cov-
ered and a model of the application which provides
interfaces for the containing serverless functions.

These test cases are evaluated for fault detection
potential using mutation testing. In mutation testing,
mutation operators are needed to define how a fault
is injected into an application. Such an application
is called a mutant, which is finally deployed. Test
cases are executed on these mutants to measure the
fault detection potential. Based on the measurement

of the fault detection potential of the single test cases,
the criteria are finally evaluated.

In the following, the phases and conditions are de-
scribed in more detail.

2.1 Model Creation

In our approach, applications are modeled as a de-
pendency graph where the nodes represent the com-
ponents of the application. These components can be
divided into serverless functions, data storage compo-
nents, and other services provided by the cloud plat-
form. The arcs between the components initialize the
start of the action between a component, e.g., if an arc
from a serverless function is directed to a data storage,
it indicates that the serverless function uses the data
storage. Furthermore, the arcs are annotated with ad-
ditional information when a data storage component
is accessed, indicating the kind of CRUD operation
used.

Additionally, the serverless functions contain in-
formation about their interface since this information
is needed to invoke the serverless functions for test-
ing directly. To support data flow testing, information
about the location where the data are created and used
is also saved in the model.

The creation of such a model can be semi-
automated by reading the infrastructure file of the ap-
plication and the source code of the serverless func-
tions. While the infrastructure file can be used to iden-
tify all components of the applications and some rela-
tions between them, the source code has to be parsed
to identify all relations, interfaces, and data flow in-
formation between these components, which can be
supported by a good parser, but not fully automated.

2.2 Test Criteria

Based on the model, both control flow and data flow
criteria were selected.

Taking inspiration from (Linnenkugel and Muller-
burg, 1990), where the criteria are defined at the mod-
ule level, the following coverage criteria focusing on
the control flow are suggested for serverless applica-
tions in (Winzinger and Wirtz, 2019a; Winzinger and
Wirtz, 2020)which can be applied by using the previ-
ously defined model.

• All-resources (AllRes) requires that every re-
source is executed at least once. A resource is the
instance of a service like a serverless function or
a data storage.

• All-resource-relations (AllRel) requires that every
relation between resources is executed (e.g., all
edges between the nodes are covered).
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Similarly to the control flow criteria, the data flow
criteria consider interactions where several resources
are involved. Thus, inspired by (Linnenkugel and
Mullerburg, 1990), data flow criteria are suggested in
the following:

If x is a definition of a value within a serverless
function that is used by another resource, then:

• All-resource-defs (AllDefs) requires that every x
is at least used once in another resource without
being redefined before its usage.

• All-resource-uses (AllUses) requires that every x
is used by all usages of x in other resources with-
out being redefined before its usage.

• All-resource-defuse (AllDefUse) requires that:

– each definition of a value within a serverless
function that is used by another resource is used
at least once in another resource without being
redefined before its usage.

– each usage of a value defined in another re-
source is used at least once in combination with
any definition without being redefined before
its usage.

These criteria are the criteria that are investigated
in the approach. If other criteria are selected or pro-
posed, it might be required that the model of the pre-
vious step is adapted to provide all relevant infor-
mation. Furthermore, the following steps might also
need adaptations to produce adequate test cases.

2.3 Measurement of Testing Targets

The coverage of testing targets must be measured
when test cases are executed, which is required both
for the automatic generation of test cases and the final
evaluation where the potential of the coverage criteria
is evaluated. Therefore, in (Winzinger. and Wirtz.,
2021) a general approach was introduced to measure
the data flow coverage criteria mentioned above using
serverless functions. In addition to this work, we also
extended our approach to measure control flow crite-
ria. By passing the relevant information between the
components needed for the data flow and the control
flow criteria and evaluating these values, the coverage
can be measured.

