
Teaching Parallel Programming on the CPU Based on Matrix
Multiplication Using MKL, OpenMP and SYCL Libraries

Emilia Bober a and Beata Bylina b

Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Keywords: Parallel Matrix Multiplication, OpenMP, SYCL, MKL.

Abstract: Matrix multiplication is a fundamental operation in engineering computations. With the widespread use of
modern multi-core processors, this operation can be significantly accelerated through parallel programming.
Consequently, it is essential to acquaint computer science students with parallel programming techniques.
Matrix multiplication is well known to students, while additionally offering numerous possibilities for par-
allelisation. This makes it an ideal example for introducing parallel programming while highlighting key
considerations such as execution time, accuracy of the calculations, code complexity and the impact of the
hardware architecture on the results obtained. Students can implement and test such software themselves. In
this paper, the performance and accuracy of the MKL, SYCL and OpenMP libraries are investigated using
matrix multiplication of different sizes as an example. OpenMP is discussed at some universities, so it may
already be familiar to students, whereas SYCL is a newer and less commonly used standard but it offers great
possibilities. Square matrices with double-precision elements and dimensions of 4096×4096, 8192×8192,
and 16384×16384 were selected for testing. The experiments revealed significant computational speed-ups
compared to the sequential algorithm, with no loss of accuracy. SYCL was found to be about 10 times faster
than OpenMP, but the calculations performed with MKL are by far the fastest. Additionally, the results indi-
cated that doubling the number of threads does not directly correlate to a twofold increase in execution speed,
and doubling the matrix size in each dimension leads to an approximately tenfold increase in execution time.

1 INTRODUCTION

Parallel computing has become an integral part of
mainstream computing, driven by the widespread
availability of multi-core processors(Sitsylitsyn,
2023)(Czarnul et al., 2024). As a result, applications
will be able to perform their tasks in parallel to take
full advantage of the bandwidth gains of multicore
processors. However, writing parallel code remains
significantly more complex than writing sequential
code. Therefore, it is worth devoting time to this
issue in the education of computer science students
(Marowka, 2008)(Gao and Zhang, 2010)(Brod̄anac
et al., 2022). Matrix multiplication is one of the most
essential operations in scientific computing (Ade-
femi, 2024). The matrices on which operations are
performed have increasingly large sizes, even several
thousand elements in one dimension. Multiplying
such large matrices with a classical algorithm without
any libraries using parallelism or multithreading

a https://orcid.org/0009-0000-6466-8796
b https://orcid.org/0000-0002-1327-9747

takes many hours even on modern processors. It is
usually impossible to wait that long for a result, so
it is necessary to consider the available solutions
both in terms of libraries and the distributed matrix
multiplication algorithms themselves. Basic matrix
multiplication can be written:

C = A×B (1)

If A is a matrix of dimension n× k and B is a matrix
of dimension k×m, then C is a matrix of dimension
n×m, where each element ci j is calculated from the
formula:

ci j =
n

∑
k=1

aik ·bk j (2)

Such a way is called naive. Its complexity is O(n3).
The naive algorithm is not the only possible algorithm
for matrix multiplication (Golub and Loan, 2013).
There are several algorithms for concurrent matrix
multiplication, including the Cannon and Strassen al-
gorithms (Ballard et al., 2014). Currently available
multi-core processors allow parallel computing. It
is also possible to use several processor cores in a

Bober, E. and Bylina, B.
Teaching Parallel Programming on the CPU Based on Matrix Multiplication Using MKL, OpenMP and SYCL Libraries.
DOI: 10.5220/0013279100003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 713-720
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

