
Warehousing Data for Brand Health and Reputation with AI-Driven
Scores in NewSQL Architectures: Opportunities and Challenges

Paulo Siqueira1,2 a, Rodrigo Dias1 b, João Silva-Leite2 c, Paulo Mann3 d, Rodrigo Salvador2 e,
Daniel de Oliveira2 f and Marcos Bedo2 g

1Wikki Brasil, Parque Tecnológico, Rio de Janeiro/RJ, Brazil
2Institute of Computing, Fluminense Federal University, Niterói/RJ, Brazil

3Institute of Mathematics and Statistics, Rio de Janeiro State University, Rio de Janeiro/RJ, Brazil
{paulo.costa, rodrigo.dias}@wikki.com.br, paulo.mann@ime.uerj.com.br,

Keywords: Multidimensional Model, Data Warehousing, Public Relations, Brand Monitoring, NewSQL, HTAP.

Abstract: This study explores the use of NewSQL systems for brand health and reputation analysis, focusing on multidi-
mensional modeling and Data Warehouses. While row-based and relational OLAP systems (ROLAP) struggle
to ingest large volumes of data and NoSQL alternatives rely on physically coupled models, NewSQL solutions
enable Data Warehouses to maintain their multidimensional schemas, which can be seamlessly implemented
across various physical models, including columnar and key-value structures. Additionally, NewSQL provides
ACID guarantees for data updates, which is instrumental when data curation involves human supervision. To
address these challenges, we propose a Star schema model to analyze brand health and reputation, focusing on
the ingestion of large volumes of data from social media and news sources. The ingestion process also includes
rapid data labeling through a large language model (GPT-4o), which is later refined by human experts through
updates. To validate this approach, we implemented the Star schema in a system called RepSystem and tested it
across four NewSQL systems: Google Spanner, CockroachDB, Snowflake, and Amazon Aurora. An extensive
evaluation revealed that NewSQL systems significantly outperformed the baseline ROLAP (a multi-sharded
PostgreSQL instance) in terms of: (i) data ingestion time, (ii) query performance, and (iii) maintenance and
storage. Results also indicated that the primary bottleneck of RepSystem lies in the classification process,
which may hinder data ingestion. These findings highlight how NewSQL can overcome the drawbacks of
row-based systems while maintaining the logical model, and suggest the potential for integrating AI-driven
strategies into data management to optimize both data curation and ingestion.

1 INTRODUCTION

The Multidimensional model serves as the logical
foundation for OLAP (Online Analytical Process-
ing) systems and is widely used in its materialized
form within physically row-based database manage-
ment engines that support Data Warehouses (RO-
LAP) (Morfonios et al., 2007; Zhang et al., 2019;
Dehne et al., 2003). Although such engines are de-

a https://orcid.org/0000-0003-3652-284X
b https://orcid.org/0000-0003-1288-3093
c https://orcid.org/0009-0001-7881-6566
d https://orcid.org/0000-0002-3597-9170
e https://orcid.org/0009-0001-1202-5585
f https://orcid.org/0000-0001-9346-7651
g https://orcid.org/0000-0003-2198-4670

signed to handle efficiently normalized, day-to-day
transactional tasks that follow the store-and-query
pipeline, they struggle in the ingestion of big data
as data typically undergoes a validation workflow to
ensure ACID (Atomicity, Consistency, Isolation, and
Durability) properties (Garcia-Molina et al., 2008).
This limits the practical use of multidimensional
models in favor of quick-ingestion NoSQL strategies
with physically-coupled schemas that, in their turn,
may be tricky and difficult to migrate between plat-
forms (Ramzan et al., 2019; Chevalier et al., 2015).

The emergence of NewSQL solutions provides
scalable executions for the mixed HTAP (Hybrid
Transactional/Analytical Processing) paradigm (Val-
duriez et al., 2021; Huang et al., 2020; Grolinger
et al., 2013). They enable Data Warehouses to
continue being specified through multidimensional

Siqueira, P., Dias, R., Silva-Leite, J., Mann, P., Salvador, R., de Oliveira, D. and Bedo, M.
Warehousing Data for Brand Health and Reputation with AI-Driven Scores in NewSQL Architectures: Opportunities and Challenges.
DOI: 10.5220/0013279800003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 51-62
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

51



designs and be implemented transparently across
different physical models, including columnar and
key-value schemas, and ensure ACID properties to
transactional-like operations, which is ideal for OLAP
systems requiring data curation (Chereja et al., 2021).

Quality in evolving data, quick ingestion, and fast
responses to OLAP queries are particularly relevant
requirements in brand health and reputation moni-
toring tools. In this context, companies can analyze
and assess topic trends, perform sentiment analysis,
evaluate the impact of stakeholders’ statements, and
measure engagement generated by digital influencers.
Such systems require fast responsiveness from so-
cial media, print, and digital press to track positional
trends over time (Doorley and Garcia, 2015). Accord-
ingly, decision-making processes focus on acting and
reacting to preserve or enhance the core values and
perceived quality associated with each brand (Wang
et al., 2021). The advantages of a strong reputation
are substantial and wide-ranging: organizations with
solid reputations attract top talent, secure better terms
with suppliers, and increase their margins for PR-
based products and operations (Wang et al., 2021).

Although reputation may seem like an intangible
resource, it can be quantified and monitored through
various metrics and analytical methods, such as mea-
suring the reach and practical impact of a report (or
social media post). This capacity to assess reputa-
tion enables companies to objectively evaluate, track,
and strategically manage their position over time,
where the present is exponentially more relevant than
the past. This scenario fits perfectly into a multidi-
mensional model, where dimensions represent data
sources, authors, stakeholders, and metrics directly
collected from the impact of posts and articles (here-
after referred simply to as mentions) that mention
the company’s brands. The time-sensitive nature of
OLAP analysis enables grouping mentions into hot
and cold portions based on their origin date within
a pipeline that also aligns with the multidimensional
structure. However, the expected volume of ingested
data also suggests row-based solutions are unsuitable
for the problem, whereas NoSQL solutions require
yet another design that may be hard to migrate on-
premise. The NewSQL approach is still unexplored
for reputational analyses, to the best of the authors’
knowledge (Li and Zhang, 2022; Wang et al., 2021).

