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Abstract: This systematic literature review explores current trends in automatic source code summarization and com-
prehension. Through extraction and analysis of information from six reputable digital libraries, we answered 
the following three questions: a) Which are the current machine learning models to generate summaries for 
source code? b) What factors should be considered when selecting an appropriate machine learning model for 
code summarization and comprehension? c) What are the possible future directions for research and develop-
ment in machine learning for code summarization and comprehension, considering current limitations and 
emerging trends. The findings show significant progress with deep learning methods dominating this area.

1 INTRODUCTION 

Code comprehension is a key challenge for program-
mers, requiring informative and concise documenta-
tion. Creating effective summaries is time-consuming 
and costly. Traditionally, developers write source 
code documentation by hand, leading to poor quality 
and inconsistencies due to unique coding style of each 
individual developer and frequent software updates 
(Zhang et al., 2022). These issues highlight the need 
for advanced automated methods to accurately and 
clearly analyse and summarize code, particularly in 
projects involving many developers. 

In recent years, significant progress has been 
made in automated source code summarization using 
machine learning and deep learning technologies. Ad-
vances in Natural Language Processing (NLP), deep 
neural networks, and large code datasets have been 
crucial. The transformer-based architecture, intro-
duced by (Vaswani et al., 2017), uses self-prediction 
to efficiently process sequences, improving on tradi-
tional models. This technology is now applied in var-
ious fields, including NLP and source code summari-
zation. 

Unlike traditional models, transformers process 
the entire text at once rather than in sequence. This 
enables them to grasp the interconnections of words 
without considering their distance or position, which 

is crucial for understanding the general structure of 
source code. 

High-quality source code summaries are crucial 
for understanding existing systems, especially for 
tasks like system rearchitecting (e.g., for the cloud). 
This topic is gaining popularity in software engineer-
ing, creating specific needs, and this motivated us to 
explore it further. This literature review explores re-
search trends in source code summarization, focusing 
on machine learning-based techniques and discussing 
their advantages and disadvantages. 

The rest of this paper is organized as follows: Sec-
tion 2 presents the plan or our review. Section 3 pre-
sents important aspects of the review, whereas Sec-
tion 4 presents the findings of our review. Discussion 
and research questions are set in Section 5 and Sec-
tion 6 concludes the paper. 

2 REVIEW PLANNING 

This literature review on code summarization and 
comprehension focuses on the use of machine learn-
ing techniques. Our work was based on (Kitchenham, 
B. and Charters, S., 2007) and the research protocol 
followed included the following steps:  
1. Sources of Literature: major digital libraries, peer-

reviewed journals and reputable scientific confer-
ences, were used.  
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2. Article Selection: We set inclusion and exclusion 
criteria to choose the right scientific articles for 
our research  

3. Data Extraction & Synthesis: Data was extracted 
and synthesized from the selected articles. 

4. Quality Assessment and Presentation of Findings: 
The quality of the included articles was assessed, 
and findings were recorded. 

The search strategy followed contains several steps, 
including database selection and search, the applica-
tion of inclusion and exclusion criteria, keyword 
search and the snowball search method. A detailed 
search log was recorded during the process, capturing 
the search terms, the databases used, and the number 
of articles retrieved. 

2.1 Sources of Literature 

First, literature selection was performed. The selected 
publications were extracted from six reputable digital 
libraries and databases, containing large collections 
of literature such as academic research, peer-re-
viewed articles, conference papers and journal publi-
cations related to computer science and software en-
gineering, which are presented in Table 1. 

Table 1: Sources of articles and articles used. 

Source URL Articles Used
Google Scholar scholar.google.com/ 13 
ACM DL portal.acm.org/ 16 
IEEE Xplore ieeexplore.ieee.org/ 11 
ScienceDirect www.sciencedirect.com/ 4 
SpringerLink link.springer.com/ 1 
ArXiv arxiv.org/ 13 

Total:  58 
 
The timeframe of the selected articles is between 

2017 and 2024, to ensure the best possible relevance 
to current scientific data and findings. 

