
Acceptance Criteria Validation in Agile Projects
Using AI and NLP Techniques

Ana Carla Gomes da Silva1 a, Afonso Sales1 b and Fabio Gomes Rocha2 c

1School of Technology, PUCRS, Porto Alegre, RS, Brazil
2Federal University of Sergipe, UFS, Aracaju, SE, Brazil

Keywords: Artificial Intelligence, Software Requirements, Machine Learning Models, Software Development.

Abstract: In agile software development, user stories and their acceptance criteria play a critical role in ensuring align-
ment between stakeholder expectations and system functionality. However, the manual validation of these
criteria is often labor-intensive and prone to bias. This study investigates the application of Artificial Intel-
ligence (AI) techniques, particularly Natural Language Processing (NLP) and Machine Learning (ML), to
automate the analysis and validation of user stories. Using a dataset of user stories collected from academic
and industry projects, we trained and evaluated four ML algorithms: Multilayer Perceptron (MLP), Support
Vector Machine (SVM), Naive Bayes, and Random Forest. The models were assessed for their ability to clas-
sify acceptance criteria accurately and efficiently. Our findings demonstrate the potential of AI to enhance the
validation process, achieving over 60% accuracy in certain cases, with SVM standing out as the most robust
algorithm. This research highlights the transformative role of AI in improving software requirements analysis
and lays the foundation for future innovations in automated validation and quality assurance in agile environ-
ments.

1 INTRODUCTION

In the context of software development, an accu-
rate and comprehensive understanding of user re-
quirements is fundamental to the success of a project
(Johnson et al., 2023; Smith and Jones, 2022). A pop-
ular approach to capturing and describing these re-
quirements in a contextualized and accessible man-
ner is the use of user stories (North, 2006; Erdogmus
et al., 2005). User stories are short and simple de-
scriptions of a system’s functionality written from the
perspective of the person who desires the new capa-
bility, usually in a standard format such as “As a [type
of user], I want [goal] so that I can [benefit]”. These
stories are often used in agile methodologies, such as
Scrum, to guide development and ensure that the final
product meets stakeholders’ expectations.

Each user story includes acceptance criteria,
which are necessary conditions for the story to be
considered complete. These criteria serve to validate
whether the functionality’s behavior meets the pro-

a https://orcid.org/0000-0002-5185-0481
b https://orcid.org/0000-0001-6962-3706
c https://orcid.org/0000-0002-0512-5406

posed objectives and are often used as a basis for au-
tomation. The analysis and validation of these criteria
are crucial, as they directly impact the quality and ef-
ficiency of the developed software (Smith and Jones,
2022; Melegati et al., 2020).

However, the manual analysis of these stories and
their acceptance criteria can be labor-intensive and
prone to bias, justifying the search for more efficient
and objective approaches. In this context, Artificial
Intelligence (AI) emerges as a promising ally, offer-
ing advanced capabilities to understand and process
large volumes of data in an automated and accurate
manner.

This study aims to explore the potential of AI in
the analysis of user stories, investigating how AI mod-
els can be trained and applied to identify patterns, pre-
dict quality, and suggest improvements in these sto-
ries, with a focus on acceptance criteria as the main
reference. In this context, this study seeks to answer
the following research question: “How can the appli-
cation of machine learning models and natural lan-
guage processing improve the accuracy and efficiency
in validating acceptance criteria in user stories within
agile software development projects?”.

Using a dataset composed of user stories extracted

176
Gomes da Silva, A. C., Sales, A. and Rocha, F. G.
Acceptance Criteria Validation in Agile Projects Using AI and NLP Techniques.
DOI: 10.5220/0013276400003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 176-184
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

from real projects, the study employs machine learn-
ing techniques to develop and evaluate AI models
(Silva et al., 2020; Li et al., 2021). Additionally,
works such as “Understanding Software Require-
ments” (Wiegers, 2003) and “How to Evaluate BDD
Scenarios’ Quality?” (Oliveira et al., 2019) provided
a comprehensive overview of the topic and served as
important references for this study.