In this study, we fill this gap by examining the
behavior of different NewSQL systems considering a
single Star schema designed for reputation and brand
health analysis. This challenge involves not only a
high volume of data ingestion from social media and
press outlets but also requirements where (i) mentions
must be quickly labeled regarding several facets in a

single data pass, which we accomplish by using an
LLM-based classification strategy and (ii) dimension
values, new mentions, and data classification may
eventually be refined by a human expert through up-
date and removal operations that require consistency.

Accordingly, we implemented the multidimen-
sional model as a system called RepSystem and
instantiated it in four different NewSQL solutions
with varying materialized physical implementations:
Google Spanner, CockroachDB, Snowflake, and
Amazon Aurora. Regarding data classification, we
addressed the challenge of quantifying corporate rep-
utation by designing a multi-purpose prompt that dis-
cretizes the value of each mention based on: (i) senti-
ment analysis (with five distinct labels), and (ii) top-
k topics (drawn from a predefined list). Following
an extensive experimental evaluation, we identified
significant differences between the systems in terms
of: (i) data ingestion time, (ii) storage requirements,
(iii) OLAP query time, and (iv) maintenance costs.
The results further indicated that: (i) the analyzed sys-
tems substantially outperform the baseline ROLAP
implementation, which utilizes a PostgreSQL with
multiple shards, and (ii) the primary bottleneck in the
RepSystem is not ingestion nor query performance in
NewSQL, but rather data classification.

The remainder of this paper is structured as fol-
lows: Section 2 presents the main concepts and re-
lated work. Section 3 introduces RepSystem and de-
scribes the materials and methods. Section 4 pro-
vides the experimental evaluation and discusses the
key findings regarding the observed performance. Fi-
nally, Section 5 concludes the study and outlines di-
rections for future work.

2 RELATED WORK

Business Intelligence Applied to Public Relations
(PR) and Social Media. PR enterprises manage
clients’ reputations aiming at developing robust
communicative strategies (Civelek et al., 2016). Data
is sourced from social media platforms and the print
and digital press, each impacting different audience
profiles and shaping stakeholders’ perceptions.
Before the advent of advanced AI models, public
relations depended on human content analysis and
annotation to extract more information, including
the identification of topics and the interpretation of
the context surrounding each mention (Macnamara,
2005). Consequently, a set of key proprietary
performance indicators (KPIs) was established for
individual companies, typically integrating audience
reach and impact into dashboard monitors that evolve

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

52



over time (Marr and Schiuma, 2003). However, the
manual nature of this process limited the scale of
insights, as it excluded the analysis of vast volumes
of digital mentions (Fan and Gordon, 2014). AI-
powered systems can automatically label topics and
assess sentiment, which enables PR professionals to
focus on tracking insights related to brand reputation
and detecting crises in their early stages. Despite
these advancements, two significant issues are still
open: (i) how to efficiently handle a large volume
of mentions while maintaining system performance
and KPI consistency over time, and (ii) how do
those data management practices align with AI-based
solutions to ensure that the ingestion process evolves
consistently and scales with input?

Multidimensional Logical Model. The multi-
dimensional model is a logical abstraction that
represents data structures in a way that facilitates
efficient querying and analysis. It organizes data into
dimensions and facts, with dimensions representing
descriptive attributes (e.g., time, publishers) and
facts representing quantitative metrics (e.g., views,
comments) (Inmon, 2005; Kimball and Ross, 2013;
Golfarelli and Rizzi, 2009). Such tables are often
structured as a Star schema, where a central fact table
is connected to dimension tables, or a snowflake
schema, where dimension tables are normalized. The
model is typically implemented using a materialized
strategy, where data is copied and pre-aggregated,
and stored in a Data Warehouse within a DBMS.

Data Warehousing (DW). The DW approach is
a structured process that materializes data from
multiple sources to support business intelligence.
It consists of four key layers that include (i) the
mapping layer of external sources (providing raw
input data), (ii) the stagging layer of data extracted
from external sources, which serves as an inter-
mediary area where data is standardized, cleaned,
and aggregated by ETL (Extract, Transform, Load)
routines, (iii) the warehouse layer, where material-
ized data are stored, and (iv) the presentation layer,
which interfaces with end-users through BI tools and
dashboards. Specifically, the third layer provides a
physical implementation for the multidimensional
model, which can take many forms (Inmon, 2005).

DBMS Physical Models. In addition to the
traditional row-based implementation of the multi-
dimensional model in relational DBMSs (ROLAP),
other physical models, including NoSQL approaches,
can be used for implementing the Data Warehouse
layer (Cuzzocrea et al., 2013). This allows for the use

of distributed query engines, enabling near-real-time
processing with improved performance. However,
the challenge lies in mapping the logical model to
specific physical structures and query languages,
which complicates data migration and tracking
schema evolution. Distributed databases, such as
NewSQL and HTAP systems, also have the potential
to implement the multidimensional model across
nodes or clusters using sharding. These systems not
only overcome the limitations of previous approaches
but also ensure a unified query language and deliver
high availability and data consistency (Huang et al.,
2020; Valduriez et al., 2021).

PostgreSQL. PostgreSQL is a row-based, relational
DBMS that can implement a multidimensional
logical model in a ROLAP architecture by storing
dimensional and fact tables as clustered and indexed
records. Records can be queried using high-level
SQL, with extensions for multidimensional operators,
such as ROLLUP. While query performance can be
significantly improved with indexing and sharding,
these techniques require expertise and monitoring to
maintain efficiency. Despite these limitations, Post-
greSQL provides a flexible, cost-effective baseline
solution for systems that do not need the specialized
functionality of a dedicated OLAP engine – particu-
larly when the ingestion window can be relaxed.

Amazon Aurora. Aurora extends PostgreSQL’s
basic principles to the AWS environment, providing
a distributed, fault-tolerant storage architecture. The
storage mechanism uses six shards across different
availability zones with auto-scaling and load balanc-
ing. Replication is log-based and takes full advantage
of AWS resources, providing low-latency updates,
synchronous writes, and asynchronous reads. Aurora
fully supports SQL and the PostgreSQL wire pro-
tocol, optimizing query performance with adaptive
caching and auto-scaling distributed in-memory
search operators (Verbitski et al., 2017).

