
Evaluating Serverless Function Deployment Models on AWS Lambda

Gabriel Duessmann and Adriano Fiorese a

Postgraduate Program in Applied Computing, Department of Computer Science,
Santa Catarina State University, Joinville, Brazil

fi

Keywords: Serverless Function, AWS Lambda, Container Image, Evaluation, Performance, Cost, Cold Start Time,
Metrics and Measurement.

Abstract: With the advancement of computing and serverless services in the last couple of years, this area has been
growing rapidly. Currently, most cloud providers offer serverless services, in particular at Amazon, they
have AWS Lambda to create Functions as a Service (FaaS). There are at least two ways to implement it: by
compressing the source code and files into a compacted folder in a ZIP format; the second way is through
a container image, which has the running application and its dependencies. Based on the approach selected,
the function’s performance, cost and initialization time may vary. This paper takes into account these metrics
and compares the aforementioned ways of deployment. Furthermore, it aims to discover which approach is
the most adequate. Experiments conducted at AWS Lambda show that functions created with compressed ZIP
folders present advantages, regarding their initialization time during cold start mode, and cost.

1 INTRODUCTION

Serverless is a computing service in which cloud
providers offer a dynamic provisioning service with
pre-configured servers for their customers to run their
applications. Therefore, the cloud providers are re-
sponsible for provisioning, scaling, and securing the
applications deployed in this model (Nupponen and
Taibi, 2020). This makes it easier for developers and
organizations to implement their applications with-
out the burden of infrastructure management, that
would require hiring staff and maintaining the hard-
ware needed for the application. Each application
deployed in this model is called a function, which
must be executed independently in the infrastructure
offered by the provider.

When comparing the latest serverless models with
monolithic applications that have been used broadly
in the market for years, they present differences in
how they are structured and deployed. Serverless
functions have a smaller scope of code and function-
alities, as there is no need for server configurations
to be set and they auto-scale automatically accord-
ing to the demand of the allocated resources. Mono-
lithic applications, however, comprise all the code of a
system, including server and database configurations,
and therefore their codes and structures tend to be

a https://orcid.org/0000-0003-1140-0002

more extensive. Auto-scaling is not present as a stan-
dard and might be cumbersome to implement due to
the large amount of computational resources needed
for the application.

Despite the ease of development offered by server-
less functions, in the way of abstracting the infrastruc-
ture necessary to execute and handle the elastic de-
mand of the application, deploying a serverless appli-
cation on cloud providers requires attention, as envi-
ronment configurations are managed by the provider,
which limits the developers’ access to modify them.
This attention concerns configuring the resources re-
quired for their execution, as well as how the applica-
tion is instantiated and deactivated based on demand
(requests made by users) and idleness (period without
requests). As the application becomes idle for a few
minutes, the provider shuts down the function’s com-
putational resources, rendering it inoperative. When
it is in this state, and a new user request is made to
the function, the service allocates its resources again;
this step is known as cold start. During this time, the
response time also takes longer on the first request.

Via AWS Lambda website’s interface, there are
a few ways to deploy the application as a serverless
function. Particularly, two models were selected for
this work: through a compressed folder, and a con-
tainer image. Given these deployment models, this
paper aims to evaluate them through experiments con-

740
Duessmann, G. and Fiorese, A.
Evaluating Serverless Function Deployment Models on AWS Lambda.
DOI: 10.5220/0013279500003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 1, pages 740-747
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



ducted on the platform and analyse their characteris-
tics based on the collected data. The evaluation met-
rics selected to perform the analysis are: cost, perfor-
mance, and cold startup time. As a scientific contribu-
tion, this work seeks to address the following research
questions regarding the two models analysed:

• RQ-1. Which one presents advantages in terms of
performance and initiation time during cold start?

• RQ-2. How can the deployment choice impact the
function’s cost?

The answers to these questions will contribute
to researchers, developers, and cloud engineers who
want to leverage Lambda functions and deploy their
applications on the cloud. The relevant metrics will
indicate which deployment option presents to be the
most adequate for AWS Lambda though not limited to
this specific cloud provider as the experiments herein
can be replicated to other platforms.