Among the specific objectives of this study, it is
expected not only to demonstrate the effectiveness
of these models but also to highlight their ability to
understand and interpret user requirements, particu-
larly the acceptance criteria. Furthermore, the study
aims to compare the performance of various machine
learning algorithms (such as Multilayer Perceptron
- MLP (Mohanty, 2019), Support Vector Machine -
SVM (Cortes and Vapnik, 1995), Naive Bayes (Wang
and Manning, 2012), and Random Forest (Breiman,
2001)) to determine which model offers the best bal-
ance between accuracy and generalization capability
across different datasets of user stories. Additionally,
the study seeks to investigate and implement meth-
ods to minimize bias and errors in the automated val-
idation of user stories, ensuring that the models are
fair and effective. Through this research, the aim is
to enhance software development practices, provid-
ing valuable insights to the academic and professional
communities on the transformative role of AI in soft-
ware requirements analysis.

The remainder of this paper is organized as fol-
lows: Section 2 presents the related work, discussing
previous studies and positioning the research within
the current literature; Section 3 describes the method-
ology used, detailing the stages of data collection,
preprocessing, and the application of machine learn-
ing models; Section 4 presents the results obtained,
comparing the effectiveness of the different algo-
rithms tested; Section 5 discusses the possible threats
to the validity of the study, addressing limitations and
points of attention; and finally, Section 6 offers the fi-
nal considerations, summarizing the conclusions and
suggesting directions for future work.

2 RELATED WORKS

The accurate interpretation of user stories and their
associated criteria plays a central role in the success
of software development projects (Pressman, 2015).
User stories, commonly structured in brief narrative
formats, serve as bridges between the needs of end-
users and the technical functionalities that develop-
ers must implement. These stories help ensure that
the developed software effectively aligns with the ex-

pectations of the stakeholders, facilitating planning
and task prioritization during agile development cy-
cles (Conrado, 2012).

In this work, we utilize the research of Sabrina
Marczak (Oliveira and Marczak, 2018), which con-
ducts a detailed study to identify the main challenges
faced by development teams. The study highlights
that, although agile methods are effective in improv-
ing collaboration and flexibility, adapting require-
ments to constant market changes remains a signif-
icant problem. It emphasizes the importance of ro-
bust communication and documentation practices, as
well as tools that facilitate requirements traceability
throughout the project life cycle. These findings pro-
vide a solid foundation for enhancing requirements
management strategies in agile environments, con-
tributing to the delivery of software products more
aligned with stakeholder expectations.

Complementing our approach, the automated gen-
eration of test inputs from user stories and acceptance
criteria, as presented by Nguyen et al. (Nguyen et al.,
2020), emerges as an innovative technique. While our
research focuses on applying machine learning algo-
rithms, such as Multilayer Perceptron, Support Vector
Machine, Naive Bayes, and Random Forest, to eval-
uate the compliance of user stories with predefined
criteria, Nguyen et al. (Nguyen et al., 2020) propose
a methodology for inferring behavioral models from
these stories and subsequently generating automated
test scenarios. This combination of techniques can
potentially offer a more robust solution for software
development, where validation and automated testing
complement each other to ensure quality and adher-
ence to stakeholder requirements.

3 METHODOLOGY

The methodology used in this research was delineated
following the steps shown in Figure 1: Initial Data
Collection, Sample Expansion, Data Preprocessing,
and Application of Machine Learning Models.
1. Initial Data Collection. We gathered a set of 28

user stories and their acceptance criteria to vali-
date the possibility of analysis. These stories were
obtained from projects carried out by students
in undergraduate courses at the university. The
collection of data from academic projects high-
lights the importance of collaborative approaches,
such as Challenge-Based Learning, in preparing
students for real-world scenarios (Chanin et al.,
2018).

2. Sample Expansion. Then, we expanded our
database to include a sample of 176 user stories

Acceptance Criteria Validation in Agile Projects Using AI and NLP Techniques

177

Figure 1: Methodological stages of the research.

with one or more acceptance criteria, resulting in
a total of 204 acceptance scenarios in the training
set. These data were collected from real industry
projects and academic projects in a technological
and scientific park. To ensure the consistency and
quality of the data used, the user stories were la-
beled according to previously established criteria.
The labeling process was conducted by me, the
author of this work, which provided me with fa-
miliarity with both the project requirements and
agile methodology, ensuring the accuracy of the
labels.

3. Data Preprocessing. We applied preprocessing
techniques to improve data quality, including text
normalization and removal of irrelevant informa-
tion. This step is crucial, as the quality of the data
set directly impacts the accuracy of the results.
Then, the data were divided into training and test
sets.