Figure 2 shows a box plot with the median ex-
ecution times when a serverless function calls an-
other serverless function synchronously on AWS with
different measurements. In addition to the previous
work and the control flow and data flow measure-
ment, Open-Telemetry, a standardization approach to
effectively observe applications, was measured using
Jaeger as a tracking backend. Also, Amazon’s X-Ray
was additionally used for comparison, which is the

monitoring solution of Amazon that can be applied to
trace and visualize the resources used by a request.
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Figure 2: Measurement of coverage.

The measurement was also applied to two other
scenarios in which a data storage service was used.
For all three scenarios and all the criteria imple-
mented, the effect size was calculated indicating how
strong the overhead of the instrumentation was. For
all scenarios and criteria implemented, the effect size
was less than 0.19 which is still small according
to (Cohen, 1992) while the other measurement ap-
proaches showed an effect size of at least 0.35.

2.4 Automatic Generated Test Cases

For the evaluation, test cases are automatically gener-
ated according to (Winzinger and Wirtz, 2022) which
saves time in the generation of numerous test cases
and makes the creation more objective.

For each testing target, a specific test case is gener-
ated. The approach for the creation of test cases iden-
tifies the first potential serverless function that might
have to be invoked to cover the specific testing tar-
get. This is done statically, by analyzing the model
of the serverless function and analyzing related com-
ponents of the serverless functions where the testing
targets are located. In the second step, the serverless
functions are executed with concrete data which are
generated according to the following heuristics.

• Same Input: Use the value of a key-value pair of
a previous input with the same key.

• Random Input: Use the value of a random key-
value pair of a previous input.

• Same Output: Use the value of a key-value pair
of a previous output with the same key.

• Random Output: Use the value of a random key-
value pair of a previous output.
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• Same Values: Use the same random value for all
values.

Up to ten different input data were generated for each
heuristic and structure of serverless functions that was
identified for each testing target. Table 1 shows for
three different applications the coverage where for
each application more than 70% of the testing targets
could be covered.

Table 1: Automatic created test cases.

Testing Automatically Manually
Targets Covered Covered

Application 1
All-Resources 17 17 (100%) 0 (0%)
All-Relations 18 18 (100%) 0 (0%)

All-Defs 12 9 (75.00%) 3 (25.00%)
All-Defuse 18 16 (88.89%) 2 (11.11%)
All-Uses 38 24 (64.16%) 14 (36.84%)

∑ 103 84 (81.55%) 19 (18.45%)

Application 2
All-Resources 11 10 (90.91%) 1 (9.09%)
All-Relations 15 12 (80.00%) 3 (20.00%)

All-Defs 5 5 (100%) 0 (0.00%)
All-Defuse 11 11 (100%) 0 (0.00%)
All-Uses 14 14 (100%) 0 (0.00%)

∑ 56 52 (92.86%) 4 (7.14%)

Application 3
All-Resources 22 22 (100%) 0 (0.00%)
All-Relations 56 48 (85.71%) 8 (14.29%)

All-Defs 14 11 (78.57%) 3 (21.43%)
All-Defuse 57 43 (75.44%) 14 (24.56%)
All-Uses 244 163 (66.80%) 81 (33.20%)

∑ 393 287 (73.03%) 106 (26.97%)

For testing targets where no test case was created
automatically, test cases were created manually keep-
ing them as small as possible to avoid unnecessary
coverage of other testing targets.

For each test case created for a testing target, ten
random test cases were also created that contain the
same number of serverless functions that are invoked
directly as the original test case with random input
data. In addition, the input data for the test cases are
generated randomly.

However, this approach produces test cases that
cover the testing targets without having a test case or-
acle indicating how the test case should behave. Just
looking for errors thrown during test case execution is
not enough, since these errors can also be an intended
behavior (Barr et al., 2015). Therefore, a test oracle is
needed to check if the application behaves as intended
when a test case is executed.

The original application is chosen as the test ora-
cle producing the intended behavior since test cases
are needed for the evaluation to detect injected faults.
The results and logs generated by the functions were

recorded for each test case and assigned to the test
case. The dynamic parts of the outputs, such as time
stamps, were identified and excluded, as the outputs
are not constant when the test case is executed again.