For the experimentation environment, a Java ap-
plication was developed and deployed as a serverless
function in both deployment models. The functions
expect as input in the request a geographical region on
Earth; then, it executes the application code (function)
to obtain the local date and time; and finally, returns
the result. The execution metrics data were collected
by the AWS Lambda service itself, which provides a
tab for testing. In this tab, not only the users can run
their tests with different parameters, but also visualize
the functions’ metrics at each request.

Running those experiments incurred no costs, as
the experimental AWS Lambda Free Tier access was
used. This access allows running and testing several
AWS services for free (AWS, 2024a). Thus, the cost
analysis and comparison were based on the estimated
values provided by AWS Pricing Calculator (AWS,
2024b).

This paper is structured as follows: Section 2
presents the theoretical framework to clarify terms
related to the cloud and AWS provider. Section 3
lists related works relevant to the topic. Section
4 presents the methodology, environment configura-
tions, the evaluation proposal, as well as the experi-
ments performed, and the results of the garnered met-
rics. Finally, Section 5 concludes the evaluation and
answers the research questions.

2 THEORETICAL FRAMEWORK

Cloud providers are dedicated to improving the qual-
ity and usability of their services to serve a greater
number of customers. Serverless is one of the services
widely available at most cloud providers, that runs ap-

plications without server and infrastructure configura-
tions.

This service inception was only possible with the
countless improvements of related technologies that
helped reaching its current state. Such technologies
are highlighted in this Section to provide an overview
on their correlated connections.

2.1 Serverless Function

The serverless computing model, known as serverless
functions or Function as a Service (FaaS) model, is
a cloud computing service model in which providers
make pre-configured environments available in var-
ious programming languages to run cloud applica-
tions. These environments are configured to primarily
meet the elastic demand of the application, ensuring
the smooth execution of functions. Yet, it is neces-
sary that the serverless users set up the initial config-
uration regarding the hardware components and spe-
cific specifications, whereas applying and controlling
more robust configurations is managed by the cloud
provider.

One common strategy to manage resource alloca-
tion applied by AWS, as well as other cloud providers,
is known as cold start. As the function stops being
called by end users, the allocated hardware resources
become idle. Thus, after a while, the provider deallo-
cates these resources to alleviate the usage of its com-
putational resources.

Once these resources are released, they can also be
used in other serverless functions owned by different
clients. As new user requests are made to the func-
tion, the provider re-instantiates the resources and
goes into a warm-start mode, which invokes imme-
diately the serverless instance upon client incoming
requests.

The cold start is typically considered a disadvan-
tage. Although not the focus of this paper, there are
studies that aim at finding optimizations to help re-
duce it in order to avoid latency delays to the end
users. Nevertheless, there are challenges in achiev-
ing such solutions since most of the allocation and
resource configurations are managed by the cloud
providers (Vahidinia et al., 2020; Kumari et al., 2022;
Vahidinia et al., 2023; Dantas et al., 2022), and are
not available for clients to try their own experiments
and optimization.

2.2 Containers

Containers provide applications with a computing en-
vironment for running applications, configured with
all their dependencies to be executed. Containers iso-

Evaluating Serverless Function Deployment Models on AWS Lambda

741



late the desired application from external programs
and processes that run on the machine’s host operat-
ing system. Thus, it can be defined as an application
packaging mechanism (Siddiqui et al., 2019).

In order to be used, an application image must first
be created with its specifications. Then, a container is
built on top of that image, like a self-contained ma-
chine that runs the application. This container image
with the specifications can be shared among different
hosts, and each machine can build their own running
container with the same configurations, regardless of
hardware and operating system (OS). This is possi-
ble because containers are a form of lightweight vir-
tualization, which can include its own OS (Scheepers,
2014).

The use of containers has become widely pop-
ular due to their portability to migrate applications
among different environments, without the occur-
rence of problems caused by different configurations
in distinct machines. To be portable, the host machine
must have its operating system prepared to run con-
tainers. Generally, an installation and configuration
of a container manager software is required for those
OSs that do not offer it out of the box.

2.3 AWS Services

One of the largest cloud providers known nowadays
is Amazon Web Service (AWS), which offers hun-
dreds of services available on the internet. This work
uses the following services: AWS Lambda and AWS
ECR (Elastic Container Registry). Amazon’s server-
less service is called AWS Lambda (AWS, 2024g),
and it allows creating functions to run applications
without having to provision and manage servers.