Google Spanner. Spanner is a distributed NewSQL
system that scales horizontally. It relies on a unique
architecture based on proprietary synchronized
clocks (the Google TrueTime API) that ensures
ACID properties with distributed transactions. Span-
ner replication and sharding are based on user-defined
thresholds and occur automatically, enabling auto
load balancing and reducing maintenance overhead.
Spanner’s shards communicate through the Paxos
protocol replicated in multiple zones for redundancy.
In terms of SQL support, Spanner offers full ANSI
SQL compliance for data querying so that results can

Warehousing Data for Brand Health and Reputation with AI-Driven Scores in NewSQL Architectures: Opportunities and Challenges

53



Data sources Elastic ETL + Classifier

Extract Transform Pre-Load

Schema
Alignment

Multi-task 
Prompt

Mention
BI Report

Sentiment %

 Topic % 

Top Mention

Negative

Product A

XYZ on 
Regional News

NewSQL Warehouse

Star-Schema
Logical Model

Figure 1: RepSystem pipeline for PR analysis (social media, and digital and printed press). (a) Sources, (b) Workers for ETL,
(c) Data storage, and (d) BI report. The insertion features a multidimensional model implemented over a NewSQL DBMS.

be combined with multiple resources from Google
Cloud services (Corbett et al., 2013).

CockroachDB. CockroachDB is a NewSQL built
on a shared-nothing architecture that relies on the
Raft consensus protocol to deliver ACID transac-
tions. Isolation is achieved by a two-phase commit
strategy, while a Multi-Version Concurrency Control
mechanism manages the concurrent transaction
schedule. Its physical model is a key-value storage
with automatic sharding and geographical balancing,
where entries can have multiple keys. The DBMS
is fully compatible with PostgreSQL, including
the Wire protocol and the structure of procedures.
CockroachDB engine optimizes query execution
through distributed planning, and the execution can
be integrated with Kubernetes for orchestration,
enabling seamless deployment and scaling in cloud-
native environments (Taft et al., 2020).

Snowflake. Snowflake uses a multi-cluster architec-
ture to replicate data across multiple regions to ensure
availability. It uses transaction logs for durability and
micro-partitioned storage to optimize performance
and maintain consistency, which enables efficient
data pruning and reduced scan times. Snowflake
is SQL-compliant and a cloud-native DBMS for
warehousing, separating workloads for query and
storage to achieve independent scaling. Optimization
is achieved through virtual abstractions applied to
micro-partitions, enabling isolated compute resources
that scale automatically. Those abstractions benefit
from zero-copy cloning, which allows for fast and
cost-effective data duplication without physically
copying the data (Dageville et al., 2016).

Related Work. Data-driven approaches and AI, par-
ticularly Large Language Models (LLM), have trans-
formed the PR ecosystem, especially in reputation
management. This shift calls for new strategies and
tools in the form of a hybrid intelligence that com-

bines traditional PR with data-driven insights (Santa
Soriano and Torres Valdés, 2021). The study of Jeong
and Park (2023) shows PR efficiency enhancement
with AI. An example of this use is modeling sentiment
towards brands, as shown in the studies of Zhao et al.
(2023) and Ingole et al. (2024), which provide accu-
rate brand rankings and sentiment predictions. The
work of Alqwadri et al. (2021) extends sentiment pre-
diction to forecast consumer reliability, while Ur Rah-
man et al. (2022) applies a deep learning-based solu-
tion to enhance accuracy.

While these studies emphasize the data-driven po-
tential for PR applications, they overlook how to man-
age the large volumes needed to realize these ad-
vancements. This study addresses these challenges
by using NewSQL solutions to maintain the seman-
tic integrity of KPIs and ensure evolving consistency
through a detached multidimensional model. Addi-
tionally, we implement an LLM-based approach for
scalable multi-task data labeling, advancing state-of-
the-art reputation management.

3 MATERIAL AND METHODS

This section introduces RepSystem, a PR system
that consolidates data from social media, digital, and
printed press. We set RepSystem to use third-party
services that collect data from original sources
for generality sake and, as some data come from
digitalized printed press, we use the umbrella term
“clipping” to refer to that data gathering stage. Figure
1 presents the RepSystem data pipeline, following a
materialized perspective.

Data Sourcing and Extraction. RepSystem was
designed to handle inputs from files (spreadsheets),
API outputs in .xml and .json, and a combination
of all of the above. The extraction process for press
content poses unique challenges due to the existence

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

54



of paywalls, text varying sizes, and multimedia
links. As for the third-party services, we connected
RepSystem with one clipping tool for social media
and four clipping applications that handle different
media channels, including television, newspapers,
and blogs. Although the filters that collect relevant
mentions for every monitored brand were defined
on the clipping setup, we also set a dynamic list of
regular expressions (regex) terms associated with
each brand, including company names, brands’
names, and topics of interest to further filter spurious
data from our experimental analysis.

Schema Alignment. The ETL process begins by
mapping the dataset (rows and columns) to the logical
model using a versioned YAML file that defines two
parameters for each attribute of the model. The
parameters are: (i) the original and mapped column
names, and (ii) the extraction and transformation
functions. Users can configure multiple functions
per column, allowing each attribute to return specific
types, such as a unique value, a list, or a multi-
dimensional list. A try-catch mechanism ensures
that the process iteratively applies each function
per column in the order of priority defined by the
written order. For instance, to extract the number
of reactions, the YAML file can initially redirect
to the function ext reacts, which attempts to fetch
the reaction value from a single column. If the
function fails (e.g., the column does not exist, or it is
empty), the function ext aggReacts is activated, which
materializes the reaction values as a new column
generated by the aggregate sum of comments, likes,
and shares. A last priority, a default map function
must also be defined to handle missing columns.

Data Transformation. Collected mentions were
transformed to ensure standardization and prevent
missing entries related to content, title, date, publisher
vehicle, and author. The transformation pipeline
consists of sequential steps (the actions mapped to
functions), with a common yet critical component
being the management of data inconsistencies using
regular expressions (regex). We defined a hierarchical
set of functions, ranging from exact two-way matches
to approximate matches, so that, depending on the
organization and structure of the input source, distinct
regex strategies can be seamlessly applied.

Deterministic, Unique Identifiers. The ETL
routines use a hashing method based on each men-
tion’s URL1 combined with the channel name to
create a unique identifier for each mention, i.e.,

1Digitalized contents were linked to cloud-stored files.

