
Trends and Challenges in Machine Learning for Code
Summarization and Comprehension: A Systematic Literature Review

Panagiotis Mantos, Fotios Kokkoras and George Kakarontzas
Digital Systems Depar pus, Larissa, Greece

{panamant2, fkokkoras, gkakaron}@uth.gr

Keywords: Code Summarization, Code Comprehension, Systematic Literature Review, Machine Learning, Neural
Networks.

Abstract: This systematic literature review explores current trends in automatic source code summarization and com-
prehension. Through extraction and analysis of information from six reputable digital libraries, we answered
the following three questions: a) Which are the current machine learning models to generate summaries for
source code? b) What factors should be considered when selecting an appropriate machine learning model for
code summarization and comprehension? c) What are the possible future directions for research and develop-
ment in machine learning for code summarization and comprehension, considering current limitations and
emerging trends. The findings show significant progress with deep learning methods dominating this area.

1 INTRODUCTION

Code comprehension is a key challenge for program-
mers, requiring informative and concise documenta-
tion. Creating effective summaries is time-consuming
and costly. Traditionally, developers write source
code documentation by hand, leading to poor quality
and inconsistencies due to unique coding style of each
individual developer and frequent software updates
(Zhang et al., 2022). These issues highlight the need
for advanced automated methods to accurately and
clearly analyse and summarize code, particularly in
projects involving many developers.

In recent years, significant progress has been
made in automated source code summarization using
machine learning and deep learning technologies. Ad-
vances in Natural Language Processing (NLP), deep
neural networks, and large code datasets have been
crucial. The transformer-based architecture, intro-
duced by (Vaswani et al., 2017), uses self-prediction
to efficiently process sequences, improving on tradi-
tional models. This technology is now applied in var-
ious fields, including NLP and source code summari-
zation.

Unlike traditional models, transformers process
the entire text at once rather than in sequence. This
enables them to grasp the interconnections of words
without considering their distance or position, which

is crucial for understanding the general structure of
source code.

High-quality source code summaries are crucial
for understanding existing systems, especially for
tasks like system rearchitecting (e.g., for the cloud).
This topic is gaining popularity in software engineer-
ing, creating specific needs, and this motivated us to
explore it further. This literature review explores re-
search trends in source code summarization, focusing
on machine learning-based techniques and discussing
their advantages and disadvantages.

The rest of this paper is organized as follows: Sec-
tion 2 presents the plan or our review. Section 3 pre-
sents important aspects of the review, whereas Sec-
tion 4 presents the findings of our review. Discussion
and research questions are set in Section 5 and Sec-
tion 6 concludes the paper.

2 REVIEW PLANNING

This literature review on code summarization and
comprehension focuses on the use of machine learn-
ing techniques. Our work was based on (Kitchenham,
B. and Charters, S., 2007) and the research protocol
followed included the following steps:
1. Sources of Literature: major digital libraries, peer-

reviewed journals and reputable scientific confer-
ences, were used.

468
Mantos, P., Kokkoras, F. and Kakarontzas, G.
Trends and Challenges in Machine Learning for Code Summarization and Comprehension: A Systematic Literature Review.
DOI: 10.5220/0013275300003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 468-475
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

2. Article Selection: We set inclusion and exclusion
criteria to choose the right scientific articles for
our research

3. Data Extraction & Synthesis: Data was extracted
and synthesized from the selected articles.

4. Quality Assessment and Presentation of Findings:
The quality of the included articles was assessed,
and findings were recorded.

The search strategy followed contains several steps,
including database selection and search, the applica-
tion of inclusion and exclusion criteria, keyword
search and the snowball search method. A detailed
search log was recorded during the process, capturing
the search terms, the databases used, and the number
of articles retrieved.

2.1 Sources of Literature

First, literature selection was performed. The selected
publications were extracted from six reputable digital
libraries and databases, containing large collections
of literature such as academic research, peer-re-
viewed articles, conference papers and journal publi-
cations related to computer science and software en-
gineering, which are presented in Table 1.