The Lambda service manages most of the com-
puting configuration, which provides computing re-
sources for memory, CPU, network, and necessary re-
sources to run the application code (function). Func-
tions are instantiated on demand based on user re-
quests, prompting the cloud provider to dynamically
allocate computing resources from its infrastructure
to meet the demand. As functions become idle for a
few minutes, allocated computing resources are deac-
tivated. This allows customers to pay only for the time
the application is active and being invoked, with the
resources allocated to the serverless function (AWS,
2024g).

AWS provides several ways to deploy (create)
serverless functions through its website in a visual
and intuitive manner. In particular, as this work’s ob-
ject of study, the available and analysed models are:
compressed folder in ZIP format and container im-
age. There is a third model, through the IDE (Inte-

grated Development Environment) integrated into the
website on AWS. However, it was not analysed since
browser IDEs are not as intuitive and do not facilitate
development as much as traditional IDEs, and there-
fore are not frequently used by developers and com-
panies in the software development sector. Another
factor that led to this choice is that the integrated IDE
is only available for a few programming languages on
the platform (NodeJS, Python and Ruby), which lim-
its its scope of use.

The hardware architecture where the serverless
service will be executing can be chosen when creat-
ing the function. It can be either under the arm64 or
x86 64 architecture, and as a default it is pre-selected
x86 64, though can be changed to the arm64 architec-
ture, which stands out for having a lower execution
cost and achieving good performance results (AWS,
2024c).

AWS ECR is the repository service for storing
container images. Some of the container tools that
can be used for this purpose are: Podman (AWS,
2024e) and Docker (AWS, 2024d). Given Docker’s
great popularity, it was opted as the container tool
for the experiments. The developer must create the
image to run the application on their local machine
from a Dockerfile file and publish it to AWS ECR
(AWS, 2024f), to become available on AWS. By hav-
ing the image available in the AWS ECR repository, it
can be used in several of the provider’s services, and
specifically for this work, to create functions in AWS
Lambda.

3 RELATED WORKS

FaaS models are not particularly new, and though
bring ease to the implementation of applications,
there is still room for studies to analyse areas for im-
provement.

The work of (Dantas et al., 2022) addresses strate-
gies to reduce cold start and compares the impact on
time when instantiating a function through a com-
pressed file and via a container image. Despite
proposing solutions to minimize the init time, the
cited work does not address cost.

It is by evaluated by (Elsakhawy and Bauer, 2021)
the factors that affect the performance of serverless
functions, the results of container options, differ-
ent programming languages, and compilation alterna-
tives. However, the authors do not take into account
the cost to execute the function and the init time of the
cold start.

The authors (Villamizar et al., 2017) compared the
costs of running applications in monolith, microser-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

742



vice and Lambda function on AWS. Among the three
architectures, AWS Lambda had the lowest cost, re-
ducing infrastructure costs by 70%.

A case study conducted by (Rodrı́guez et al.,
2024) evaluated memory usage, scalability, and cold
start according to the choice of programming lan-
guages on AWS Lambda. The experiments were
conducted based on CRUD (create, read, update and
delete) operations, and the results showed that Python
and NodeJS obtained the best results. Nevertheless,
the deployment model is not highlighted.

The paper (Maharjan, 2022) does a performance
analysis on AWS Lambda, and evaluates the perfor-
mance, cost, latency, and cold startup overhead in
the two architectures available: x86 64 and arm64.
For the experiments, applications with different com-
plexity levels were assessed to evaluate how they im-
pacted the functions’ performance. This work found
that memory usage is nearly identical for both archi-
tectures, but the input size impacts directly the perfor-
mance and cost of the function. Moreover, the paper
concluded that arm64 performed better than x86 for
their experiments.

The author (Bagai, 2024) carries out a metic-
ulous comparison among different deployment ser-
vices in AWS, highlighting the strengths and weak-
nesses of AWS SageMaker, AWS Lambda, and AWS
ECS (Elastic Container Service). AWS Lambda was
nominated as the best choice for event-driven archi-
tectures and cheaper tasks. The main factors taken
into account are: performance, scalability, customiza-
tion, and cost. Cold start is not discussed as it is only
particular to AWS Lambda.