Source 1 Source 2 Source 3

Distributed
Database

Source N

ETL
LLM

ETL
LLM

ETL
LLM

ETL
LLM

Figure 2: RepSystem data ingestion.

the idMention. This process relies on the SHA-1
algorithm combined with UUID5 casting to produce
a deterministic 128-bit identifier, which, by defini-
tion, prevents duplicate inserts. Finally, the ETL
combines this identifier with the company identifier,
as different mentions may be related to distinct
companies, e.g., two competitor brands in the same
article. This composite key is not only semantically
meaningful but also eliminates the need for locks
during insertion, enabling concurrent inserts and
simplifying transaction scheduling.

Data Ingestion. Mentions are always loaded in
append mode, whereas dimensions are loaded using
a destructive merge policy. The ingestion flow
follows the simplified diagram in Figure 2, assuming
data are ingested upon user requests (without a
predefined time window) Each request triggers a new
containerized process that fetches a chunk of raw
data from a clipper source, aligns and transforms
the internal information, and sends the content for
LLM-based analysis. The orchestration of this
elastic approach can be managed using an external
balancer or a simple mechanism, such as a message
queue associated with a triggering lambda function.
RepSystem uses transactional control tables to track
the status of launched containers so that if the ETL
process fails at any step, its status is recorded for
reproducibility and debugging purposes.

LLM-based Classification. RepSystem analyses
require data content to be evaluated regarding senti-
ment analysis (positive, neutral, negative) and top-k
topic identification. Since these two analyses are
different in nature, RepSystem relies on a multi-task
prompting strategy to speed up the analysis, avoiding
the problem of double-passing the data and reducing
maintenance overhead. In a nutshell, RepSystem
ETL simultaneously handles the two tasks, each
associated with a set of mentions and a set of label
pairs (sentiment, top-k topics). For each mention in a
task, there is one corresponding label. Therefore, a
task-shared prompt can be used to unify the represen-

Warehousing Data for Brand Health and Reputation with AI-Driven Scores in NewSQL Architectures: Opportunities and Challenges

55



COLD

HOT

UUID

UUID

UUID

UUID

UUID

UUID

UUID

UUID

UUID

STRING

STRING

STRING

STRING

STRING

STRING

STRING

STRING

UUID

STRING

wPolarityBase FLOAT

companyName STRING

wReactBase FLOAT

factMention

date DATE

idMention UUID

UUID

STRING

wChannelBase FLOAT

wTopicBase FLOAT

wPolarity FLOAT

score FLOAT

Figure 3: The simplified Star schema for RepSystem.

tation across all tasks. This single prompt template
is applied to each mention, producing the outputs for
the two tasks as pairs of labels. RepSystem uses a
zero-shot approach alongside the multi-task strategy,
which labels each input according to a pre-trained
encoder for general-purpose PR analysis.

Discrete Prompting. To investigate a suitable
template for the multi-task problem, we use dis-
crete prompting as part of our prompt engineering
strategy (Liu et al., 2023), which involves manually
creating prompts using natural language. Accord-
ingly, we first developed an empirical prompt using
the chain-of-thought process and then generated three
additional prompts. Next, we assessed the quality
of the produced prompts by measuring the F1-Score
on a curated and manually annotated dataset, and
calculated the average and standard deviation to
determine the most suitable prompt for data labeling.

Multidimensional Data Model. Figure 3 presents
the RepSystem multidimensional model, which is a
Star schema for the fact table factMention. The
model is mirrored between the “hot” and “cold” por-
tions, with data stored in the former part being the
most recent and data in the latter part being archived.
This separation occurs at the DDL schema level,
enabling tuning and optimization of different work-
loads and indexing. The logical model contains five-
dimensional tables, each serving a specialized role:
(i) dimPost, which records mention content informa-
tion (entries are relatively large); (ii) dimDataSource,
which tracks the origin of each mention’s data source,
e.g., social media, newspapers, TV, etc.; (iii) dim-
Channel, which enables the identification of the spe-
cific vehicle for the communication, e.g., Social Net

foo, TV foo, etc.; (iv) dimTopic, which structures
the topics of interest related to each company; and
(v) dimPolarity, which defines the values for senti-
ment analysis. Both dimTopic and dimPolarity di-
mensional values are used as lists of options by the
LLM to solve the multi-task classification problem.

The fact table contains references to the di-
mensional tables, with the dimension date being
implicitly captured by the fact table. The numerical
metrics include the number of reactions (sum of likes,
comments, and shares), views, followers (at the time
of the mention), price (if it is a paid mention), and
four scores: weights for polarity ([-1, 1]), channel,
topic, and reactions, along with an overall aggregate
score for the mention ([0, 1]). This score value was
defined as a linear combination to emulate proprietary
metrics, which have their own biases toward specific
dimensions. In our evaluations, we calculate the score
value as score = wp · ∑i∈{Channel, Topic, React} wi with
wp being the polarity weight. Notice LLM-based
classification may occasionally miss. Therefore, PR
experts will review the process, correcting relevant
misclassifications and triggering the adjustment of
associated metrics. These adjustments will be con-
sistently propagated across NewSQL shards without
requiring modifications to the logical model.

RepSystem implementation. RepSystem was
implemented in Python 3.10.13, venv environment,
with packages numpy 1.26.4, pandas 2.1.4, selenium
4.19.0, Unidecode 1.38.4, beautifulsoup4 4.12.3,
SQLAlchemy 2.0.30, boto3 1.34.161, PyYAML
6.0.1, tenacity 8.5.0. GPT 4o was accessed with
package openai 1.30.3 using a corporate credential
from the Microsoft AzureAI Cloud portal with the
highest available service level agreement for a basic
regular corporate account. RepSystem deployed
on a RepSystem on AWS Cloud Platform using
AWS Lambda with ECS running the ETL as isolated
AWS fargates. The multidimensional logical model
was instanced on several environments, with cloud-
oriented instances (all East-US), namely (i) AWS
RDS for Postgres, (ii) AWS Aurora, (iii) Google
Spanner on Google Cloud Platform, (iv) Cock-
roachDB serverless instance on proprietary cloud,
and (v) Snowflake instance running on Amazon AWS.

Queries. The multidimensional model was described
using SQL DDL and instantiated in each DBMS with
minor adjustments for a fairer comparison (type com-
pliance). All of the evaluated queries were expressed
with SQL operators derived from the basic CUBE and
ROLLUP multidimensional operators, which were un-
supported by some DBMSs. Next, we define five

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

56



Table 1: Average F-Measure performance for zero-shoting GPT4o-mini regarding Single Tasks (two data passes) vs. Multi-
Task (just one data pass) by using the best prompts constructed with discrete prompting.