2.5 Measurement of Injected Faults

Since there are rarely enough real faults available that
can be used for the evaluation of the testing criteria,
faults are deliberately injected into the application.
This is done using mutation operators, which define
how a fault is injected into the application and are
used to predict the effectiveness of test cases and test
suites for real faults (Andrews et al., 2005; Andrews
et al., 2006; Just et al., 2014). The available muta-
tion operators described in (Delamaro et al., 2001a;
Delamaro et al., 2001b; Vincenzi et al., 2001; Ghosh
and Mathur, 2001; Rodrı́guez-Baquero and Linares-
Vásquez, 2018) either change or remove the potential
data that are passed between the components. There-
fore, the following mutation operators were defined
by changing the data that are usually transmitted as a
key-value pair in JSON:

• DelKey: Delete key of key-value pair

• DelVal: Delete value of key-value pair

• RepVar: Replace the value of the variable with a
random value

• NegVar: Negate boolean value

• RemRet: Remove return statement

• RemCal: Remove call to other resource

Figure 3 shows the interfaces of serverless
interfaces that we identified in our previous
work (Winzinger. and Wirtz., 2021).
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Figure 3: Data interfaces of serverless functions.

We applied the operators to the function parame-
ters, the return values, and the values passed to and
received from the services.

For each mutant generated by the mutation opera-
tor, a new version of the program is needed and has
to be deployed. By instrumenting the source code
with feature flags that can be activated by environ-
ment variables, a single version of the program was
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enough where the faults could be activated individu-
ally. Each test case was run with each mutant to see if
it could detect the injected fault.

Table 2 shows how many mutants could be killed
by all test cases belonging to a certain criterion
where the corresponding randomly generated test
cases killed for most of these suites fewer mutants.

2.6 Evaluation of Integration Testing
Criteria

All automatically and manually generated test cases
for the testing targets and their randomly generated
counterparts were added to a pool to build test suites
that cover a certain target coverage of a specific test-
ing target.

This test pool was used for the creation of test
suites of different sizes focusing on the fulfillment of
the coverage criteria investigated. For each coverage
criterion and each x, where x is a number between 1
and the maximum number of feasible testing targets,
200 test suites were created which cover at least x test-
ing targets of the corresponding coverage criterion to
have a broader space of test suites fulfilling a certain
coverage value. The algorithm shown in Algorithm 1
was applied which is adapted from (Andrews et al.,
2006).

Algorithm 1: Test Suite Generation from Test Pool.

Require: Test Pool P, Target Coverage t
suite← /0

suiteCoverage← 0
while suiteCoverage < t do

tc← random tc of P
P← P\{tc}
newCoverage← coverage of suite∪{tc}
if newCoverage > suiteCoverage then

suite← suite∪{tc}
suiteCoverage← coverage of suite
end

end
return suite

A similar test suite with a similar number of test
cases was created for each of the test suites created.
These new test suites were constructed by randomly
selecting test cases from the test pool without reject-
ing any test case to have test suites of equal size and
make them more comparable since the same number
of test cases are used.

Since the number of mutants killed by the test
suites was not normally distributed, the Mann-

Table 2: Coverage of all test cases for criteria (max number
of covered mutants of the best corresponding random suite
in brackets).

All All All All All
Res Rel Defs DefUse Uses

App1

DelKey 136 136 156 178 182
(115) (114) (136) (159) (170)

DelVal 136 136 156 178 182
(115) (114) (136) (159) (170)

RepVar 57 57 123 139 147
(49) (49) (71) (84) (104)

NegVar 15 15 15 18 19
(12) (13) (16) (17) (17)

RemRet 14 14 12 15 16
(12) (12) (14) (15) (15)

RemCal 8 8 13 16 16
(7) (8) (10) (10) (11)

∑
366 366 475 544 562

(308) (306) (367) (443) (487)

App2

DelKey 42 42 37 39 39
(35) (35) (34) (35) (35)

DelVal 45 45 40 42 42
(36) (36) (35) (36) (36)