Based on the related papers that compared deploy-
ment models and metrics evaluations, this one stands
out for garnering the most relevant metrics in AWS
Lambda for two deployment models and evaluating
them, to find out how a set of configurations may be
more suitable than another. To do so, metrics of per-
formance, cost, and init time during cold start were
evaluated.

Table 1 compares the characteristics of related pa-
pers and highlights how this paper differs from the
others. The compressed file and container image
columns refer to the application deployment mode.
The following columns present performance, cost and
init time as metrics related to the function, and finally
the programming languages used in the paper’s exper-
iments.

4 METHODOLOGY AND
EXPERIMENTS

The performed experiments aim to help discover
which deployment method on AWS Lambda is more
advantageous and corroborate to the research ques-
tions (RQ-1 and RQ-2). To reach these conclusions,
metrics relevant to the service were analysed, namely:
cost, performance based on memory consumption,
and init time during cold startup.

4.1 Function and Environment

First, an application was developed to be deployed
as a serverless function. This application expects a
geographic region as an input parameter (e.g.: Eu-
rope/Berlin). With this input, it obtains the current
date and time of the region, and returns them as a re-
sponse. The application was developed in the Java 21
programming language. This choice was made due to
its popularity in the web environment and the ease of
implementing the library interface required to imple-
ment the application as a function on AWS Lambda
service.

Since the primary goal of this work is not to com-
pare the use of computational resources (processing
and memory, without disk usage) between functions,
a relatively simple function was developed, which re-
quired low usage of computational resources. There-
fore, it was possible to allocate the minimum available
hardware resources (128 MB of memory) to the func-
tion in the AWS Lambda service, without impacting
the results of the performed experiments.

The steps for deploying a function in the AWS
Lambda service are similar, though have some par-
ticularities:
Compressed File. An executable file of the applica-
tion is generated, which for the Java language is called
JAR (Java ARchive). The folder containing the source
code, along with the JAR file, must be compressed in
ZIP format. When creating the function in the AWS
Lambda service, this folder must be uploaded directly
to the service.
Container Image. An extra file (usually named
Dockerfile, for the Docker-type container) is added
to the project containing the configurations and de-
pendencies to generate the build of the container im-
age. It contains the instructions to install the operating
system and all environment dependencies. The im-
age generated in the developer’s local machine must
be published to the AWS ECR service (image reposi-
tory service) so that it becomes accessible within the
cloud. When creating the function, the container im-
age option must be chosen and the respective link

Evaluating Serverless Function Deployment Models on AWS Lambda

743



Table 1: Comparison of Related Works.

Paper Compressed
Folder

Container
Image Performance Cost Init Time Languages

(Dantas et al.,
2022) Yes Yes No Yes Yes

NodeJS,
Python and

Java
(Elsakhawy
and Bauer,

2021)
No Yes Yes Yes No -

(Villamizar
et al., 2017) No No No Yes Yes Java 7

(Rodrı́guez
et al., 2024) No No Yes No Yes

NodeJS,
Python and

Java
(Maharjan,

2022) No No Yes No Yes Python 3.x

(Bagai, 2024) No No Yes Yes No -
Current work Yes Yes Yes Yes Yes Java 21

must be provided. This link is a unique reference to
the image available on AWS ECR service, and in this
way, the serverless function is created based on this
image.

Moreover, it is necessary to set up some com-
puting resource configurations. In particular for this
work, only the architecture and memory configura-
tions were chosen. For the architecture, arm64 was
selected due to its lower cost (AWS, 2024c), as well
as the application’s low processing requirement. The
memory chosen was the minimum available, 128 MB,
since the functions do not require ephemeral storage
or large computing memory to operate effectively. As
for the CPU, it is allocated automatically and propor-
tionally to the chosen memory, with no option to be
altered.

To perform the experiments, the test console avail-
able within the AWS Lambda service through the
AWS website was used. When viewing the function
settings, there is a tab to test it, allowing to pass in-
put parameters and view the output. On top of that,
the test console provides the function’s metrics for
each invocation, which are collected for this work’s
analysis. As it is a service’s internal tool, the actual
metrics’ values obtained at each execution are not af-
fected by external factors, such as the user’s internet
connection, or the round-trip time of the request be-
tween the source and destination path.