Task Strategy Company A Company B Company C

Sentiment Single-Task .79 .81 .82
Multi-Task .82 .84 .87

Topic Single-Task .84 .64 .70
Multi-Task .82 .63 .67

queries that handle different workloads and produce
significant insights into various branding reputation
analyses by a senior PR expert, namely: (Q1): the
proportion of mentions by polarity per company,
rolling up on dimension date (lightweight workload
– Overall sentiment towards the brand); (Q2): the av-
erage reaction by channel per company and polarity,
rolling up on dimension date (medium workload – In-
ferred support or detractor channel); (Q3): the most
frequent pairs ⟨company, topic⟩ over time, with a
CUBE on topics (medium workload – Dominant narra-
tives per period); (Q4): highest-ranked channels (sum
of absolute scores) by company aggregate date per
source, rolling up on dimension date (heavy work-
load – Channels impacting your brand); (Q5): top-
k monthly and annual mentions by company, data
source, polarity, top-k′ topics, and top-k′′ channels
(heavy workload – Most influential content over the
period by producer).

Whenever possible, we used SQL-only functions
to reduce the writing, such as in (Q2), which was
reduced to a specific instance of the Market-Basket
problem solved by the partition-based A-Priori solu-
tion. The same “function-packing” rationale was em-
ployed to UNION result for DBMSs not supporting the
multidimensional operators. Finally, we wrote (Q5)
with LATERAL JOIN/UNNEST to avoid converting win-
dow functions for specific SQL dialects.

4 EXPERIMENTAL EVALUATION

Dataset Workloads. We curated a dataset by select-
ing two years of data from three real-world compa-
nies across very different domains, totaling over two
million human-annotated fact tuples (4.7GB of raw
text). The dataset covers 12,975 channels, 18 distinct
data sources, and 608 unique topics. We divided the
dataset into 80 stratified workloads, with stratification
based on the original “topic” as the meta attribute for
each company. Next, we removed the sentiment and
topic annotations and submitted the resulting batches
for ETL processing, producing spreadsheets contain-
ing raw content from the clipping sources. Unlike
existing HTAP performance benchmarks (Cole et al.,

2011), this subject-oriented dataset incorporates an
AI-driven annotation aspect into the OLAP problem.
Multi-Task Validation. To assess the viability of
using the proposed multi-task prompting approach
as part of RepSystem’s one-pass labeling stage in
the ETL process, we compared this strategy with the
baseline approach, which utilizes two specialized
prompts (one for sentiment analysis and the other
for top-1 topic classification). Table 1 presents the
average F-Measure (a weighted score combining
precision and recall) per company in the dataset
workload, based on a zero-shot comparison between
our multi-task approach and the baseline. This
comparison was conducted using the GPT-4o-mini
LLM (version gpt-4o-mini-2024-07-18) through
the Azure OpenAI API, with a temperature setting
of 0.3. The results show minimal differences in
average performance between the single-task and
multi-task strategies, suggesting that the proposed
approach can effectively utilize a one-pass LLM-
based analysis rather than issuing multiple requests
to label each mention. Accordingly, we adopted
the same zero-shot setup and prompt for the final
part of our ETL evaluation in subsequent assessments.

Experimental Setup. The PostgreSQL setup was
configured with 02 vCores, 4 GiB of RAM, and
32 GiB of storage, instantiated in the East-US
AWS Cloud. For Google Spanner, a comparable
configuration involved provisioning 500 PUs (0.5
nodes), providing approximately 02 vCPUs, 8 GiB
of RAM, and 32 GB of storage. The AWS Aurora
instance was configured with 02 vCPUs and 4 GiB of
RAM (db.t3.medium class), with automatic storage
scaling and failover across six availability zones.
In Snowflake, we used a comparable configuration
with a Small Virtual Warehouse, offering 02 vCores
and 4 GiB of RAM, with automatic scaling and
sharding. Finally, CockroachDB was configured
with 02 compute units (CUs), suitable for moderate
workloads in a serverless, self-managed environment.
For Aurora, Snowflake, and CockroachDB, storage
was set to scale automatically.

Classification Elapsed Time. We measured classifi-
cation time separately to assess the individual impact

Warehousing Data for Brand Health and Reputation with AI-Driven Scores in NewSQL Architectures: Opportunities and Challenges

57



D
is

tr
ib

ut
io

n 
(%

)

.2

.0

Elapsed Time Elapsed Time Elapsed Time

(a) Company A (b) Company B (c) Company C

D
is

tr
ib

ut
io

n
(%

)

.3

.0

D
is

tr
ib

ut
io

n 
(%

)

.1

.0

PostgreSQL
AWS Aurora

CockroachDB
Google Spanner

Snowflake

1000 200 300 400 500 3 4.5
ms s

1000 200 300 400 500 2 2.5
ms s

1000 200 300 400 2 2.5
ms s

Figure 4: Distribution of elapsed time required for ingesting data batches into different NewSQL DBMSs. The time spent on
LLM-based classification was subtracted from the total elapsed time.

T
im

e 
 (

s)

2

0

0.75

1

1.5

Company A Company B Company C

2x Single PromptMulti-Task Prompt

Figure 5: Elapsed time for multi-task analysis.

of this process on the ETL pipeline. Although we em-
ployed the highest available service level for the LLM
(ensuring a throughput of 250k tokens per minute),
our measurements indicated that processing times
did not cause sufficient queuing to exceed this limit.
Figure 5 presents the average elapsed time required to
label a mention. Results show that the classification
time using the multi-task prompt remained relatively
stable across all companies examined, regardless
of the specific topic list from which the prompt
was expected to extract a response. These findings
suggest that (i) data labeling via the LLM is both
a flexible and scalable option for transformations
involving multiple natural language analyses, and
(ii) while scalable per request, classification time still
significantly impacts the overall data ingestion time.
Thus, we factored this time into the total duration of
the remaining evaluations.

Data Ingestion. We ingested all data batches into
each DBMS using parallel ETL workers instantiated
as Fargate components in an AWS Elastic Container
Service (ECS) cluster, with the maximum number of
connections limited to 80 parallel transactions. Each

mention was ingested individually (single inserts) to
highlight the impact of transaction management for
each compared approach. This stress injection mech-
anism resembles more closely an HTAP environment,
where on-demand inserts can arrive individually. We
carefully subtracted data labeling time from the anal-
ysis, as it is an expensive component of the ETL
pipeline that could skew the timing results.