713



naive algorithm using appropriate libraries such as
OpenMP and SYCL. These approaches significantly
reduce computation time compared to sequential pro-
grams (Ogunyiola et al., 2024). Matrix multiplica-
tion is a subject well known to every computer sci-
ence student. It is a straightforward operation, with a
basic algorithm that is simple to understand and im-
plement. The operation can be parallelized in many
ways. It is therefore a good example for introducing
students to more advanced topics like parallel pro-
gramming. When teaching parallel programming, it
is crucial to emphasize key aspects such as program
execution time and computational accuracy. This arti-
cle contains example implementations of parallel ma-
trix multiplication and the results of measuring the
time and accuracy of calculations. Students in paral-
lel programming courses can make such implemen-
tations on their own to then test their performance
and accuracy of computation. The aim of this pa-
per is to present methods for teaching parallel pro-
gramming on CPU, due to its widespread availability.
The paper discusses the library optimized for Intel
processors, such as MKL, and the popular OpenMP
standard, as well as the modern framework SYCL.
This analysis allows students to understand the im-
pact of hardware architecture and code optimization
on performance. In this paper Intel processor was
chosen to run the tests, but it is not the only option.
It is possible to use run such tests on another archi-
tecture. Other programming languages can also be
used to work with OpenMP and SYCL. In this article,
C++ was chosen because it is well known to students
and widely used. However, the paper omits GPUs
to avoid complications related to heterogeneous com-
puting systems. This article presents timing results
for a naive sequential algorithm without using any li-
braries for parallel computing, as well as results using
OpenMP and SYCL. Additionally, the performance
of matrix multiplication using the MKL library is ana-
lyzed. The tests assess the accuracy of each approach
by comparing the results to the sequential naive al-
gorithm, with the mean square error (MSE) serving
as the accuracy metric. The naive sequential algo-
rithm is used as the benchmark. The results obtained
in this paper show that SYCL performs the compu-
tation faster than OpenMP, while maintaining similar
accuracy.However, both libraries lag significantly be-
hind MKL in terms of execution speed for this im-
plementation. Therefore, it is worth presenting this
solution to students to encourage them to extend their
knowledge in this area and further optimise their code
and learn about algorithms dedicated to distributed
matrix multiplication. Chapter 2 describes libraries
chosen to present in this paper. Chapter 3 provides

a description of an example exercise that can be car-
ried out during classes with students. Chapter 4 con-
tains the implementation of the algorithms using the
libraries discussed. These include code fragments of
the programmes, together with a description of how
they were compiled so that they can be reproduced.
Chapter 5 describes the testing environment, includ-
ing relevant environment variables and a description
of the numerical experiment itself. Chapter 6 presents
the experimental results: execution times, computa-
tional accuracy, and speed-ups relative to the baseline
algorithm. Chapter 7 provides a summary and out-
lines potential directions for future research.

2 LIBRARIES

In this paper OpenMP and SYCL libraries were cho-
sen for the study because they allow software de-
velopment for heterogeneous systems. This implies
code portability between CPU and GPU, which is a
basis for further research. However, this article fo-
cuses exclusively on a single hardware configuration:
a multi-core CPU with shared memory. The portabil-
ity of solutions between CPUs and GPUs is beyond
the scope of this work. Intel MKL library is also
included in the comparison. Intel Math Kernel Li-
brary (MKL) is an advanced mathematical library op-
timised for performance on Intel processors that sup-
ports a wide range of computational operations such
as linear algebra (including double-precision matrix
multiplication), Fourier transforms, statistics or vec-
tor functions. With optimised algorithms and the abil-
ity to automatically adapt to the hardware architec-
ture, MKL allows computational applications in areas
such as machine learning, scientific simulation or en-
gineering modelling to be significantly accelerated. It
supports a variety of programming languages, includ-
ing C, C++ and Fortran, and integrates with popular
frameworks, making it a versatile tool for developers.
Using MKL can reduce computation time, enabling
faster results and more efficient use of available hard-
ware resources (Intel Corporation, ). OpenMP (Open
Multi-Processing) is a widely-used parallel program-
ming tool that enables the effective use of multi-
threading in applications running on today’s multi-
core processors. It is an open standard that integrates
with popular programming languages such as C, C++
and Fortran, allowing code to be easily extended with
parallel functionality using special directives, library
functions and environment variables. Thanks to its
flexibility, OpenMP allows programmers to control
the division of tasks between threads, synchronisa-
tion, as well as resource management, making it sig-

CSEDU 2025 - 17th International Conference on Computer Supported Education

714



nificantly easier to optimise application performance
(OpenMP Architecture Review Board, ). A number of
scientific papers have been written examining this li-
brary against other solutions (Ismail et al., 2011)(Pen-
nycook et al., 2019). Some universities have OpenMP
in the curriculum, so the tool may be familiar to some
students. SYCL (Standard for C++ Parallelism and
Heterogeneous Computing) is an open standard de-
veloped by the Khronos Group that enables parallel
programming across diverse hardware platforms, in-
cluding CPUs, GPUs, and accelerators. SYCL takes
advantage of modern features of the C++ language,
allowing developers to write code in a uniform way,
regardless of the target architecture. Its abstraction
model, based on data buffering and dependency man-
agement, simplifies the development of complex par-
allel applications while maintaining efficiency (The
Khronos Group, )(Reinders et al., 2023). SYCL is a
new standard that rarely appears in scientific papers,
especially in the context of matrix multiplication.