4. Application of Machine Learning Models. We
used four machine learning algorithms (Multi-
layer Perceptron - MLP; Support Vector Machine
- SVM; Naive Bayes; and Random Forest) to an-
alyze the user stories. It is important to note that
these models are classifiers, designed to catego-
rize the acceptance criteria, not to interpret them.
These models were trained and evaluated for their
ability to interpret software requirements.

3.1 Model Configurations

In this section, we present the configurations and spe-
cific parameters used to train each machine learning
model. The configurations were selected based on the
nature of the classification problem and preliminary
experiments conducted to optimize the models’ per-
formance.

To analyze the acceptance criteria, the models
were trained and evaluated for their ability to classify
software requirements. The configurations and pa-
rameters for each model were deliberately kept simple
to facilitate an initial assessment.

These configurations aim to provide consistent re-
sults and facilitate comparisons among the models.

1. Multilayer Perceptron (MLP):

• Hidden Layers (70, 80, 100). Different layer
sizes were defined to enhance the model’s ca-
pacity to capture complex variations in the data
without an excessive number of neurons, thus
avoiding overfitting.

• Maximum Number of Iterations (700). Se-
lected to ensure the model had sufficient time to
converge and find a stable solution during train-
ing.

• L2 Regularization (alpha=1e-8). Used to pre-
vent overfitting by smoothing the impact of
high weights in the network.

• Learning Rate invscaling. This configuration
reduces the learning rate as iterations progress,
allowing for finer adjustments in the later stages
of training.

2. Support Vector Machine (SVM):
• Linear Kernel. Chosen to ensure simplicity

in the model’s initial tuning and to establish a
baseline for performance evaluation.

3. Naive Bayes (MultinomialNB):

• Default Parameters (alpha=1.0). Kept to as-
sess the algorithm’s performance in its most
common configuration, serving as a compari-
son point with the other models.

4. Random Forest:
• Maximum Depth (2). Limiting the tree depth

was chosen to avoid excessive specialization of
the model to the training data.

• Random Seed (random_state=0). Used to en-
sure experiment reproducibility, generating the
same results under identical conditions.

In order to ensure a robust evaluation, we applied
the k-fold Cross-Validation technique to the trained
models. This technique involves splitting the dataset
into multiple parts and repeatedly training and testing
the model using different data combinations for each
iteration.

We adopted a standardized framework for accu-
racy calculation, which can be adapted to each algo-
rithm. In Algorithm 1, we present an example using
SVM to illustrate the accuracy calculation process.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

178

1. Accuracy Evaluation with k-Fold. The
“cross_val_score” function applies the “mlp”
model (or any other chosen algorithm) to the
training dataset “x_train” and “y_train” across
multiple splits (k-folds). Each fold evaluates the
model’s accuracy, enabling a more robust assess-
ment and reducing the likelihood of overfitting.

2. Accuracy Metrics Summary. After comput-
ing the accuracies for each fold, the code dis-
plays the individual accuracies, the mean and the
standard deviation, providing a detailed view of
the model’s behavior across different training set
samples.

To adapt the code to other algorithms, simply re-
place the “mlp” model with the desired model, such
as “svm”, “naive_bayes”, or “random_forest”. This
way, the pseudocode serves as a reusable framework,
requiring only the algorithm’s name to be changed.

In addition, to clarify the process used in this
study, we followed the methodology as follow:

1. Data Splitting:
• The data is divided into k equal parts, with k

being a parameter chosen by the researcher that
can vary depending on the size of the dataset
and the specific problem, with k = 5 or k = 10
being commonly used values.

• Each part is used as a test set once, while the
other parts are used to train the model, ensuring
that each subset is used exactly once as a test
set.

2. Training and Testing:
• The model is trained k times, once for each dif-

ferent test part.
• The accuracy is calculated for each test round.

3. Mean of Accuracies:
• The accuracies of all the rounds are measured

to obtain the final accuracy.
• After performing the k iterations, as detailed by

Bishop (Bishop, 2006), the accuracy is calcu-
lated as the mean of the accuracies obtained in
each iteration. Mathematically, if we denote the
accuracy in the i-th iteration as Ai, the final ac-
curacy AT is given by:

AT =
1
k

k

∑
i=1

Ai

• This method ensures that all observations in
the dataset are used for both training and test-
ing, providing a more reliable assessment of the
model’s performance.