2.2 Initial Article Selection 

For the retrieval of publications from the sources of 
Table 1 we used the logic of the following query:  
("Machine Learning" OR "Deep Learning" 
OR "Neural Networks" OR "Natural Lan-

guage Processing" OR "Artificial Intel-
ligence") AND ("Code Summarization" OR 
"Code Documentation" OR "Comment Gener-
ation" OR "Program Comprehension" OR 

"Code Comprehension"). 

In addition, we applied the snowballing method 
(Wohlin 2014), which uses relevant documents to 
identify other similar documents through their cita-
tions  and  references.  This  allows  the  discovery  of 

more influential papers in the domain. 

2.3 Inclusion and Exclusion Criteria  

The articles retrieved were filtered based on the inclu-
sion and exclusion criteria presented in Table 2 and 
Table 3, respectively. We kept articles that met all the 
inclusion and none of the exclusion criteria. 

Table 2: Inclusion Criteria (IC). 

IC-1 Machine Learning techniques applied for code 
comprehension and summarization. 

IC-2 Timeframe (2017-2024) 
IC-3 Quantitative and Qualitative Studies 
IC-4 Peer-Reviewed Studies 
IC-5 The study proposes a method for assisting with 

the topic of our literature review. 

Table 3: Exclusion Criteria (EC). 

EC-1 Off-Topic Studies
EC-2 Lack of Empirical Evaluation 
EC-3 Non-Peer-Reviewed Publications 
EC-4 Non-English Studies 
EC-5 Short Studies (below 5 pages) 
EC-6 Duplicate Removal

3 ASPECTS OF REVIEW 

Articles were initially screened by their titles and ab-
stracts, excluding those not clearly related to the 
topic. The selected studies were then fully analysed to 
ensure they specifically discuss the use of machine 
learning techniques for analysing, summarizing, or 
understanding source code.  

From a total of 89 studies retrieved from the 
sources used, 58 were included (Table 1) and 31 were 
excluded, based on the IC/EC criteria. The included 
articles were categorized according to their method-
ology in the categories presented in Figure 1. 

 
Figure 1: Classification of included studies. 
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3.1 Machine Learning Methodology 

We reviewed the 58 articles selected, and we catego-
rized them according to the machine learning ap-
proach they use for the comprehension and the sum-
marization of source code. Table 4 displays the num-
ber of articles of each category examined. 

Table 4: Classification of articles examined based on archi-
tecture and methodology. 

Category Number  
of Articles

Transformers with Self-Attention 19 
LSTM, Attention Mechanism 9 
Graph Neural Networks (GNN) 5 
Deep Reinforcement Learning 2 
Hybrid Models (Including ASTs) 23 

3.2 Evaluation Metrics 

BLEU and ROUGE (Yang et al., 2018) (Blagec et al., 
2022) are metrics commonly used to evaluate the 
quality of source code summaries.  

The BLEU (Bilingual Evaluation Understudy) 
metric measures how many n-grams, that is, continu-
ous strings of n elements (words or tokens) of the gen-
erated text are present in the reference text. Its goal is 
to determine how accurately the generated text 
matches the reference text, by comparing the n-grams 
with each other. 

ROUGE evaluates the quality of summaries by 
measuring the overlap of n-grams and word order be-
tween the reference text and the generated text. 

3.3 Practical Applications 

Methods and machine learning techniques used to au-
tomatically summarize and comprehend source code, 
help to its review and maintenance by generating new 
comments or documentation whenever changes are 
made. Thus, ideally, when programmers modify the 
source code, they do not need to provide further ex-
planations, which is extremely useful. 

3.4 Challenges and Possible Biases 

As machine learning models advance, new techniques 
bring up more questions. A common challenge is 
adapting to the diverse and unique coding styles of 
different developers. Another issue is ensuring the ac-
curacy and efficiency of machine-generated summar-
ies, aiming to make them more human-like for better 
comprehension of source code functionality. 
 