Table 1: Sources of articles and articles used.

Source URL Articles Used
Google Scholar scholar.google.com/ 13
ACM DL portal.acm.org/ 16
IEEE Xplore ieeexplore.ieee.org/ 11
ScienceDirect www.sciencedirect.com/ 4
SpringerLink link.springer.com/ 1
ArXiv arxiv.org/ 13

Total: 58

The timeframe of the selected articles is between

2017 and 2024, to ensure the best possible relevance
to current scientific data and findings.

2.2 Initial Article Selection

For the retrieval of publications from the sources of
Table 1 we used the logic of the following query:
("Machine Learning" OR "Deep Learning"
OR "Neural Networks" OR "Natural Lan-

guage Processing" OR "Artificial Intel-
ligence") AND ("Code Summarization" OR
"Code Documentation" OR "Comment Gener-
ation" OR "Program Comprehension" OR

"Code Comprehension").

In addition, we applied the snowballing method
(Wohlin 2014), which uses relevant documents to
identify other similar documents through their cita-
tions and references. This allows the discovery of

more influential papers in the domain.

2.3 Inclusion and Exclusion Criteria

The articles retrieved were filtered based on the inclu-
sion and exclusion criteria presented in Table 2 and
Table 3, respectively. We kept articles that met all the
inclusion and none of the exclusion criteria.

Table 2: Inclusion Criteria (IC).

IC-1 Machine Learning techniques applied for code
comprehension and summarization.

IC-2 Timeframe (2017-2024)
IC-3 Quantitative and Qualitative Studies
IC-4 Peer-Reviewed Studies
IC-5 The study proposes a method for assisting with

the topic of our literature review.

Table 3: Exclusion Criteria (EC).

EC-1 Off-Topic Studies
EC-2 Lack of Empirical Evaluation
EC-3 Non-Peer-Reviewed Publications
EC-4 Non-English Studies
EC-5 Short Studies (below 5 pages)
EC-6 Duplicate Removal

3 ASPECTS OF REVIEW

Articles were initially screened by their titles and ab-
stracts, excluding those not clearly related to the
topic. The selected studies were then fully analysed to
ensure they specifically discuss the use of machine
learning techniques for analysing, summarizing, or
understanding source code.

From a total of 89 studies retrieved from the
sources used, 58 were included (Table 1) and 31 were
excluded, based on the IC/EC criteria. The included
articles were categorized according to their method-
ology in the categories presented in Figure 1.

Figure 1: Classification of included studies.

Trends and Challenges in Machine Learning for Code Summarization and Comprehension: A Systematic Literature Review

469

3.1 Machine Learning Methodology

We reviewed the 58 articles selected, and we catego-
rized them according to the machine learning ap-
proach they use for the comprehension and the sum-
marization of source code. Table 4 displays the num-
ber of articles of each category examined.

Table 4: Classification of articles examined based on archi-
tecture and methodology.

Category Number
of Articles

Transformers with Self-Attention 19
LSTM, Attention Mechanism 9
Graph Neural Networks (GNN) 5
Deep Reinforcement Learning 2
Hybrid Models (Including ASTs) 23

3.2 Evaluation Metrics

BLEU and ROUGE (Yang et al., 2018) (Blagec et al.,
2022) are metrics commonly used to evaluate the
quality of source code summaries.

The BLEU (Bilingual Evaluation Understudy)
metric measures how many n-grams, that is, continu-
ous strings of n elements (words or tokens) of the gen-
erated text are present in the reference text. Its goal is
to determine how accurately the generated text
matches the reference text, by comparing the n-grams
with each other.

ROUGE evaluates the quality of summaries by
measuring the overlap of n-grams and word order be-
tween the reference text and the generated text.

3.3 Practical Applications

Methods and machine learning techniques used to au-
tomatically summarize and comprehend source code,
help to its review and maintenance by generating new
comments or documentation whenever changes are
made. Thus, ideally, when programmers modify the
source code, they do not need to provide further ex-
planations, which is extremely useful.