Importing the required libraries
from sklearn.model_selection import

train_test_split
from sklearn.model_selection import

cross_val_score

Accuracy eval. of the chosen alg.
(replace ’mlp’ to apply other model)

Using cross -validation to measure
accuracy across k-folds

val_scores = cross_val_score(mlp, x_train ,
y_train , cv=5)

Display the final accuracy and
performance across k-folds

Overall accuracy on the test set
print("Accuracy:", mlp.score(x_test ,

y_test))

Accuracies of each fold
print(’Accuracy across k-folds:’,

val_scores)

Mean and standard deviation of
accuracies

print(’Mean: {:.2f} | Standard Deviation:
{:.2f}’.format(np.mean(val_scores), np
.std(val_scores)))

Algorithm 1: Pseudocode for accuracy calculation.

This method ensures that all observations in the
dataset are used for both training and testing, provid-
ing a more reliable evaluation of the model’s perfor-
mance.

The k-fold Cross-Validation is an effective tech-
nique for assessing the performance of Machine
Learning models, offering a more stable measure of
their effectiveness. While accuracy is an important
metric, others such as precision and recall could also
be calculated to provide additional insights into the
model’s behavior. Table 1 (see Section 4) summa-
rizes the accuracies obtained in this study, offering
an overview of the relative performance of each al-
gorithm.

For exemplification purposes, we will show step
by step how the accuracy of the model used with the
SVM technique was calculated:

1. We divided the data into k equal parts. In this
study, we used k = 5, meaning the data was split
into 5 parts (folds).

2. In each iteration, we used 4 of the 5 parts to train
the model and the remaining part for testing. In
each iteration, a different part is used for testing,
ensuring that all parts are used for testing once.

Acceptance Criteria Validation in Agile Projects Using AI and NLP Techniques

179

3. After each iteration, we calculate the accuracy,
which represents the proportion of correct predic-
tions made by the model. This results in 5 ac-
curacy values, one for each training and testing
performed.

4. Finally, we calculate the mean of these 5 accura-
cies. The final accuracy is the mean of these accu-
racies, which is the indicator presented in Table 1
and used as the basis for validating the model.

3.2 User Stories Standardization

The user should have the option to add notes or attach-
ments to a ticket. Each note can have visibility, either
PUBLIC (accessible by anyone accessing the ticket)
or TECHNICAL (viewable only by Administrators).

After data collection, it is checked whether the
data have the necessary pattern for the AI to perform
the analysis. If they are correct, the next steps are
followed. Otherwise, the stories must follow the pat-
tern demonstrated in Figure 2, so the correct writing
would be as described in the following subsection.

Figure 2: Structure of all criteria to be analyzed by AI.

As a user, I want to have the option to add notes
or attachments to a ticket so that I can have visibility.

• Criterion 1: The note must have 2 visibility op-
tions: PUBLIC or TECHNICAL.

• Criterion 2: PUBLIC notes are accessible by any-
one accessing the ticket.

• Criterion 3: TECHNICAL notes are viewable
only by Administrators.
The subsequent step involves preprocessing the

text using the techniques outlined in the following
subsection.

3.3 Lowercase Transformation

All characters in the user stories were converted to
lowercase. This approach standardizes the text, avoid-

ing discrepancies between words written in uppercase
and lowercase, providing uniformity to the dataset.

3.4 Stopwords Removal

Stopwords are common words that usually do not
significantly contribute to the meaning of a sentence
and can, therefore, be removed without impairing text
comprehension. Examples include articles, preposi-
tions, and conjunctions. For example, “the”, “of”, and
“and” are stopwords in English.

3.5 Special Character Cleaning

Accents, special characters, and unnecessary punctu-
ation were removed from the processed texts. This
cleaning aims to simplify the text, facilitating com-
parison and subsequent analysis.

3.6 Tokenization and TF-IDF
Vectorization

Tokenization divides the text into smaller units, such
as words or phrases, while TF-IDF vectorization as-
signs values to these units based on their importance
in the global context of the dataset. For example,
the expression “TF-IDF” stands for “Term Frequency-
Inverse Document Frequency”. It highlights the rel-
evance of a word in relation to a specific document
within a broader collection of documents.

As a final step, a machine learning model is ap-
plied to perform the training and validation of the
model. As explained earlier in this research, the k-
fold Cross-Validation algorithm was used to validate
the trained model.