4 APPROACHES REVIEWED 

4.1 Transformer Models and 
Self-Attention Mechanisms 

In their paper “Attention is All You Need”, (Vaswani 
et al. 2017) introduced a transformer model that de-
pends only on self-attention mechanisms and does not 
need to use traditional recurrent or convolutional neu-
ral networks. According to (Vaswani et al. 2017), re-
current neural networks (RNNs) process the data se-
quentially, making them less effective in capturing 
long-range dependencies. In contrast, the Trans-
former model applies the self-attention mechanism, 
so that it processes the input data of the entire se-
quence in parallel simultaneously, and this reduces 
the training time and provides better scalability. The 
model can focus on different parts of the input data, 
and so it can more efficiently capture the dependen-
cies and the relationships that exist within the source 
code, even if they exist in different parts of the code. 

The Python function below, that calculates the av-
erage of a list of numbers, shows how transformers 
analyze code snippets, understanding the relation-
ships within the code, and then proceed to create sum-
maries: 
 
def calculate_average(numbers):  

total = sum(numbers)  
count = len(numbers)  
return total / count 

 
When a transformer model is used, the first thing 

it does is to divide the function into tokens (words or 
symbols). Then, the self-attention mechanism calcu-
lates the focus scores for each token based on its rela-
tionship to every other token in the code. In this way, 
it learns which tokens are most related to each other, 
i.e. the most important dependencies that exist within 
the code. In the example, the token sum(numbers) 
is closely related to the token total. Tokens are seen 
and compared in large code expanse, and this results 
in the production of a better summary. 

The paper "CodeBERT: A Pre-Trained Model for 
Programming and Natural Languages" by (Feng et 
al., 2020), examines and analyzes the advantages and 
the benefits of pre-training transformer models on 
both source code data and natural language data. This 
model uses the self-attention mechanism to capture 
the semantic and syntactic relationships between the 
code and the natural language. Through this, it shows 
high performance in retrieving the source code as 
well as in generating a summary of the source code 
with high accuracy. 
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Due to the self-attention mechanism, this model 
can produce summaries that look like they were cre-
ated by a human hand, as this mechanism allows the 
model to consider only the most important parts of the 
code and as a result to produce higher quality sum-
maries and more contextually related. 

While CodeBERT emphasizes natural language 
and code, another transformer-based model, Codex, 
also shows remarkable performance in code summa-
rization. 

The next Python example, shows the ability of the 
model to understand semantic relationships between 
code elements, using the Self-Attention mechanism to 
identify critical parts of the function and generate an 
accurate and concise summary. 

 
def vec_to_halfvec(vec): 
  d = vec[1:] - vec[:-1] 
  if ((d / d.mean()).std() > 1e-14) 
     or (d.mean() < 0): 
    raise ValueError('vec must be np 

        .arange() in increasing order') 
  dx = d.mean() 
  lowest = np.abs(vec).min() 
  highest = np.abs(vec).max() 
  return np.arange(lowest, highest + 

      0.1*dx,dx).astype(vec.dtype) 
 
The mechanism identifies that the key parts of the 

function are the computations related to vec  
e.g. d = vec[1:] - vec[:-1]  

and the conditions that shows its structure  
e.g. if ((d/d.mean()).std()>1e-14) 
     or (d.mean() < 0)  
These parts have more weight because they define 

the main logic of the method that is used and ensure 
the correctness of it. Parts that are less important, such 
as the return statement, get less attention and there-
fore less weight, as they do not change the overall 
purpose of the function very much. 

(Khan and Uddin, 2022) proposed and evaluated 
the potential and performance of the Codex model in 
the field of automatic source code summarization. 
This model is a version of GPT-3, and its results have 
shown that even when it is trained with basic, mini-
mal training using one-short learning, it can outper-
form conventional code summarisation techniques. 

4.2 LSTM and Attention Mechanisms 

Long Short-Term Memory (LSTM) networks are a 
type of Recurrent Neural Networks (RNNs) capable 
of maintaining information in long code sequences, 
which helps them to better understand the source code 
and to generate accurate summaries.  