Figure 1 shows a diagram with the test flow, as
well as the configured environment. In this scenario,
initially, the end user makes the request to a function
(through the test console) by means of its browser, the
function executes the application (either via a com-
pressed folder or container image) and returns the re-
sult to the end user, as well as the metrics for that
particular execution.

AWS
Lambda

Amazon
ECR

AWS
Lambda Docker

Requests

User

Figure 1: Test environment diagram.

To comprise the data garnered in the experiments,
40 calls were made to functions in cold start mode, a
state in which the function needs to reallocate its re-
sources, and consequently has a greater delay in the
response time. The work of (Manner et al., 2018) em-
pirically estimated 20 minutes for an idle serverless
function to go from warm start-up mode to cold start.
Adding an extra tolerance of 10 minutes, the exper-
iment requests were made at 30-minute intervals be-
tween each invocation.

4.2 Cost

To run these experiments on AWS, including the ser-
vices used, there was no charge from the provider as
only services and configurations within the Free Tier
level were used. This level allows customers to use
services for free, as long as they meet each service’s
constraints (AWS, 2024a). Therefore, to compare
the cost between the two deployment approaches, the
AWS cloud provider’s base pricing values are used.

The factors that can affect the costs of the AWS
Lambda service are: the choice of function deploy-
ment model, the environment configuration, the num-

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

744



ber of calls or requests to the function, the execution
time per request, and the geographic region where the
function is allocated. Among these factors, the num-
ber of requests and the execution time are disregarded
in the analysis, as they are very specific to each im-
plementation and business rules in place.

The cost analysis related to the function deploy-
ment model can be divided between applications with
sizes of up to 10 MB and larger. The AWS Lambda
service offers applications that fall into the first divi-
sion (up to 10 MB) in compressed folder (ZIP) for-
mat, which can be uploaded directly to the service
and are free of storage costs. Applications larger
than 10 MB or generated through container images
(regardless of size) must be stored in their respec-
tive storage service. For compressed folders, AWS
offers S3 (Simple Storage Service); and AWS ECR
for container images. Both AWS S3 and ECR ser-
vices price their storage cost based on the size of the
folder or container image. It is worth noting that con-
tainer images tend to be larger in size, as they com-
prise the environment configurations required to exe-
cute the function, including the operating system, and
as a consequence, may increase the final cost.

Functions in AWS Lambda are also charged ac-
cording to the choice of computing resources allo-
cated to the environment. The resources are: architec-
ture (arm64 or x86 64), available memory (between
128 MB and 10,240 MB), and ephemeral storage (be-
tween 512 MB and 10,240 MB). Among the architec-
tures offered, arm64 has a lower cost (AWS, 2024c).
For memory allocation and ephemeral storage, the
cost is proportional to the allocated size.

In general, the geographic zone selected for provi-
sioning cloud services influences the total costs; how-
ever, it applies to all services offered by the provider
(not just AWS Lambda), and since this work only
used the us-east-1 region (located in Virginia, USA),
it cannot be used as a basis for comparison between
both deployed models. Moreover, if they were avail-
able in different regions, it would also be unfair to
make such a comparison, since the prices vary by re-
gion.

4.3 Performance

As a performance metric for the application, the work
took into account the maximum RAM memory con-
sumption in the environment tested when executing
serverless functions that were in cold start mode.

As shown in Figure 2, the maximum memory us-
age with the container image approach remained con-
stant, whereas the compressed folder had a larger
standard deviation, which indicates that the function

in the container image presents a more stable memory
usage management.

Execution number

M
ax

 m
em

or
y 

us
ag

e 
(M

B
)

0

25

50

75

100

10 20 30 40

Compressed file Container image

Figure 2: Maximum memory usage graph in serverless
functions.

Figure 3 shows the average consolidation of mem-
ory usage for both approaches, corroborating the re-
sults of Figure 2. Even more, it demonstrates that the
deployment with the container image obtained better
results regarding memory consumption; that is, it con-
sumes less memory to execute the function. However,
the difference is too small to be considered relevant.

M
ax

 m
em

or
y 

us
ag

e 
(M

B
)

0

25

50

75

100

Compressed file Container image

Figure 3: Graph of average maximum memory usage in
serverless functions.