3 EXERCISE IN CLASS WITH
STUDENTS

In this course, students complete an exercise to im-
plement parallel matrix multiplication using OpenMP
and SYCL. The goal of this exercise is to demon-
strate how these technologies can speed up compu-
tations while introducing students to the practical as-
pects of parallel programming. Students first imple-
ment a matrix multiplication algorithm using sim-
ple parallelization techniques such as parallel loops
in OpenMP. They then extend their solution using
SYCL, which requires them to understand the con-
cept of explicit data management and computation in
kernels. Once the implementation is complete, they
compare the performance of their programs by mea-
suring their runtimes for different matrix sizes and
numbers of threads. As a reference, they use the MKL
library to see how their implementations compare to
highly optimized code. Students encounter various
challenges during the exercise. Controlling the com-
putational environment, such as by configuring envi-
ronment variables such as OMP_NUM_THREADS
in OpenMP or SYCL-specific settings, can be difficult
but is essential for obtaining consistent comparative
results. Another challenge is the appropriate selec-
tion of optimization flags in the icpx compiler, which
have a significant impact on code performance. Stu-
dents also learn that increasing the number of threads
does not always translate into a linear increase in per-
formance, which prompts them to analyze the effect
of reducing the number of threads by half. The exer-

cise also includes a comparison of the accuracy of cal-
culation results obtained using OpenMP and SYCL
with the results generated by the MKL library. This
allows students to understand how different tools af-
fect the precision of calculations. Through such an
assignment, students not only learn about parallel
programming tools, but also develop analytical skills
and critical thinking. Example exercise description:
Write a program that uses OpenMP and SYCL tools
to perform parallel matrix multiplication, using for-
mula (2). The program should be compiled using
the icpx compiler with appropriate optimization op-
tions. Choose options for self-compilation. Measure
the program’s runtime and then conduct a numerical
experiment on a multicore machine, adjusting the ap-
propriate environmental options. Analyze the com-
parison of execution times for OpenMP and SYCL to
choose the most efficient code. Compare the obtained
results with the execution times for matrix multiplica-
tion using the MKL library. Finally, investigate the
impact of changing the number of threads, testing dif-
ferent values, including half of the available proces-
sor cores. Additionally, check how the used tools af-
fect the accuracy of the computational results, com-
paring them with the results obtained using the MKL
library.

4 IMPLEMENTATION

This chapter contains the most important parts of the
programme codes, which will allow the results ob-
tained to be reproduced. These can be used for further
research or to present the issue of parallel program-
ming to students. Below is the code showing how
timing was measured in all implementations. Only
the matrix multiplication time without data initialisa-
tion was always measured.
double start_time = dsecnd();
/*

matrix multiplication
*/
double end_time = dsecnd();
double elapsed_time = end_time - start_time;

The listing below shows a code fragment of a sequen-
tial matrix multiplication programme:
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
for (int p = 0; p < k; ++p)
C[i * n + j] +=

A[i * k + p] * B[p * n + j];

A command was used to compile the program for
sequential matrix multiplication: icpx -lmkl_core -
lmkl_intel_ilp64 -lmkl_sequential -O3 -o program pro-
gram.cpp

Teaching Parallel Programming on the CPU Based on Matrix Multiplication Using MKL, OpenMP and SYCL Libraries

715



• lmkl_core – link option with the Intel Math Ker-
nel Library (MKL) containing basic mathematical
functions such as matrix and vector operations.

• lmkl_intel_ilp64 – link option with a version of
MKL adapted to work with 64-bit indices and in-
teger indices (ILP64).

• lmkl_sequential – link option with a version of
MKL that runs sequentially, without parallel exe-
cution. This can be useful when you want to avoid
thread management issues or when parallelism is
managed in other ways in your application.