Figure 4 shows the elapsed time required to
process the inputs and ingest data into each DBMS.
PostgreSQL struggled with ingestion, as data
mentions had to pass through relational constraint
validation. Aurora exhibited improved performance
by taking full advantage of inner sharding per
company. It reduced the PostgreSQL insertion time
by up to 83% (Company A) and maintained lower
buffer usage, avoiding potential overflows. Although
Snowflake showed the widest performance variation
during ingestion, its performance was poor, as the tool
is designed for bulk-loading data rather than individ-
ual inserts commonly found in OLTP environments.
While outside the AWS cloud, CockroachDB outper-
formed Snowflake and AWS Aurora, on average. In
particular, it was also 5× faster than baseline Post-
greSQL. Finally, Google Spanner outperformed the
competitors in data ingestion, requiring nearly 60%
less time than the second-best competitor, on average.

Query Performance. We executed five separate
queries for each data batch to evaluate query per-
formance across the tested DBMSs. The results re-
vealed significant variation in query response times
and highlighted differences in elapsed times among
the evaluated systems. Snowflake demonstrated
the fastest query performance overall, outperforming
PostgreSQL by up to ten times. This performance

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

58



D
is

tr
ib

ut
io

n
(%

)

.3

.0

Elapsed Time (s) - Company B

D
is

tr
ib

ut
io

n 
(%

)

.1

.0

Elapsed Time (s) - Company C
D

is
tr

ib
ut

io
n

(%
)

.1

.0

Elapsed Time (s) - Company B

D
is

tr
ib

ut
io

n 
(%

)

.1

.0

Elapsed Time (s) - Company C

D
is

tr
ib

ut
io

n
(%

)

.1

.0

Elapsed Time (s) - Company B

D
is

tr
ib

ut
io

n 
(%

)

.1

.0

Elapsed Time (s) - Company C

D
is

tr
ib

ut
io

n
(%

)

.1

.0

Elapsed Time (s) - Company B

D
is

tr
ib

ut
io

n 
(%

)

.1

.0

Elapsed Time (s) - Company C

D
is

tr
ib

ut
io

n
(%

)

.1

.0

Elapsed Time (s) - Company B

D
is

tr
ib

ut
io

n 
(%

)
.1

.0

Elapsed Time (s) - Company C

D
is

tr
ib

ut
io

n 
(%

)

.2

.0
0.500.25 0.75 1.251.00 1.50 1.75 0.500.25 0.75 1.251.00 1.50 1.75

Elapsed Time (s) - Company A

Query (Q1) Query (Q1) Query (Q1)

D
is

tr
ib

ut
io

n 
(%

)

.1

.0
1 2 43 5 6 1 2 43 5 6 1 2 43 5 6

Elapsed Time (s) - Company A

(Q2)

D
is

tr
ib

ut
io

n 
(%

)

.1

.0
4 6 108 12 14 4 6 108 12 14 4 6 108 12 14

Elapsed Time (s) - Company A

(Q3)

D
is

tr
ib

ut
io

n 
(%

)

.1

.0
2 64 8 10 2 64 8 10 2 64 8 10

Elapsed Time (s) - Company A

D
is

tr
ib

ut
io

n 
(%

)

.1

.0
2.5 7.55.0 10.0 12.5 15.0 17.5

Elapsed Time (s) - Company A

PostgreSQL
AWS Aurora

CockroachDB
Google Spanner

Snowflake

0.500.25 0.75 1.251.00 1.50 1.75

2.5 7.55.0 10.0 12.5 15.0 17.5 2.5 7.55.0 10.0 12.5 15.0 17.5

Query (Q2) Query (Q2) Query (Q2)

Query (Q3) Query (Q3) Query (Q3)

Query (Q4) Query (Q4) Query (Q4)

Query (Q5) Query (Q5) Query (Q5)

Figure 6: Distribution of elapsed time required for querying different companies. Line entries corresponds to queries and
column entries are companies.

Warehousing Data for Brand Health and Reputation with AI-Driven Scores in NewSQL Architectures: Opportunities and Challenges

59



highlights Snowflake’s highly optimized query exe-
cution engine that was particularly evident for queries
(Q4) and (Q5), which involve multiple nested/lateral
joins. Google Spanner was the second-best per-
former, trailing Snowflake by up to 35%, but consis-
tently surpassing the other systems regarding elapsed
time for every examined query.

CockroachDB and AWS Aurora exhibited similar
query performance, with CockroachDB substantially
outperforming Aurora in complex queries. Despite
their similarities, PostgreSQL’s non-distributed ar-
chitecture occasionally showed latency spikes, while
AWS Aurora benefited from its high scalability and
inner-sharding mechanisms for batch queries. The
performance per query varied widely, with queries
(Q3) to (Q5) posing more challenges across all
DBMSs. These queries required up to 10× more
time and memory, as observed in the panel insights
for CockroachDB, Snowflake, and Spanner, suggest-
ing that query complexity and data relationships heav-
ily influenced execution times, regardless of the un-
derlying cloud system. PostgreSQL struggled signif-
icantly with heavy workloads (Q4) – (Q5) due to the
lack of distributed processing and limited parallelism
in query execution. However, it managed lightweight
workloads like (Q1) – (Q2) relatively well, highlight-
ing its suitability for midsize query workloads.

Although the same multidimensional model was
implemented by all DBMSs, trade-offs were observed
between querying and ingestion. For instance, while
Snowflake excelled in querying, its ingestion perfor-
mance was outpaced by CockroachDB and Spanner,
underscoring the importance of understanding the
specific workload requirements when implementing
the multidimensional model in a physical system.

Storage Requirements. Figure 7 shows the storage
consumption across all DBMSs after processing
and ingesting the mentions. As expected, Post-
greSQL and AWS Aurora showed similar storage
consumption, with Aurora using nearly half the
space of PostgreSQL. While Snowflake relies on
columnar storage and heavy data compression, it
ranked last in overall storage cost due to metadata
retention for each column and insert. CockroachDB
outperformed PostgreSQL and Aurora in terms of
storage management, requiring 5× and 1.3× less
storage than PostgreSQL and Aurora, respectively.
CockroachDB’s controlled replication model pro-
vided additional resilience without significantly
increasing storage usage, requiring less space than
all the other systems. Finally, Google Spanner
displayed storage optimization, requiring slightly
more storage than CockroachDB on average. These

S
to

ra
ge

 (
G

iB
)

20

0

2,5

7,5

5

10

12,5
15

17,5

DBMS

G
oo

gl
e 

S
pa

nn
er

A
W

S
 A

ur
or

a

C
oc

kr
oa

ch
D

B

P
os

tg
re

S
Q

L

S
no

w
fl

ak
e

Figure 7: Overall storage demanded for each solution.