The difference in memory usage of the functions
between the two deployment models, though rela-
tively low, does not change the final cost, since pric-
ing is based on the allocated memory, which in the
experiments was 128 MB, and the memory used dur-
ing execution period is not considered.

4.4 Init Time in Cold Start

Figure 4 shows the initialization time during cold start
of the functions in each deployment model, consider-
ing 40 executions, called with an interval of 30 min-
utes between each. This ensures that the functions
halted their active state and went into cold start. In
particular, can observe the consistency in the results
obtained for the functions in the compressed folder,

Evaluating Serverless Function Deployment Models on AWS Lambda

745



the opposite result obtained in Figure 2 for memory
usage, which may indicate that the AWS provider per-
forms optimizations in the environment for functions
deployed in this model, providing greater stability and
achieving shorter initialization times.

Execution number

In
it 

tim
e 

(m
s)

0

500

1000

1500

10 20 30 40

Compressed file Container image

Figure 4: Init time graph in serverless functions.

Figure 5 shows the average init time for cold
startup. This metric is directly linked to cost, since
the execution time is one of the pricing factors for the
AWS Lambda service, and the longer the init time, the
longer the total execution time. Consequently, func-
tions with shorter init times have a lower cost, as well
as better response time to end users. Based on the ex-
periments, the compressed folder deployment model
presented the best init time.

In
it 

tim
e 

(m
s)

0

200

400

600

800

Compressed file Container image

Figure 5: Graph of average init time in serverless functions.

5 CONCLUSIONS AND FUTURE
WORK

This paper assessed two models for deploying server-
less functions on AWS Lambda. In the compressed
folder (ZIP) model, the deployment model is simpli-
fied, as the application folder is uploaded directly to
the service. For a container-image-base deployment,
additional steps are included, such as generating a
build image for the application and publishing it to
AWS ECR. Furthermore, two research questions were
initially introduced as the motivation for this study,

and are now answered in this section.
RQ-1. Sections 4.3 and 4.4 presented the perfor-
mance results, respectively, analyzing memory us-
age and init time. The average performance between
the models showed an insignificant difference to be
considered as meaningful. The init time, however,
showed that the function deployed through a com-
pressed folder obtained better results, contributing to
a faster response time in executions. According to the
evaluation conducted, the compressed folder function
proved to be the most advantageous option.
RQ-2. In Section 4.2, the pricing of the AWS Lambda
service was evaluated based on the values reported on
the platform. Thus, it was possible to infer that the
compressed folder model presented advantages, as no
storage service is needed for functions whose maxi-
mum size is 10 MB, and ZIP folders tend to have a
smaller size. In Section 4.4, it was discussed how the
init time impacts the final cost of executing the func-
tions.

For the experiments conducted on AWS Lambda,
an application in Java was developed and deployed
in both models studied. The application had plain
requirements, with the main purpose of running a
serverless function. With the function deployed, re-
quests were made within the service testing section,
and its execution metrics were collected for the cur-
rent paper’s analysis.

Those experiments corroborate with the research
questions, regarding the metrics of performance, init
time, and cost. Based on the scenarios tested and data
obtained in each deployment model, it can be inferred
that deployment via compressed folder (ZIP) presents
the main advantages, which are: lower deployment
cost, and shorter init time during cold start state.

As future work, the comparison can be extended
to other programming languages supported by the
AWS Lambda service, as well as comparing the de-
ployment models in different cloud providers, such
as Google Cloud and Microsoft Azure. Another as-
pect to be evaluated is the architecture in which the
serverless function is executed, which can be x86 64
or arm64. In this work, only the arm64 architecture
was evaluated, with room to explore the x86 64 ar-
chitecture. The scope of the application can also be
extended to larger or more complex applications that
demand greater computational resources, and which
presumably impact the memory consumption and init
time. Larger sizes can also impact the final cost, and
can be compared with applications larger than 10 MB
in ZIP format, which have to be stored on the AWS
S3 service.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

746



ACKNOWLEDGMENTS

This work received financial support from the Coordi-
nation for the Improvement of Higher Education Per-
sonnel - CAPES - Brazil (PROAP/AUXPE).

REFERENCES

AWS (2024a). AWS Free Tier. https://aws.amazon.com/
free/?all-free-tier. Accessed: 2024-11-08.