3.4 Challenges and Possible Biases

As machine learning models advance, new techniques
bring up more questions. A common challenge is
adapting to the diverse and unique coding styles of
different developers. Another issue is ensuring the ac-
curacy and efficiency of machine-generated summar-
ies, aiming to make them more human-like for better
comprehension of source code functionality.

4 APPROACHES REVIEWED

4.1 Transformer Models and
Self-Attention Mechanisms

In their paper “Attention is All You Need”, (Vaswani
et al. 2017) introduced a transformer model that de-
pends only on self-attention mechanisms and does not
need to use traditional recurrent or convolutional neu-
ral networks. According to (Vaswani et al. 2017), re-
current neural networks (RNNs) process the data se-
quentially, making them less effective in capturing
long-range dependencies. In contrast, the Trans-
former model applies the self-attention mechanism,
so that it processes the input data of the entire se-
quence in parallel simultaneously, and this reduces
the training time and provides better scalability. The
model can focus on different parts of the input data,
and so it can more efficiently capture the dependen-
cies and the relationships that exist within the source
code, even if they exist in different parts of the code.

The Python function below, that calculates the av-
erage of a list of numbers, shows how transformers
analyze code snippets, understanding the relation-
ships within the code, and then proceed to create sum-
maries:

def calculate_average(numbers):

total = sum(numbers)
count = len(numbers)
return total / count

When a transformer model is used, the first thing

it does is to divide the function into tokens (words or
symbols). Then, the self-attention mechanism calcu-
lates the focus scores for each token based on its rela-
tionship to every other token in the code. In this way,
it learns which tokens are most related to each other,
i.e. the most important dependencies that exist within
the code. In the example, the token sum(numbers)
is closely related to the token total. Tokens are seen
and compared in large code expanse, and this results
in the production of a better summary.

The paper "CodeBERT: A Pre-Trained Model for
Programming and Natural Languages" by (Feng et
al., 2020), examines and analyzes the advantages and
the benefits of pre-training transformer models on
both source code data and natural language data. This
model uses the self-attention mechanism to capture
the semantic and syntactic relationships between the
code and the natural language. Through this, it shows
high performance in retrieving the source code as
well as in generating a summary of the source code
with high accuracy.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

470

Due to the self-attention mechanism, this model
can produce summaries that look like they were cre-
ated by a human hand, as this mechanism allows the
model to consider only the most important parts of the
code and as a result to produce higher quality sum-
maries and more contextually related.

While CodeBERT emphasizes natural language
and code, another transformer-based model, Codex,
also shows remarkable performance in code summa-
rization.

The next Python example, shows the ability of the
model to understand semantic relationships between
code elements, using the Self-Attention mechanism to
identify critical parts of the function and generate an
accurate and concise summary.

def vec_to_halfvec(vec):
 d = vec[1:] - vec[:-1]
 if ((d / d.mean()).std() > 1e-14)
 or (d.mean() < 0):
 raise ValueError('vec must be np

 .arange() in increasing order')
 dx = d.mean()
 lowest = np.abs(vec).min()
 highest = np.abs(vec).max()
 return np.arange(lowest, highest +

 0.1*dx,dx).astype(vec.dtype)

The mechanism identifies that the key parts of the

function are the computations related to vec
e.g. d = vec[1:] - vec[:-1]

and the conditions that shows its structure
e.g. if ((d/d.mean()).std()>1e-14)
 or (d.mean() < 0)
These parts have more weight because they define

the main logic of the method that is used and ensure
the correctness of it. Parts that are less important, such
as the return statement, get less attention and there-
fore less weight, as they do not change the overall
purpose of the function very much.

(Khan and Uddin, 2022) proposed and evaluated
the potential and performance of the Codex model in
the field of automatic source code summarization.
This model is a version of GPT-3, and its results have
shown that even when it is trained with basic, mini-
mal training using one-short learning, it can outper-
form conventional code summarisation techniques.