• O3 – The compiler optimisation flag indicates
the highest level of optimisation that attempts to
maximise the performance of the generated code,
at the expense of longer compilation times and
higher memory consumption.

Code snippet which shows parallel matrix multiplica-
tion using OpenMP:
#pragma omp parallel for schedule(dynamic)
num_threads(num_threads)
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
for (int p = 0; p < k; ++p)
C[i * n + j] +=

A[i * k + p] * B[p * n + j];

The directive #pragma omp parallel for sched-
ule(dynamic) num_threads(num_threads) is re-
sponsible for the parallel execution of the loop
for. num_threads variable stores the set number of
threads, i.e. 16 and 32.

Code snippet which shows parallel matrix mul-
tiplication using SYCL:
std::vector<double> C(N * N, 0.0);
std::vector<double> B(N * N, 0.0);
std::vector<double> A(N * N, 0.0);
sycl::queue queue(sycl::cpu_selector_v);
double* d_A =

sycl::malloc_device<double>(N * N, queue);
double* d_B =

sycl::malloc_device<double>(N * N, queue);
double* d_C =

sycl::malloc_device<double>(N * N, queue);
/*

Data initialization
...
*/
queue.memcpy(d_A, A.data(),

N * N * sizeof(double)).wait();
queue.memcpy(d_B, B.data(),

N * N * sizeof(double)).wait();
sycl::range<2> global_range(N, N);
queue.submit([&](sycl::handler& cgh) {
cgh.parallel_for(global_range,

[=](sycl::id<2> idx) {
size_t row = idx[0];

size_t col = idx[1];
double sum = 0.0;
for (size_t k = 0; k < N; ++k) {

sum += d_A[row * N + k] * d_B[k * N + col];
}
d_C[row * N + col] = sum;

});
}).wait();

SYCL queue is created from sycl::queue
queue(sycl::cpu_selector_v). The SYCL queue
is the primary task management mechanism for
programming in SYCL. It is an abstract interface for
managing the execution of operations on devices.
The queue allows memory management on the de-
vice, including memory allocation and deallocation,
and data transfer between host memory (CPU) and
device memory. The SYCL queue accepts tasks to be
executed on the device, defined by so-called kernel
functions (kernel functions). These tasks can be
executed in parallel on multiple threads or compute
units of the device. global_range defines the total
scope of the calculation as a 2D grid with dimensions
NxN. queue.submit() sends a task (lambda function)
to the SYCL queue for parallel execution on the
device. In the lambda function (parallel_for), each
thread identified by idx computes an element of the
resulting matrix C (stored in d_C) by performing
matrix multiplication of the corresponding elements
from matrices A (stored in d_A) and B (stored in
d_B).
id<2> is a generic type in SYCL that represents a ho-
mogeneous identifier or index in a two-dimensional
space. A command was used to compile the pro-
gramme using SYCL: icpx -fsycl -lmkl_core
-lmkl_sequential -lmkl_intel_ilp64 -O3 -fsycl-
targets=spir64_x86_64 program.cpp -o program

• fsycl – flag informs the compiler that the source
file program.cpp is written in SYCL.

5 NUMERICAL EXPERIMENT

All the programmes discussed were run and tested
on the hardware and software configuration described
next. When teaching parallel programming, the stu-
dents’ attention should be drawn to the dependence of
the results on the environment configuration. This is
both a hardware aspect and a software configuration.
In the case of hardware, the most important aspects
will be: the generation of the processor, its architec-
ture, the number of cores, clocking and whether the
processor supports virtual cores. In terms of software,
the operating system, the version of the compiler and
libraries, and all necessary environment variables will

CSEDU 2025 - 17th International Conference on Computer Supported Education

716



be important. Students should be able to assess the
performance of their algorithm implementation and
the suitability of a given hardware and software con-
figuration for parallel computing. They should also
estimate which configuration will be more beneficial.
This article presents the computational results of the
proposed implementations on a single but powerful
hardware configuration. Students are advised to per-
form the tests on smaller arrays, due to less powerful
hardware configurations of home computers and lap-
tops.