This methodological approach allowed us to un-
derstand the performance of machine learning models
in software requirements validation, providing excel-
lent indicators for selecting the most suitable model
for this task.

After presenting an example of how user sto-
ries and their acceptance criteria are processed by
AI, we applied all the demonstrated steps in this re-
search. For the application of Machine Learning mod-
els, we trained four different algorithms to validate
the user stories: Multilayer Perceptron (MLP) (Mo-
hanty, 2019); Support Vector Machine (SVM) (Cortes
and Vapnik, 1995); Naive Bayes (Wang and Manning,
2012); and Random Forest (Breiman, 2001). These
algorithms were selected due to their relevance and
applicability to classification problems, such as the
one addressed in this research. We present the justifi-
cations for the selection of each algorithm as follow:

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

180

1. Multilayer Perceptron (MLP). It has the abil-
ity to learn complex relationships in non-linear
data, which is particularly useful for classification
problems involving multiple acceptance criteria.

2. Support Vector Machine (SVM). It is efficient
in finding optimal separating hyperplanes, making
it effective for binary classification tasks, such as
determining whether acceptance criteria are met
or not.

3. Naive Bayes. It is a simple yet efficient algorithm
for probability-based classification, making it use-
ful in scenarios where variables are independent
— a reasonable assumption for some characteris-
tics of acceptance criteria.

4. Random Forest. Its ability to handle complex
feature interactions makes it ideal for validat-
ing user stories with intricate acceptance crite-
ria. Additionally, Random Forest’s feature impor-
tance analysis offers insights into which criteria
are most influential, enhancing both model inter-
pretability and performance.

Initially, we used the processed training data to al-
low the model to learn the characteristics to be consid-
ered. The output of this process is a vector of 10 posi-
tions, where each position represents a classification:
1 indicates that the criterion was met, and 0 indicates
that it was not. The validation criteria, as defined by
Oliveira and Marczak (Oliveira and Marczak, 2018),
encompass various aspects and are described below,
along with examples of how each criterion is applied:

• Criterion 1 - Identification of the Value of the
Feature File or Result by Description. This
criterion analyzes whether the description meets
the expected business outcome, represented by the
format of the user story.
Example: If the user story states, “As a user, I
want to log in to access my account”, this should
correspond to a feature that allows logging in, re-
flecting the expected outcome.

• Criterion 2 - Verification of the Absence of any
Scenario in the Feature File. Evaluates whether
the user story covers all necessary scenarios for
the system being developed.
Example: If the story does not mention error sce-
narios, such as “What happens if the user enters
an incorrect password?”, this may indicate a gap.

• Criterion 3 - Ensuring that the Scenario Con-
tains All Necessary Information. Verifies
whether the scenarios require additional informa-
tion for complete understanding, allowing any
team member to follow the steps independently.

Example: A scenario that states, “The user clicks
the button and receives a message” should in-
clude details about what the message says and
which button it is.

• Criterion 4 - Verification of Comprehensible
Steps in the Scenario. Analyzes whether there
is excessive essential information to validate the
behavior of the acceptance criteria.
Example: A very long and complicated scenario
that mixes multiple actions can hinder under-
standing. Ideally, each scenario should address a
single action clearly.

• Criterion 5 - Ensuring that the Scenario Rep-
resents a Uniquely Identifiable Action by the
Title. Focuses on the uniqueness of the action
in the scenario represented by “When”, aligning
with the title.
Example: If the title is “User Login”, the scenario
should focus only on the steps describing the login
and not mix in other functionalities.

• Criterion 6 - Identification of Results or Veri-
fications in the Scenario Titles and Markings.
Assesses whether the scenario checks, present in
“Then”, align with the purpose expressed in the
title.
Example: If the scenario ends with “Then the user
should see the homepage”, this should correspond
to what the title indicates.

• Criterion 7 - Adherence to Gherkin Keywords
and Natural Order. Validates the integrity of
Gherkin rules, ensuring that the steps represent
preconditions, action, and results in the estab-
lished order.
Example: In a scenario, there should be a
“Given”, followed by a “When”, and finally a
“Then”.

• Criterion 8 - Correct Application of Business
Terms, Including Appropriate Actors. Ensures
that business terms are consistent, facilitating un-
derstanding for both technical and non-technical
members.
Example: The story should clearly identify who
the user is, such as “As an administrator, I want
to...”.