RepVar 45 47 45 44 44
(27) (30) (27) (31) (31)

NegVar 0 0 0 0 0
(0) (0) (0) (0) (0)

RemRet 9 7 5 6 6
(7) (8) (8) (8) (8)

RemCal 4 4 3 4 4
(3) (3) (3) (3) (3)

∑
145 145 130 135 135

(108) (109) (107) (113) (113)

App3

DelKey 162 265 214 284 314
(130) (168) (162) (169) (195)

DelVal 190 312 253 334 365
(152) (196) (190) (198) (225)

RepVar 172 327 271 361 373
(132) (181) (171) (180) (206)

NegVar 1 10 10 10 10
(1) (1) (1) (1) (1)

RemRet 16 26 15 29 32
(13) (18) (16) (18) (24)

RemCal 18 41 35 45 48
(15) (20) (18) (21) (22)

∑
559 981 798 1063 1142

(440) (583) (558) (585) (672)
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Whitney test was chosen with a significance level of
1% to compare them and measure their effect sizes if
the null hypothesis had been rejected.

Figure 4 visualizes the comparison of the test
suites generated for AllUses and their counterparts
generated for an application where the interpolated
lines indicate that AllUses kills more mutants if the
test cases were selected with this criterion.
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Figure 4: Comparison of test Suites for AllUses and random
created suites of an application.

The systematically generated test suites detected
significantly more mutations for all applications and
criteria than their randomly generated counterparts.
For the data flow criteria, the effect size was greater
than 0.5, which indicates a strong effect according
to (Cohen, 1992), and supports the hypothesis. How-
ever, only the test suites for App2 and the criterion
AllRel had an effect size greater than 0.5 for the con-
trol flow criteria. For the other applications, the effect
sizes ranged from 0.11 to 0.28, indicating only a small
effect.

In addition to the previous work, a significant
advantage of the systematically created test cases
compared to the random ones could also be shown
when the manually generated test cases and their ran-
domly assigned counterpart were excluded from the
test suite.

Furthermore, also when the number of mutants
was reduced to mutants on the interfaces where di-
rect communication to other components occurred,
the criteria-based test suites were significantly bet-
ter for the test suites built with and without manually
added test cases.

All criteria are also compared with each other con-

sidering their test suites that fulfilled 100% of their
testing targets. Since the data flow criteria build a
subsumption hierarchy, the stricter data flow crite-
ria killed at least as many mutants as their subsumed
ones. There was a strong effect that could be shown
for most of the cases while AllDefUse showed no sig-
nificant improvement compared to AllDefs in App2.
This could be due to the architecture of App2 where
the number of potential uses for each definition is
lower than in the other applications. Furthermore,
the workflow of App2 triggers several serverless func-
tions that cause the coverage of additional testing tar-
gets within a test case. Thus, it is possible to meet the
stricter coverage criteria with a relatively small num-
ber of test cases in App2, in contrast to the other ap-
plications where the more stringent coverage criteria
must execute more test cases to be fulfilled, resulting
in a higher coverage.

As a result, it could not be demonstrated that data
flow criteria consistently outperform control flow cri-
teria, since the detection potential is highly dependent
on the application.

3 CONCLUSION AND FUTURE
WORK

This work showed how integration testing criteria can
be measured for serverless applications and applied
the approach to some integration testing criteria on
three serverless applications. The evaluated crite-
ria were shown to be more efficient than random-
generated test cases. However, there is no best crite-
rion among the evaluated criteria. The data or control
flow criteria are more efficient depending on the ap-
plication. Therefore, we recommend not only relying
on a single criterion but combining them with other
criteria and test cases created based on the testers’ ex-
perience.

For future work, more criteria can be evaluated us-
ing the framework introduced. Furthermore, if an ap-
plication is available in which many real-world faults
have already been detected, it would be worthwhile
to evaluate the criteria based on these faults. Also,
microservices pose an interesting area where our ap-
proach can be adapted transferring the criteria and
tooling to this area.
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