5.1 Environment

The tests of the prepared programmes were performed
on a hardware platform with an Intel Xeon Gold
5218R processor, 2.10GHz, with x86_64 architecture.
This processor has 40 cores, 80 threads. The available
RAM is 376GB. AlmaLinux 8.7 operating system is
installed on the server. All programs were compiled
using Intel oneAPI DPC++/C++ Compiler 2024.0.2.

5.2 Tests

Each program was executed 3 times with the CPU un-
burdened by other tasks. The environment variable
KMP_AFFINITY=granularity=fine,compact,1,0 was set
before any program was executed. This variable is
used by the OpenMP library to control the assign-
ment of threads to processors. Granularity specifies
the level of detail at which threads are assigned to
computing units. A value of fine means that threads
are assigned at the level of individual processor cores.
This is the most accurate level, providing the most
control over thread assignment. Compact is a CPU
thread assignment strategy in which threads are as-
signed sequentially to the nearest available cores, in
a compact manner. The aim is to maximise memory
locality. 1 specifies the interval between thread as-
signments. 0 is the initial core from which threads
will be assigned. The environment variables used to
control the execution of the SYCL program are:
DPCPP_CPU_NUM_CUS=16
DPCPP_CPU_PLACES=cores
DPCPP_CPU_CU_AFFINITY=close The first variable
above sets the number of threads used by the pro-
gramme. The second variable determines that only
physical cores will be used, without hyperthreading.
The third variable influences that threads will be as-
signed to the available cores one at a time. Each of
the programs examined performs calculations using
the same matrix multiplication algorithm discussed
above, but uses different options for parallelizing the
calculations. The basic programme is a sequential

matrix multiplication according to the formula above.
No parallelization is used here. The master matrices
for the libraries under study will be calculated using
this algorithm. The second method is to parallelize
the calculations using OpenMP. The OpenMP library
is a well-known tool with an established track record.
The third method is to program using SYCL. SYCL
is an open programming standard developed by the
Khronos Group that enables programming of hetero-
geneous computer systems such as CPU, GPU and
other accelerators. The standard ensures code porta-
bility between platforms. Source code for different
devices can be written in a single file. SYCL uses
the C++ language to define parallel computing. The
last method is to calculate the product of a matrix us-
ing the cblas_dgemm function from the MKL library.
The function dsecnd() from the MKL library was used
to measure timing in all programmes. For this reason,
this library was added to the compilation of each pro-
gramme. All programmes have been compiled with
the -O3 flag to optimise their performance. Pseudo-
random double-precision numbers ranging from -1 to
+1 were used to initialise the A and B matrices. The
double precision allows 15-17 significant digits to be
stored. Matrix C is the result of multiplying matrices
A and B using the algorithm under study. C_base ma-
trix is the result of multiplying matrices A and B us-
ing a function implementing the naive algorithm with-
out using additional libraries to parallelize the calcu-
lations. The mean squared error (MSE), which we de-
fine according to the formula, was chosen to compare
the validity of the results:

MSE =
1
n

n

∑
i=1

(Cbasei −Ci)
2 (3)

6 RESULTS

This section presents the results of measuring the
computation time and accuracy and the speed-up of-
fered by the different implementations of the matrix
multiplication algorithm. The results are divided ac-
cording to the library used, the number of threads and
the size of the matrix. Table 1 contains the calcu-
lated mean squared error that was generated by the
analysed implementations of the matrix multiplica-
tion algorithm. The benchmark matrices were gen-
erated by the sequential algorithm. The table 2 shows
the results of the execution time measurements of the
individual programs. The results have been divided
according to the size of the matrix, the library used
and the number of CPU threads that were used by the
analysed programs. A useful performance indicator
for the computing libraries under study is the acceler-

Teaching Parallel Programming on the CPU Based on Matrix Multiplication Using MKL, OpenMP and SYCL Libraries

717



ation of programme execution. Such acceleration can
be defined as

ap =
ts
tl
, where : (4)

ts — execution time of the sequential programme,
tl — programme execution time using the library
under test.
The calculated acceleration values can be found in
the table 3. The graphs show the execution time
of the programmes as a function of matrix size, sep-
arately for the sequential algorithm, OpenMP, SYCL
and MKL. It can be seen from the data presented

Figure 1: Execution time of the sequential algorithm de-
pending on the matrix size.