• Criterion 9 - Expression of “What” in a Declar-
ative Manner in the Step. Questions whether the
“what” step is focused on the result rather than
explaining “how” the result is achieved.
Example: The phrase should focus on “The user
should see a success message” instead of describ-
ing the process that leads to it.

Acceptance Criteria Validation in Agile Projects Using AI and NLP Techniques

181

• Criterion 10 - Possibility of Different Interpre-
tations Due to Vagueness or Misleading State-
ments. Seeks to strike a balance between clearly
expressing the action while avoiding ambiguities
that may confuse the team.
Example: Phrases like “The system should behave
correctly” should be avoided as they are vague.
Instead, one should specify “The system should
display an error message if the password is incor-
rect”.

In the evaluation of the models, we adopted two
different approaches. First, we assessed the overall
performance of the models in predicting whether a
user story meets all the established criteria. Then,
we focused on identifying how many individual cri-
teria each model correctly identified, allowing for a
detailed analysis of performance in each aspect of the
user stories.

This comprehensive methodological approach al-
lows us to understand the performance of Machine
Learning models in validating software requirements,
providing valuable insights for selecting the most ap-
propriate model for this task.

4 RESULTS

This study compared four Machine Learning algo-
rithms to assess their effectiveness in predicting a test
dataset. The models were selected based on their rel-
evance and applicability in various Machine Learn-
ing scenarios, representing a wide range of modeling
techniques.

Thus, in Table 1, after calculating the accuracy as
previously discussed, we can observed that the SVM
achieved the highest precision, indicating its effec-
tiveness in classifying the test data. On the other
hand, the MLP showed inferior performance, suggest-
ing possible challenges related to the model’s com-
plexity and hyperparameter tuning.

Table 1: Overall accuracy of the applied techniques.

Technique Accuracy (%)
MLP 5.5
SVM 66

Naive Bayes 60
Random Forest 62

In addition to analyzing Machine Learning algo-
rithms, this study applied Artificial Intelligence (AI)
to analyze user stories. By training the model with a
set of acceptance criteria from university projects, the
AI demonstrated the ability to understand and process

information, anticipating the quality of the stories,
identifying patterns, and suggesting improvements.

The capability of AI to interpret nuances in user
requirements is highlighted, demonstrating its poten-
tial as a valuable tool in software development. We
used metrics such as accuracy to evaluate perfor-
mance, providing strong indicators of AI’s effective-
ness in analyzing user stories.

Hence, the obtained results not only outlined the
performance of the Machine Learning algorithms but
also highlighted the significant contribution of AI in
interpreting functional and non-functional system re-
quirements, opening doors for future advancements
in Software Engineering. This integrated approach
provides a comprehensive view of the transformative
potential of these technologies in understanding and
meeting user needs in software development projects.

5 THREATS TO VALIDITY

When investigating the applicability of AI models in
the automated analysis of user stories, it is crucial
to consider various threats to the validity of the ob-
tained results. These threats can impact the general-
ization of the findings and the interpretation of their
applicability in different software development con-
texts, especially in small-scale projects such as star-
tups, which face specific barriers to experimentation
(Melegati et al., 2019). Inconsistencies, typos, and
ambiguities in user stories can lead to poorly trained
models that fail to adequately capture the essence of
the requirements. Moreover, there is a risk of overfit-
ting, especially with the use of the Multilayer Percep-
tron (MLP), where the model may overly adjust to the
specificities of the training dataset, losing the ability
to generalize to new data. The use of techniques such
as k-fold Cross-Validation helps mitigate this risk, but
it does not completely eliminate it.

The data used in this study were collected from
academic projects and some real-world projects, pri-
marily in the domains of educational and enterprise
software. The dataset distribution between training
and testing included 28 student stories and their ac-
ceptance criteria, which were used to validate the ini-
tial analysis. Later, the sample was expanded to 176
stories, with one or more acceptance criteria, cover-
ing a total of 204 scenarios. However, this raises con-
cerns about overfitting and representativeness. Mea-
sures such as preprocessing techniques were imple-
mented to ensure data quality. It is crucial to carefully
split the dataset and consider a more comprehensive
dataset to ensure the model’s effectiveness and gener-
alization. The quality of the dataset is vital to ensure

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

182

the accuracy of the results, and stories from students
may not adequately reflect real-world market scenar-
ios, necessitating more rigorous analysis and valida-
tion. Among the threats to the validity of the study
are the potential lack of representativeness of aca-
demic data compared to real-world scenarios, the risk
of overfitting due to exclusive use of student stories
for training, and the possibility of biases introduced
during data preprocessing.