4.2 LSTM and Attention Mechanisms

Long Short-Term Memory (LSTM) networks are a
type of Recurrent Neural Networks (RNNs) capable
of maintaining information in long code sequences,
which helps them to better understand the source code
and to generate accurate summaries.

(Hu et al., 2018), showed that when LSTM net-
works are combined with attention mechanisms, the
relevance and the accuracy of the generated summar-
ies is improved, as they can focus on the most im-
portant parts of the code.

def add(a, b): return a + b

In the preceding Python example, a LSTM net-

work processes each token (def, add, a, b, return,
etc.) sequentially, keeps track of the dependencies be-
tween these tokens, and can understand that the func-
tion takes a and b as input and returns the operation
a+b. This information is stored in memory cells
throughout the sequence. At each step the LSTM de-
cides which information to keep because it is im-
portant and which to forget.

(Wan et al., 2018) researched how reinforcement
learning can be combined with the LSTM architecture
to improve the quality of the automated generated
source code summaries. They found that by adding
reinforcement learning, the model each time im-
proves its performance by giving focus to the feed-
back it receives. These models are classified as hybrid
as they combine techniques and different methods,
and as a matter of fact, the specific ones that combine
LSTM networks and other machine learning tech-
niques, show significant improvements in both the
conciseness and accuracy of the generated source
code summaries.

LSTMs are effective and with the addition of the
transformers presented by (Ahmad et al., 2020), pro-
duce better source code summaries.

4.3 Graph Neural Networks

Graph Neural Networks (GNNs) were created to pro-
cess and display data in a graph structure of any shape
and size. They use nodes and edges to represent the
relationships of the data. They find application in so-
cial networks as well as in source code analysis, an
area we study in this literature review. Therefore,
GNNs have the potential to effectively show the in-
teractions between data and this leads to a better and
deeper understanding of it (Allamanis et al., 2017),
(Zhang et al., 2023).

By representing source code in the form of graphs,
such as Abstract Syntax Trees (ASTs) or control flow
graphs (CFGs), GNNs learn through the complicated
dependencies that exist within the code. Because of
this, they can then generate accurate summaries be-
cause the model has a better understanding of the syn-
tactic and semantic structure of the code. (LeClair et
al., 2020) showed major improvements in source code

Trends and Challenges in Machine Learning for Code Summarization and Comprehension: A Systematic Literature Review

471

summarization by focusing on the connections be-
tween the parts of the code as he researched how au-
tomatic source code summarization can be improved
using GNNs. The authors suggest that future research
can focus on embedding and enhancing dynamic code
analysis, capturing runtime behaviours and interac-
tions. They propose extending the model to support
multiple programming languages and larger code ba-
ses, addressing diversity in coding styles.

For example, we present a source code Java ex-
ample extracted by (LeClair et al., 2020), and explain
it:

public int indexOf(Object o) {
 if (o == null) {
 for (int i = 0; i < size; i++) {
 if (gameObjects[i] == null) {
 return i;
 }}}
 else {
 for (int i = 0; i < size; i++) {
 if (o.equals(gameObjects[i])){
 return i;
 }}}
 return -1;}
By using a graph neural network (GNN), the ab-

stract syntax tree (AST) of this method is processed
as a graph where nodes represent code structures such
as if, for, return, and o.equals. The edges cap-
ture the relationships between these structures. GNN
analyzes this structure and focuses on the most im-
portant elements of the code. For example, it detects
that the return statement is critical (return i;), be-
cause they define the output of the method. It under-
stands that comparisons (o==null and o.equals)
are essential and affect the flow of the execution. Us-
ing this analysis, GNN returns the index of the first
appearance of the defined element. This example
shows how GNNs use code structural information to
produce accurate and informative summaries.

(Guo et al., 2021) further improved the model’s
ability to understand these relationships by enhancing
GNNs with data flow information and becoming able
to produce more accurate and relevant summaries.