Table 2: MedianRank aggregation for the average perfor-
mance of compared NewSQL approaches. The first position
tie was broken by the next lowest ranking.

DBMS In
ge

st
io

n

Se
ar

ch

St
or

ag
e

MedianRank
A. Aurora 3 4 3 3
G. Spanner 1 2 2 1
CockroachDB 2 3 1 2
Snowflake 4 1 4 4

findings indicate that Aurora mitigated PostgreSQL’s
traditional row-based storage costs, which were
much different than the columnar model employed
by Snowflake. Overall, Spanner and CockroachDB’s
distributed design offered robust performance, setting
the benchmark for storage efficiency.

Comparison of NewSQL Approaches. We con-
solidated the average performance for ingestion,
querying, and storage requirements into rankings
(1 = best, 5 = worst) to aggregate the individual
performances using the MedianRank strategy (Fagin
et al., 2003). The query performance was ranked
based on the average performance for queries (Q3)
through (Q5). Table 2 summarizes the ranking distri-
bution and final positions, where Google Spanner and
CockroachDB achieved the best performance across
all three criteria for the evaluated PR data. Snowflake
exhibited the largest trade-off, being the fastest query
solution but with high storage costs. AWS Aurora
ranked third overall, primarily struggling with data
ingestion. In practice, however, budget and long-term
maintenance are important constraints to address
when planning project implementation.

Infrastructure Costs. Figure 8 presents a simplified
cloud-based cost summary for the previous exper-
iments. Since the comparison is cloud-dependent,
we defined a Relative Cost metric that averages the
total cost billed for the entire evaluation, divided by

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

60



R
el

at
iv

e 
C

os
t (

%
)

1,750

0

250

500

750

1,000

1,250

1,500

DBMS

P
os

tg
re

S
Q

L

A
W

S
 A

ur
or

a

C
oc

kr
oa

ch
D

B

G
oo

gl
e 

S
pa

nn
er

S
no

w
fl

ak
e

Figure 8: Comparison of scaled cloud-based costs.

the (fractional) number of hours it took to complete.
We set PostgreSQL as the reference value (with
100% of Relative Cost) and then linearly scaled the
costs of the remaining DBMSs in comparison to this
reference. Self-hosted CockroachDB offered the
lowest cost baseline, being the cheapest alternative
among the compared NewSQL solutions. AWS
Aurora optimized costs by adjusting resources based
on the workloads but required a higher budget
compared to PostgreSQL. Snowflake, with its flexible
consumption-based pricing model, was the most
expensive among the competitors due to struggles
with individual data ingestion. Finally, Spanner’s
costs were proportionally higher than those of Cock-
roachDB and Aurora, reflecting potential pricing
differences between the host clouds.

Maintenance Issues. While PostgreSQL main-
tenance has native limitations that require human
expertise for query and load tuning, AWS Aurora
provides insights and maintenance warnings through
the Amazon RDS Console, indicating workload
bottlenecks and offering recommendations for query
optimization. This proprietary cloud strategy is also
observed in Google Spanner, which relies on Google
Cloud monitoring and logging. Snowflake and
CockroachDB offer their cloud-agnostic consoles
that provide insights and can even automatically
apply enhancements for workloads. Snowflake offers
a more detailed analysis, as storage and queries are
evaluated separately.

Discussion. The evaluation of a real-world dataset for
brand monitoring highlighted performance and scala-
bility differences across various NewSQL approaches
implementing the same logical model for RepSystem.
The findings showed that these approaches, partic-
ularly Google Spanner and CockroachDB, signifi-
cantly outperformed traditional ROLAP-based sys-
tems in terms of data ingestion, even under the stress
of single-insert operations. Optimized LLM-based
classification in a single data pass was a bottle-
neck compared to data ingestion into the NewSQL

DBMSs. Results indicated that Snowflake dominated
query performance, with Spanner and CockroachDB
also reaching competitive values. Regarding stor-
age efficiency, CockroachDB performed the best, fol-
lowed by Google Spanner.

If all performance criteria (ingestion, query per-
formance, and storage) are equally weighted, Google
Spanner emerges as the top contender, closely fol-
lowed by CockroachDB. Moreover, when considering
cost-effectiveness, CockroachDB, AWS Aurora, and
Google Spanner offered the best value, demonstrat-
ing efficiency in handling large-scale deployments at
competitive costs. Finally, for organizations with di-
verse cloud environments or multi-cloud strategies,
CockroachDB and Snowflake provided superior flex-
ibility, while Spanner and Aurora offered deeper inte-
gration within their respective cloud ecosystems. Ac-
cordingly, specific needs related to performance, cost,
and flexibility will likely result in different NewSQL
flavors implementing the same logical model.

5 CONCLUSION AND FUTURE
WORK

We explored the use of NewSQL systems for brand
health analysis, focusing on a logical multidimen-
sional model across various physical implementa-
tions. We found that NewSQL systems, tackling the
logical-physical model separation, can overcome the
limitations of traditional ROLAP systems, simplify
DBMS migration, and enhance schema evolution. We
proposed a simplified Star schema for PR analysis, in-
tegrating data from social media, digital, and printed
press through the RepSystem application. Unlike ex-
isting HTAP benchmarks, this approach required AI
for multiple data labeling, which we addressed with a
multi-task prompt strategy using a distributed LLM.

Our evaluation revealed performance differ-
ences across different NewSQL solutions, such
as (i) Snowflake excelling in complex queries but
struggling with data insertion and (ii) CockroachDB
outperforming the competitors in storage efficiency
but being less efficient than Google Spanner in heavy
workloads. Overall, NewSQL systems outperformed
the baseline ROLAP PostgreSQL, with data classifi-
cation being the main identifiable bottleneck. Future
work will include evaluating larger databases, simu-
lating near-real-time PR data flows, and developing a
benchmark for brand health and monitoring.