Figure 2: Execution time with OpenMP depending on the
matrix size.

Figure 3: Program execution time with SYCL depending on
the matrix size.

that even the slowest of the parallel solutions is nearly
12 times faster than executing the algorithm sequen-
tially. In the case of the fastest - the acceleration is
several thousand times, and the time itself is reduced
to a few seconds or even fractions of a second for

Figure 4: Program execution time with MKL depending on
the matrix size.

smaller matrices. The effect of the number of threads
on the execution time of a programme is not obvious.
Twice as many threads is not twice as fast program
execution time. MKL is very close to this assump-
tion, but for OpenMP and SYCL this difference is
smaller, although still significant. The largest speed-
up was obtained for an 8192x8192 matrix regardless
of the library used. The accuracy of the calculations
for all algorithms, expressed by the mean squared er-
ror, varies on the order of E−28 to E−26, as can be
well seen in table 1. As the size of the multiplied ma-
trices increases, the accuracy of the calculations de-
creases, but the difference is negligible. The mean
squared error between the smallest and the largest of
the matrices tested differs by only one order of mag-
nitude, i.e. in the worst case it is E−26. As we can
see, all the errors are very small, much better than the
precision of the used type. Thus, we can say that the
algorithm’s accuracy is very high. Increasing the size
of the matrix had a significant impact on programme
execution time. And this increased from 6.8 times to
11.6 times with respect to a smaller matrix. The MKL
library allows the greatest acceleration of calculations
without significant loss of accuracy. This library was
developed by Intel, so it is the best optimised. Un-
fortunately, an implementation of this library is not
publicly available. Implementing the sequential algo-
rithm and parallelizing it with SYCL gives very good
results. Computations are performed several hundred
times faster and the loss of accuracy is small.

7 CONCLUSIONS

This paper presents a method for teaching parallel
programming on CPU based on matrix multiplication,
using the MKL, OpenMP and SYCL libraries. The
computations were performed exclusively on a CPU,
without GPU involvement. The OpenMP, SYCL and
MKL libraries were used to perform parallel calcula-
tions. These results can serve as a starting point for
teaching parallel programming using OpenMP and

CSEDU 2025 - 17th International Conference on Computer Supported Education

718



Table 1: Mean squared error of the calculation result relative to the sequential algorithm.

Threads Programme 4096x4096 8192x8192 16384x16384
16 MKL 2.14E-27 3.34E-26 3.34E-26

OpenMP 2.26E-27 3.69E-26 3.69E-26
SYCL 1.70E-28 1.26E-27 1.26E-27

32 MKL 2.25E-27 8.81E-27 3.45E-26
OpenMP 2.24E-27 9.24E-27 3.64E-26
SYCL 1.53E-28 4.56E-28 1.28E-27

Table 2: Average execution time [s] of individual programs with a given number of threads for a given matrix size.

Threads Programme 4096x4096 8192x8192 16384x16384
1 sequential 671.980 6657.370 45471

16 OpenMP 57.108 472.861 3727.160
SYCL 5.717 46.059 377.856
MKL 0.252 1.979 15.857

32 OpenMP 29.385 277.650 3208.817
SYCL 3.541 29.801 245.405
MKL 0.138 1.035 7.983

Table 3: Acceleration of program execution relative to a sequential algorithm.

Threads Programme 4096x4096 8192x8192 16384x16384
16 OpenMP 11.8 14.1 12.2

SYCL 117.5 144.5 120.3
MKL 2666.6 3364 2867.6

32 OpenMP 22.9 24 14.2
SYCL 189.8 223.4 185.3
MKL 4869.4 6432.7 5696

SYCL on an example of a matrix multiplication op-
eration familiar to students. Students are encouraged
to independently implement the matrix multiplica-
tion algorithm, parallelize it using libraries such as
OpenMP or SYCL, and evaluate their results. They
can also compare their outcomes with the benchmarks
described in this article, noting the impact of hard-
ware configurations on performance. In the tests de-
scribed in this article, SYCL was found to be 9.6
to 13.2 times faster than OpenMP. Intel’s MKL li-
brary, optimized for high performance, significantly
outperformed both, with computation speeds 20 to 30
times faster than SYCL. However, it should be re-
membered that our implementation was a parallelized
classical algorithm and the MKL implementation is
likely to be a block algorithm, which may have an
impact on performance. Another aspect compared
in the paper was the effect of matrix size on pro-
gram execution time. Doubling the matrix size in
each dimension increased execution time by a fac-
tor of 6.8 to 11.6 across all solutions analyzed. The
accuracy of all implementations, measured using the
mean squared error (MSE), was comparable, ranging
from 10−28 to 10−26, demonstrating that all libraries
maintained high precision. When teaching parallel