4.4 Deep Reinforcement Learning

Reinforcement learning improves decisions through
interactions with the environment and feedback. In
source code comprehension and summarization, it en-
hances summary quality by generating summaries, re-
ceiving feedback, and using it to improve future sum-
maries. With continuous feedback the model pro-
duced summaries become more accurate in capturing
source code functionality. (Wan et al., 2018) noted
the limitations of traditional neural models and used

deep reinforcement learning to enhance summary
quality through feedback. They achieved better re-
sults but suggested that future research should use
more complex reward functions and prioritize human
feedback.

(Wang et al., 2022) further improved it by propos-
ing a combination of reinforcement learning with hi-
erarchical attention mechanisms. This combination
allowed the model to understand the overall context
of the code, but also to focus on the details of it.

4.5 Hybrid Models

(Hu et al., 2020) proposed a hybrid model, which
combines lexical and syntactical analysis for achiev-
ing better and more efficient source code summaries.
This model uses a neural network that processes lex-
ical information and a syntactic analyzer to improve
the comprehension of the code structure. The results
are comments and code summaries that are more ac-
curate and of higher quality.

(Parvez et al., 2021), proposed a hybrid model that
combines retrieval-based techniques with generative
models. Through the retrieval part, the proper code
snippets are identified and extracted from a large da-
taset. Then, these are used by a neural network which
produces more accurate and reliable summaries.

(Lu et al., 2023), proposed a method that com-
bines deep learning models with semantic analysis,
which can capture the syntactic and the semantic
structure of the source code. Thus, it is possible to
produce summaries that not only focus on being con-
cise, but also provide important contextual infor-
mation, which improves the quality of the summary.

5 DISCUSSION

In this section, we commented on the findings of the
review, identified some issues and proposed direc-
tions for further research. We organized this discus-
sion using three main research questions.

5.1 RQ1

Which Are the Current Machine Learning Models
to Generate Summaries for Source Sode?
It is observed that in recent years, various models
have been proposed that use different machine learn-
ing techniques, but it is noteworthy that they all focus
on a common factor, which is to achieve a better un-
derstanding of the structure of the source code, either
at the semantic or syntactic level, in order to have a

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

472

better view of the functionality of the code that is be-
ing analysed.

Current transformer-based models, such as
CodeBERT, and Codex (Khan and Uddin, 2022) have
undoubtedly presented very encouraging results and
remarkable accuracy in generating automated code
summaries. For example, Codex achieves an average
BLEU score of 20.63 across six programming lan-
guages, showing an 11.2% improvement compared to
older state-of-the-art methods such as CoTexT (Phan
et. Al., 2021). Similarly, CodeBERT have shown
great progress on many datasets, especially for Java
and Python, allowing the parallel processing of the
data. (Feng et al., 2020)

However, despite this progress, there are still lim-
itations on how they can understand the intention and
the logic of the developer behind the code they are
examining.
1. Metric Limitations: BLEU and ROUGE cannot be

fully associated with human understanding. (Sta-
pleton et al., 2020) found that programmers per-
formed better with human generated summaries
than with machine-generated summaries despite
high BLEU scores.

2. Contextual and semantic gaps: Current models of-
ten have difficulty capturing deeper intentions or
logical relationships within the code. For exam-
ple, BLEU scores drop by 4-6 points for complex
methods. (Stapleton et al., 2020)

When choosing a machine learning model, the au-
thors recommend prioritizing how well programmers
understand the generated summaries, rather than just
the evaluation metric scores. This is because high
scores don't always reflect the actual comprehension
of the summaries by developers.

Future research should focus on developing more
intelligent models that analyse both the syntactic and
semantic structure of code. This includes considering
the history of code changes and the intentions behind
each approach. Additionally, it will be nice to enable
models to perform real-time analysis of source code,
speeding up development. This would eliminate the
need to execute code from scratch each time, as the
model would already have updated crucial details.

Finally, these models can improve collaboration
between teams. Summarization tools provide crucial
information about each team’s code, helping them un-
derstand it quickly and efficiently.