The choice of AI models may not be fully rep-
resentative of best practices in the ML field. Al-
though the selected models are widely used, other ap-
proaches, possibly more recent or specialized, could
potentially offer superior results. Relying mainly on
accuracy to evaluate models may not fully reflect
other important dimensions, such as precision, which
can provide more detailed insights into the models’
performance on different types of user stories.

The possibility of dependence between the train-
ing and test data, especially if improperly divided, can
lead to an optimistic estimate of the models’ perfor-
mance. The conclusions obtained about the models’
effectiveness may be influenced by personal biases or
researchers’ expectations, which is a common limita-
tion in experimental studies.

6 CONCLUSION

This study demonstrated how the application of ma-
chine learning models and natural language process-
ing can effectively assist in validating user stories in
agile software development environments. By com-
paring four distinct algorithms (Multilayer Perceptron
- MLP, Support Vector Machine - SVM, Naive Bayes,
and Random Forest), the focus was to identify the
most promising path for training a machine learning
model. This not only automated the analysis of ac-
ceptance criteria but also significantly increased the
accuracy and efficiency of this critical process.

The results confirm that Artificial Intelligence
(AI) can effectively interpret and enhance software
requirements, achieving an accuracy exceeding 60%
with the SVM model, which stood out for its ro-
bustness. This research positively answers the initial
question of how AI can improve the validation of ac-
ceptance criteria in user stories, demonstrating that it
is possible to reduce human errors and increase the
reliability of software deliveries.

Furthermore, the study highlights the importance
of continuing to develop and integrate AI technolo-
gies into the software development process. The
implementation of these technologies not only ac-
celerates the development cycle but also promotes

greater consistency in the quality of the produced soft-
ware. The models tested in this study can be inte-
grated as standard tools in agile development plat-
forms, helping software development teams improve
requirements communication and project execution.

This work also sheds light on possible threats to
the validity of the results, such as the risk of overfit-
ting and the representativeness of the data. It is crucial
that future studies address these issues by expanding
the diversity of datasets and exploring more advanced
modeling approaches to ensure that the proposed so-
lutions are generalizable and applicable in various de-
velopment contexts.

For future work, it is advisable to expand the
dataset, including real projects from different do-
mains, and implement more robust cross-validation
techniques to avoid overfitting. Additionally, con-
ducting detailed comparisons with manual validation
methods could help quantify efficiency gains. Explor-
ing new algorithms and analyzing additional metrics
are promising areas. Investigations into the integra-
tion with development tools and the use of explain-
ability techniques to improve model understanding
and mitigate potential biases are also recommended.

Finally, the insights provided by this research have
the potential to guide future innovations in software
engineering, particularly in terms of adopting BDD
(Behavior-Driven Development) techniques (North,
2006) and integrating AI more deeply into the devel-
opment cycle. The partial automation of the user story
validation process can offer several benefits, such as
reducing human errors, increasing efficiency and con-
sistency in validation, and freeing up developers’ time
for more complex tasks (Nascimento et al., 2020).
Moreover, by demonstrating that AI can interpret and
improve software requirements, this study paves the
way for creating automated tools that not only val-
idate but also suggest improvements to user stories,
potentially resulting in higher quality software prod-
ucts that are better aligned with stakeholder expecta-
tions. This advancement in understanding the role of
AI in software engineering significantly contributes to
the field, indicating pathways for future investigations
that could further optimize processes and outcomes in
software development.

ACKNOWLEDGMENT

This study was partially supported by the Ministry
of Science, Technology, and Innovations from Brazil,
with resources from Law No. 8.248, dated October
23, 1991, within the scope of PPI-SOFTEX, coordi-
nated by Softex.

Acceptance Criteria Validation in Agile Projects Using AI and NLP Techniques

183

REFERENCES

Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer.

Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

Chanin, R., Sales, A., Santos, A. R., Pompermaier, L. B.,
and Prikladnicki, R. (2018). A collaborative ap-
proach to teaching software startups: findings from
a study using challenge based learning. In Sharp,
H., de Souza, C. R. B., Graziotin, D., Levy, M.,
and Socha, D., editors, Proceedings of the 11th In-
ternational Workshop on Cooperative and Human As-
pects of Software Engineering, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, pages 9–12.
ACM.

Conrado, C. (2012). Gerenciamento de requisitos de soft-
ware: um guia prático para o desenvolvimento ágil.
Elsevier.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.

Erdogmus, H., Morisio, M., and Torchiano, M. (2005). On
the effectiveness of the test-first approach to program-
ming. IEEE Trans. on Soft. Eng., 31(3):226–237.

Johnson, R., Lee, S., and Kim, E. (2023). Automating user
story validation using natural language processing: A
case study. ACM Trans. on Soft. Eng. and Methodol-
ogy, 32(1):1–19.

Li, X., Zhang, W., Chen, M., and Wang, J. (2021). Lever-
aging machine learning for user story validation: A
systematic literature review. Journal of Systems and
Software, 181:111127.

Melegati, J., Chanin, R., Sales, A., Prikladnicki, R., and
Wang, X. (2020). MVP and experimentation in soft-
ware startups: a qualitative survey. In 46th Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA 2020, Portoroz, Slovenia, August
26-28, 2020, pages 322–325. IEEE.

Melegati, J., Chanin, R., Wang, X., Sales, A., and Prik-
ladnicki, R. (2019). Enablers and inhibitors of ex-
perimentation in early-stage software startups. In
Franch, X., Männistö, T., and Martínez-Fernández, S.,
editors, Product-Focused Software Process Improve-
ment - 20th International Conference, PROFES 2019,
Barcelona, Spain, November 27-29, 2019, Proceed-
ings, volume 11915 of Lecture Notes in Computer Sci-
ence, pages 554–569. Springer.

Mohanty, A. (2019). Multi layer Perceptron (MLP) Models
on Real World Banking Data. Retrieved June,
2021 from https://becominghuman.ai/multi-layer-
perceptron-mlp-models-on-real-world-banking-data-
f6dd3d7e998f.

Nascimento, N., Santos, A. R., Sales, A., and Chanin, R.
(2020). Behavior-driven development: A case study
on its impacts on agile development teams. In ICSE
’20: 42nd International Conference on Software En-
gineering, Workshops, Seoul, Republic of Korea, 27
June - 19 July, 2020, pages 109–116. ACM.

Nguyen, D.-M., Huynh, Q.-T., Ha, N.-H., and Nguyen, T.-
H. (2020). Automated test input generation via model

inference based on user story and acceptance crite-
ria for mobile application development. International
Journal of Software Engineering and Knowledge En-
gineering, 30(03):399–425.

North, D. (2006). Introducing bdd: The future of test au-
tomation. Better Software, 8(6):34–43.

Oliveira, G. and Marczak, S. (2018). On the understanding
of BDD scenarios’ quality: Preliminary practitioners’
opinions. In Proceedings of the Requirements Engi-
neering: Foundation for Software Quality, Utrecht,
The Netherlands, Springer, Cham, pp. 290–296.

Oliveira, G., Marczak, S., and Moralles, C. (2019). How
to evaluate bdd scenarios’ quality? In Proceedings
of the XXXIII Brazilian Symposium on Software Engi-
neering, ACM, Salvador, Brazil, 2019, pp. 481–490.

Pressman, R. S. (2015). Software Engineering: A Practi-
tioner’s Approach. McGraw Hill, 8 edition.

Silva, T. S. C., Marczak, S., and Rocha, F. G. (2020). On
the understanding of how to measure the benefits of
behavior-driven development adoption: Preliminary
literature results from a grey literature study. In Viana,
D. and Schots, M., editors, 19th Brazilian Symp. on
Software Quality, (SBQS), São Luís, Brazil, Decem-
ber, 2020, page 39. ACM.

Smith, J. and Jones, A. (2022). The impact of ma-
chine learning on agile software development: A re-
view of recent advances. IEEE Trans. on Soft. Eng.,
48(6):890–905.

Wang, P. and Manning, C. D. (2012). Baselines and bi-
grams: Simple, good sentiment and topic classifica-
tion. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Short
Papers, pages 90–94.

Wiegers, K. E. (2003). Understanding Software Require-
ments. Microsoft Press.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

184