programming, these dependencies between algorithm
design, parallelization approach, and hardware con-
figuration should be highlighted. Students should in-
dependently implement and parallelize the algorithm,
conduct tests, and analyze their results. For aca-
demic applications, it is advisable to perform tests for
smaller matrix sizes due to the long execution time of
the sequential programme, which provides a bench-
mark. The SYCL library is worth exploring in further
research work. It allows code portability between the
CPU and GPU, which can result in performance gains
without significantly increasing the effort required to
write the programme. The results on the CPU were
satisfactory. Future research could also focus on im-
plementing and parallelizing alternative algorithms,
such as Cannon’s or Strassen’s, using OpenMP and
SYCL. Comparing these methods could provide ad-
ditional perspectives on optimizing parallel computa-
tion for matrix operations.

REFERENCES

Adefemi, T. (2024). Analysis of the performance of the ma-
trix multiplication algorithm on the cirrus supercom-

Teaching Parallel Programming on the CPU Based on Matrix Multiplication Using MKL, OpenMP and SYCL Libraries

719



puter. arXiv preprint, arXiv:2408.15384.
Ballard, G., Demmel, J., Dumitriu, I., and Holtz, O. (2014).

A framework for practical parallel fast matrix multi-
plication. arXiv preprint, arXiv:1409.2908.

Brod̄anac, P., Novak, J., and Boljat, I. (2022). Has the
time come to teach parallel programming to secondary
school students? Heliyon, 8(1).

Czarnul, P., Matuszek, M., and Krzywaniak, A. (2024).
Teaching high–performance computing systems–a
case study with parallel programming apis: Mpi,
openmp and cuda. In International Conference on
Computational Science, pages 398–412. Springer.

Gao, Y. and Zhang, X. (2010). A teaching schema for multi-
core programming. In CSEDU (2), pages 195–198.

Golub, G. H. and Loan, C. F. V. (2013). Matrix Computa-
tions. Johns Hopkins University Press, 4th edition.

Intel Corporation. Intel oneMKL: Math Kernel Li-
brary for High-Performance Computing. Online,
https://www.intel.com/content/www/us/en/developer
/tools/oneapi/onemkl.html.

Ismail, M. A., Mirza, S. H., and Altaf, T. (2011). Concur-
rent matrix multiplication on multicore architectures.
International Journal of Computer Science and Secu-
rity (IJCSS), 5(2):142–149.

Marowka, A. (2008). Think parallel: Teaching parallel pro-
gramming today. IEEE Distributed Systems Online,
9(8):1–1.

Ogunyiola, K., Jackson, S., Prokhorenkova, L., et al.
(2024). Evaluation of computational and power per-
formance in matrix multiplication methods and li-
braries on cpu and gpu using mkl, cublas, and sycl.
arXiv preprint, arXiv:2405.17322.

OpenMP Architecture Review Board. The OpenMP API
Specification for Parallel Programming. Online,
https://www.openmp.org/.

Pennycook, S. J., Sewall, J. D., and Lee, V. W. (2019). Im-
plications of a metric for performance portability. Fu-
ture Generation Computer Systems, 92:947–958.

Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pen-
nycook, J., and Tian, X. (2023). Data Parallel C++:
Programming Accelerated Systems Using C++ and
SYCL. Springer Nature.

Sitsylitsyn, Y. (2023). A systematic review of the literature
on methods and technologies for teaching parallel and
distributed computing in universities. Ukrainian Jour-
nal of Educational Studies and Information Technol-
ogy, 11(2):111–121.

The Khronos Group. SYCL: C++ Single-source Het-
erogeneous Programming for Accelerators. Online,
https://www.khronos.org/sycl/.

CSEDU 2025 - 17th International Conference on Computer Supported Education

720