5.2 RQ-2

What Factors Should Be Considered When Select-
ing a Machine Learning Model for Code Summa-
rization and Comprehension?

Choosing the most suitable model for a source
code summarization and comprehension task is criti-
cal. A key factor to consider is adaptability. Related
to the adaptability part, models can adapt to different
programming languages, and it is worth mentioning
that they can perform efficiently even with limited
training data. Two of these use cases are one-shot
learning, where the model performs a task by learning
from a single example, and few-shot learning which
allows the model to understand and summarize source
code using a small number of training examples. An
evaluation performed by (Khan and Uddin, 2022),
showed that Codex model outperformed other models
in six programming languages when trained with few-
shot examples. Therefore, adaptability makes these
models very useful in the field of software engineer-
ing, especially in cases such as comprehending iden-
tifier names, APIs and different coding styles. More-
over, they are useful in tasks where the available data
is limited, and large-scale model training is not possi-
ble. For example, the TL-CodeSum method, pre-
sented by (Hu et al., 2018), uses API sequences as
mid-range representations to capture long-range de-
pendencies between code points and APIs, to improve
the understanding and summarization of source code.

To select the most suitable machine learning
model for source code summarization, several factors
that affect the performance and usability of the model
are considered:
1. Handling long-range dependencies and scalabil-

ity: The ability of the model to handle long-range
dependencies is critical for understanding com-
plex code structures, where functions and varia-
bles may be placed in different parts of the source
code. (Ahmad et al., 2020) proposed a transformer
architecture combined with self-attention mecha-
nisms to capture long-range dependencies within
the source code. This technique outperformed tra-
ditional RNN-based models, including LSTMs, in
terms of producing more accurate and relevant
summaries. Additionally, scalability ensures that
the model can handle large datasets and more
complex tasks, offering solutions to big data chal-
lenges.

2. Parallel information processing: Transformers
can process source code using the Self-Attention
Mechanism (Vaswani et al., 2017) to analyze mul-
tiple aspects of the code at the same time, increas-
ing speed and efficiency.

3. Use of reliable evaluation metrics: The use of re-
liable evaluation metrics allows the performance
of the model to be measured accurately.

Based on these findings, we propose some future re-
search directions:

Trends and Challenges in Machine Learning for Code Summarization and Comprehension: A Systematic Literature Review

473

1. Expanding language support: Current models
mainly focus on a few programming languages
like Python, commonly used in machine learning.
Future models need to be more adaptable to vari-
ous programming environments and styles.

2. Improving data quality: Models often learn from
datasets with errors or unhelpful comments,
which affects summary accuracy. Fixing these da-
taset issues is essential to improve model reliabil-
ity.

3. Resource efficiency: For large code bases, a mod-
el's runtime efficiency and computing power are
crucial. Future models need to balance perfor-
mance and resource consumption to ensure prac-
tical usability.

5.3 RQ-3

What Are Possible Future Directions for Research
and Development for Code Summarization, Con-
sidering Current Limitations and Emerging
Trends?
Apart from the research directions mentioned in the
two previous sections, another important research fo-
cus should be scalability and performance. As code-
bases continuously grow, models need to process
larger amounts of datasets, while maintaining accu-
racy and reducing computational power. The goal is
to optimize current models and architectures to
achieve greater efficiency. This could be done by de-
veloping neural networks, which would require less
processing power and computational resources but
still produce accurate and reliable summaries of the
source code. In other words, these models should han-
dle larger amounts of data without the need for more
expensive hardware.

An additional question is how these models could
be integrated in developers' IDEs to continuously pro-
duce summaries that are up to date as the code is writ-
ten?

As we have already mentioned in the paper, a very
common issue faced is the diversity in the coding
style of developers. Future research should focus on
how machine learning models can adapt more effec-
tively to different coding styles, possibly through di-
rect feedback, and thus offer greater personalization
and efficiency.

Another relevant challenge is the issue of biases.
How can we detect and moderate the biases observed
in the data used to train machine learning models?