AWS (2024b). AWS Pricing Calculator. https://calculator.
aws. Accessed: 2024-11-08.

AWS (2024c). Lambda instruction set architectures
(arm/x86). https://docs.aws.amazon.com/lambda/
latest/dg/foundation-arch.html. Accessed: 2024-08-
17.

AWS (2024d). Pushing a Docker image to an
Amazon ECR private repository. https:
//docs.aws.amazon.com/AmazonECR/latest/
userguide/docker-push-ecr-image.html. Accessed:
2024-09-12.

AWS (2024e). Using Podman with Amazon ECR - Amazon
ECR. https://docs.aws.amazon.com/AmazonECR/
latest/userguide/Podman.html. Accessed: 2024-09-
12.

AWS (2024f). What is Amazon Elastic Container Reg-
istry? https://docs.aws.amazon.com/AmazonECR/
latest/userguide/what\-is\-ecr.html. Accessed: 2024-
08-17.

AWS (2024g). What is AWS Lambda? https://docs.aws.
amazon.com/lambda/latest/dg/welcome.html. Ac-
cessed: 2024-08-17.

Bagai, R. (2024). Comparative Analysis of AWS Model
Deployment Services. International Journal of Com-
puter Trends and Technology, 75(5):102–110.

Dantas, J., Khazaei, H., and Litoiu, M. (2022). Application
Deployment Strategies for Reducing the Cold Start
Delay of AWS Lambda. In 2022 IEEE 15th Inter-
national Conference on Cloud Computing (CLOUD),
pages 1–10.

Elsakhawy, M. and Bauer, M. (2021). Performance anal-
ysis of serverless execution environments. In 2021
International Conference on Electrical, Communica-
tion, and Computer Engineering (ICECCE), pages 1–
6.

Kumari, A., Sahoo, B., and Behera, R. K. (2022). Miti-
gating cold-start delay using warm-start containers in
serverless platform. In 2022 IEEE 19th India Coun-
cil International Conference (INDICON), pages 1–6,
Barcelona, Spain.

Maharjan, C. (2022). Evaluating Serverless Computing.
Master’s thesis, Louisiana State University, Baton
Rouge, LA.

Manner, J., Endreß, M., Heckel, T., and Wirtz, G. (2018).
Cold Start Influencing Factors in Function as a Ser-
vice. In 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Com-
panion), pages 181–188.

Nupponen, J. and Taibi, D. (2020). Serverless: What it is,
what to do and what not to do. In 2020 IEEE Interna-
tional Conference on Software Architecture Compan-
ion (ICSA-C), pages 49–50.

Rodrı́guez, N., Murazzo, M., Martı́n, A., and Rodrı́guez,
M. (2024). Evaluation of programming languages
for memory usage, scalability, and cold start, on aws
lambda serverless platform as a case study. In Com-
puter Science–CACIC 2023: 29th Argentine Congress
of Computer Science, Lujan, Argentina, October 9-12,
2023, Revised Selected Papers, volume 2123, page 33.
Springer Nature.

Scheepers, M. J. (2014). Virtualization and containerization
of application infrastructure: A comparison. In 21st
twente student conference on IT, volume 21, pages 1–
7.

Siddiqui, T., Siddiqui, S. A., and Khan, N. A. (2019). Com-
prehensive analysis of container technology. In 2019
4th International Conference on Information Systems
and Computer Networks (ISCON), pages 218–223.

Vahidinia, P., Farahani, B., and Aliee, F. S. (2020). Cold
start in serverless computing: Current trends and miti-
gation strategies. In 2020 International Conference on
Omni-layer Intelligent Systems (COINS), pages 1–7.

Vahidinia, P., Farahani, B., and Aliee, F. S. (2023). Miti-
gating cold start problem in serverless computing: A
reinforcement learning approach. IEEE Internet of
Things Journal, 10(5):3917–3927.

Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Sala-
manca, L., Verano Merino, M., Casallas, R., Gil, S.,
Valencia, C., Zambrano, A., and Lang, M. (2017).
Cost comparison of running web applications in
the cloud using monolithic, microservice, and AWS
Lambda architectures. Service Oriented Computing
and Applications, 11:233–247.

Evaluating Serverless Function Deployment Models on AWS Lambda

747