Warehousing Data for Brand Health and Reputation with AI-Driven Scores in NewSQL Architectures: Opportunities and Challenges

61



ACKNOWLEDGEMENTS

This study was financed by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior -
Brasil (CAPES), Brazil - Finance Code 001, and by
the Carlos Chagas Filho Research Support Founda-
tion of the Rio de Janeiro State (FAPERJ), Brazil
(Grants E-26/204.238/2024 and E-26/204.544/2024).

REFERENCES

Alqwadri, A., Azzeh, M., and Almasalha, F. (2021). Appli-
cation of machine learning for online reputation sys-
tems. IJAC, 18(3):492–502.

Chereja, I., Hahn, S. M. L., Matei, O., and Avram, A.
(2021). Operationalizing analytics with newsql. In
Soft. Eng. and Alg., pages 249–263. Springer.

Chevalier, M., El Malki, M., Kopliku, A., Teste, O., and
Tournier, R. (2015). How can we implement a mul-
tidimensional data warehouse using nosql? In EIS,
pages 108–130. Springer.

Civelek, M. E., Çemberci, M., and Eralp, N. E. (2016). The
role of social media in crisis communication and crisis
management. IJRBSC, 5(3).

Cole, R. et al. (2011). The mixed workload ch-benchmark.
In IWTDS, pages 1–6.

Corbett, J. C. et al. (2013). Spanner: Google’s globally dis-
tributed database. ACM Trans. Comput. Syst., 31(3).

Cuzzocrea, A., Bellatreche, L., and Song, I.-Y. (2013). Data
warehousing and olap over big data: current chal-
lenges and future research directions. In DOLAP, page
67–70. ACM.

Dageville, B. et al. (2016). The snowflake elastic data ware-
house. In ICMD, page 215–226, NY, USA. ACM.

Dehne, F., Eavis, T., and Rau-Chaplin, A. (2003). Parallel
multi-dimensional rolap index. In ISCCG, pages 86–
93.

Doorley, J. and Garcia, H. F. (2015). Reputation manage-
ment: The key to successful public relations and cor-
porate communication. Routledge.

Fagin, R., Kumar, R., and Sivakumar, D. (2003). Efficient
similarity search and classification via rank aggrega-
tion. In SIGMOD, pages 301–312.

Fan, W. and Gordon, M. D. (2014). The power of social
media analytics. Commun. ACM, 57(6):74–81.

Garcia-Molina, H., Ullman, J., and Widom, J. (2008).
Database Systems. PH, USA, 2 edition.

Golfarelli, M. and Rizzi, S. (2009). Data Warehouse
Design: Modern Principles and Methodologies.
McGraw-Hill Education.

Grolinger, K., Higashino, W. A., Tiwari, A., and Capretz,
M. A. (2013). Data management in cloud environ-
ments: Nosql and newsql data stores. J. of Cloud
Computing: Advances, Sys. and App., 2:1–24.

Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F.,
Shen, L., Tang, L., Zhou, Y., Huang, M., Wei, W.,
Liu, C., Zhang, J., Li, J., Wu, X., Song, L., Sun, R.,

Yu, S., Zhao, L., Cameron, N., Pei, L., and Tang, X.
(2020). Tidb: a raft-based htap database. PVLDB,
13(12):3072–3084.

Ingole, A., Khude, P., Kittad, S., Parmar, V., and Ghotkar,
A. (2024). Competitive sentiment analysis for brand
reputation monitoring. In ICETITE, pages 1–7.

Inmon, W. (2005). Building the Data Warehouse. Wiley.
Jeong, J. Y. and Park, N. (2023). Examining the

influence of artificial intelligence on public rela-
tions: Insights from the organization-situation-public-
communication (ospc) model. JCRI, 9(7):485–495.

Kimball, R. and Ross, M. (2013). The Data Warehouse
Toolkit: The Definitive Guide. Wiley.

Li, G. and Zhang, C. (2022). Htap databases: What is new
and what is next. In SIGMOD, page 2483–2488, New
York, NY, USA. ACM.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. (2023). Pre-train, prompt, and predict: A system-
atic survey of prompting methods in natural language
processing. ACM Comput. Surv., 55(9).

Macnamara, J. (2005). Media content analysis: Its uses,
benefits and best practice methodology. Asia-Pacific
Public Relations J., 6:1.

Marr, B. and Schiuma, G. (2003). Business performance
measurement – past, present and future. Management
Decision, 41(8):680–687.

Morfonios, K., Konakas, S., Ioannidis, Y., and Kotsis, N.
(2007). Rolap implementations of the data cube. ACM
Comput. Surv., 39(4):12–es.

Ramzan, S., Bajwa, I. S., Kazmi, R., and Amna (2019).
Challenges in nosql-based distributed data storage: A
systematic literature review. Electronics, 8(5).

Santa Soriano, A. and Torres Valdés, R. M. (2021). En-
gaging universe 4.0: The case for forming a public
relations-strategic intelligence hybrid. Public Rela-
tions Rev., 47(2):102035.

Taft, R. et al. (2020). Cockroachdb: The resilient
geo-distributed sql database. In SIGMOD, page
1493–1509, NY, USA. ACM.

Ur Rahman, M. W., Shao, S., Satam, P., Hariri, S., Padilla,
C., Taylor, Z., and Nevarez, C. (2022). A BERT-based
Deep Learning Approach for Reputation Analysis in
Social Media . In AICCSA, pages 1–8. IEEE.

Valduriez, P., Jimenez-Peris, R., and Özsu, M. T.
(2021). Distributed Database Systems: The Case for
NewSQL, pages 1–15. Springer.

Verbitski, A. et al. (2017). Amazon Aurora: Design con-
siderations for high throughput cloud-native relational
databases. In SIGMOD.

Wang, Y., Cheng, Y., and Sun, J. (2021). When public rela-
tions meets social media: A systematic review of so-
cial media related public relations research from 2006
to 2020. Public Relations Rev., 47(4):102081.

Zhang, Y., Zhang, Y., Wang, S., and Lu, J. (2019). Fusion
olap: Fusing the pros of molap and rolap together for
in-memory olap. TKDE, 31(9):1722–1735.

Zhao, R., Gui, L., Yan, H., and He, Y. (2023). Track-
ing brand-associated polarity-bearing topics in user
reviews. TACL, 11:404–418.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

62