Machine learning models are trained on data that
often contain biases. Future research should focus on
creating algorithms that can detect and reduce biases
and unwanted distortions in the summaries, ensuring

that the generated summaries are accurate and truth-
ful. At the same time, ethical issues are extremely im-
portant, including the need to ensure that automated
summaries do not accidentally reveal sensitive or pri-
vate information, such as credentials or copyright in-
formation. In addition, it is necessary to respect the
licenses and rights of the source code, so that the sum-
maries produced do not violate licensing terms or
even reveal parts of the code that should not be made
public.

A key question is how we can develop mecha-
nisms which ensure that artificial intelligence is ap-
plied responsibly and ethically, while giving the nec-
essary attention to user’s privacy and the integrity of
generated results.

To address these issues, we propose some future
research directions:
1. For IDE integration, models must be dynamically

updated with new information, without the need
for training from scratch every time. This ensures
that summaries remain accurate and updated.

2. Personalized feedback (e.g. reviews or quick edits
from developers) can help customize summaries
to the specific needs of a team, improving overall
productivity.

3. An innovative idea for reducing biases in AI mod-
els is the integration of self-evaluating mecha-
nisms. Through these, the model will continu-
ously evaluate its responses to identify and correct
potential biases. This idea is based on finding a
way for models not to rely only on external fac-
tors, but to learn from their own responses, specif-
ically in the ethics part to achieve a higher level of
integrity.

6 CONCLUSIONS

This literature review examined source code summa-
rization and comprehension using machine learning
techniques. It highlights progress and challenges,
with deep learning, especially transformers, leading
the way.

While deep reinforcement learning shows prom-
ise, it evolves slowly. Significant progress requires
both syntactic and semantic code understanding, as
well as new performance metrics.

Finaly, three umbrella research questions were
proposed to guide future research directions.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

474

REFERENCES

Zhang, C., Wang, J., Zhou, Q., Xu, T., Tang, K., Gui, H., &
Liu, F. (2022). A Survey of Automatic Source Code
Summarization. Symmetry, 14(3), 471. https://doi.org/
10.3390/sym14030471

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017).
Attention is all you need. Advances in Neural Inf. Pro-
cessing Systems, 30. https://doi.org/10.5555/
3295222.3295349

Kitchenham, B., & Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software engi-
neering (V.2.3). EBSE Technical Report EBSE-2007-
01, Software Engineering Group, School of Computer
Science and Mathematics, Keele University, and De-
partment of Computer Science, University of Durham.

Wohlin, C. (2014). Guidelines for snowballing in system-
atic literature studies and a replication in software engi-
neering. In Proc. of the 18th Int. Conf. on Evaluation
and Assessment in Software Engineering (EASE),
ACM. https://doi.org/10.1145/2601248.2601268

Yang, A., Liu, K., Liu, J., Lyu, Y., & Li, S. (2018). Adap-
tations of ROUGE and BLEU to better evaluate ma-
chine reading comprehension task. In Proc. of the
Workshop on Machine Reading for Question Answer-
ing (pp. 98–104). Association for Computational Lin-
guistics. https://doi.org/10.18653/v1/W18-2611

Blagec, K., Dorffner, G., Moradi, M., Ott, S., & Samwald,
M. (2022). A global analysis of metrics used for meas-
uring performance in natural language processing.
arXiv. https://arxiv.org/abs/2204.11574

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M.,
Shou, L., Qin, B., Liu, T., Jiang, D., & Zhou, M. (2020).
CodeBERT: A pre-trained model for programming and
natural languages. https://arxiv.org/abs/2002.08155

Khan, J. Y., & Uddin, G. (2022). Automatic code documen-
tation generation using GPT-3. In Proceedings of the
37th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) (pp. 124–135).
IEEE. https://doi.org/10.1145/3551349.3559548

Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2018). Deep code
comment generation. In Proceedings of the 26th Inter-
national Conference on Program Comprehension
(ICPC) (pp. 200–210). Association for Computing Ma-
chinery. https://doi.org/10.1145/3196321.3196334

Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., &
Yu, P. S. (2018). Improving automatic source code
summarization via deep reinforcement learning. In
Proc. of the 33rd ACM/IEEE Int. Conf. on Automated
Software Engineering (ASE) (pp. 397–407). ACM
https://doi.org/10.1145/3238147.3238206

Ahmad, W., Chakraborty, S., Ray, B., & Chang, K.-W.
(2020). A transformer-based approach for source code
summarization. In Proc. of the 58th Annual Meeting of
the Association for Computational Linguistics (pp.
4998–5007). Association for Computational Linguis-
tics. https://doi.org/10.18653/v1/2020.acl-main.449

Allamanis, M., Brockschmidt, M., & Khademi, M. (2018).
Learning to represent programs with graphs. In Inter-
national Conference on Learning Representations
(ICLR). https://arxiv.org/abs/1711.00740

Zhang, M., Zhou, G., Yu, W., Huang, N., & Liu, W. (2023).
GA-SCS: Graph-augmented source code summariza-
tion. ACM Transactions on Asian and Low-Resource
Language Information Processing, 22(2), Article 20.
https://doi.org/10.1145/3554820

LeClair, A., Haque, S., Wu, L., & McMillan, C. (2020). Im-
proved code summarization via a graph neural network.
In Proceedings of the 28th International Conference on
Program Comprehension (ICPC) (pp. 184–195). ACM
https://doi.org/10.1145/3387904.3389268

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., Tufano, M.,
Deng, S. K., Clement, C., Drain, D., Sundaresan, N.,
Yin, J., Jiang, D., & Zhou, M. (2021). Graph-
CodeBERT: Pre-training code representations with data
flow. In Int. Conference on Learning Representations
(ICLR). https://arxiv.org/abs/2009.08366

Wang, W., Zhang, Y., Sui, Y., Wan, Y., Zhao, Z., Wu, J.,
Yu, P. S., & Xu, G. (2022). Reinforcement-Learning-
Guided Source Code Summarization Using Hierar-
chical Attention. IEEE Transactions on Software Engi-
neering, 48(1), p.102–119. https://doi.org/10.1109/
tse.2020.2979701

Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2020). Deep code
comment generation with hybrid lexical and syntactical
information. Empirical Software Engineering, 25(3),
pp.2179–2217. https://doi.org/10.1007/s10664-019-
09730-9

Parvez, M. R., Ahmad, W. U., Chakraborty, S., Ray, B., &
Chang, K. W. (2021, August 26). Retrieval Augmented
Code Generation and Summarization. arXiv.org.
https://arxiv.org/abs/2108.11601

Lu, X., & Niu, J. (2023). Enhancing source code summari-
zation from structure and semantics. In Proc. of the
2023 Int. Joint Conf. on Neural Networks. IEEE.
https://doi.org/10.1109/ijcnn54540.2023.10191872

Phan, L., Tran, H., Le, D., Nguyen, H., Anibal, J., Peltekian,
A., & Ye, Y. (2021). CoTexT: Multi-task Learning with
Code-Text Transformer. In Proc. of the 1st Workshop
on Natural Language Processing for Programming (pp.
40–47). Assoc. for Computational Linguistics. https://
doi.org/10.18653/v1/2021.nlp4prog-1.5

Stapleton, S., Gambhir, Y., LeClair, A., Eberhart, Z., Wei-
mer, W., & Leach, K. (2020). A human study of com-
prehension and code summarization. In Proceedings of
the 28th Int. Conference on Program Comprehension
(ICPC) (pp. 2–13). Association for Computing Machin-
ery. https://doi.org/10.1145/3387904.3389258

Due to space limitations, the list of the 58 articles
used in this literature review is provided online at:
https://gkakaron.users.uth.gr/files/EN-
ASE_2025_SLR_ARTICLES.pdf

Trends and Challenges in Machine Learning for Code Summarization and Comprehension: A Systematic Literature Review

475