(Hu et al., 2018), showed that when LSTM net-
works are combined with attention mechanisms, the 
relevance and the accuracy of the generated summar-
ies is improved, as they can focus on the most im-
portant parts of the code.  

 
def add(a, b): return a + b 

 
In the preceding Python example, a LSTM net-

work processes each token (def, add, a, b, return, 
etc.) sequentially, keeps track of the dependencies be-
tween these tokens, and can understand that the func-
tion takes a and b as input and returns the operation 
a+b. This information is stored in memory cells 
throughout the sequence. At each step the LSTM de-
cides which information to keep because it is im-
portant and which to forget. 

(Wan et al., 2018) researched how reinforcement 
learning can be combined with the LSTM architecture 
to improve the quality of the automated generated 
source code summaries. They found that by adding 
reinforcement learning, the model each time im-
proves its performance by giving focus to the feed-
back it receives. These models are classified as hybrid 
as they combine techniques and different methods, 
and as a matter of fact, the specific ones that combine 
LSTM networks and other machine learning tech-
niques, show significant improvements in both the 
conciseness and accuracy of the generated source 
code summaries. 

LSTMs are effective and with the addition of the 
transformers presented by (Ahmad et al., 2020), pro-
duce better source code summaries. 

4.3 Graph Neural Networks 

Graph Neural Networks (GNNs) were created to pro-
cess and display data in a graph structure of any shape 
and size. They use nodes and edges to represent the 
relationships of the data. They find application in so-
cial networks as well as in source code analysis, an 
area we study in this literature review. Therefore, 
GNNs have the potential to effectively show the in-
teractions between data and this leads to a better and 
deeper understanding of it (Allamanis et al., 2017), 
(Zhang et al., 2023). 

By representing source code in the form of graphs, 
such as Abstract Syntax Trees (ASTs) or control flow 
graphs (CFGs), GNNs learn through the complicated 
dependencies that exist within the code. Because of 
this, they can then generate accurate summaries be-
cause the model has a better understanding of the syn-
tactic and semantic structure of the code. (LeClair et 
al., 2020) showed major improvements in source code 
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summarization by focusing on the connections be-
tween the parts of the code as he researched how au-
tomatic source code summarization can be improved 
using GNNs. The authors suggest that future research 
can focus on embedding and enhancing dynamic code 
analysis, capturing runtime behaviours and interac-
tions. They propose extending the model to support 
multiple programming languages and larger code ba-
ses, addressing diversity in coding styles. 

For example, we present a source code Java ex-
ample extracted by (LeClair et al., 2020), and explain 
it: 

public int indexOf(Object o) { 
  if (o == null) { 
    for (int i = 0; i < size; i++) { 
      if (gameObjects[i] == null) { 
        return i; 
      }}} 
  else { 
    for (int i = 0; i < size; i++) { 
      if (o.equals(gameObjects[i])){ 
        return i; 
      }}} 
  return -1;} 
By using a graph neural network (GNN), the ab-

stract syntax tree (AST) of this method is processed 
as a graph where nodes represent code structures such 
as if, for, return, and o.equals. The edges cap-
ture the relationships between these structures. GNN 
analyzes this structure and focuses on the most im-
portant elements of the code. For example, it detects 
that the return statement is critical (return i;), be-
cause they define the output of the method. It under-
stands that comparisons (o==null and o.equals) 
are essential and affect the flow of the execution. Us-
ing this analysis, GNN returns the index of the first 
appearance of the defined element. This example 
shows how GNNs use code structural information to 
produce accurate and informative summaries. 

(Guo et al., 2021) further improved the model’s 
ability to understand these relationships by enhancing 
GNNs with data flow information and becoming able 
to produce more accurate and relevant summaries. 

4.4 Deep Reinforcement Learning 

Reinforcement learning improves decisions through 
interactions with the environment and feedback. In 
source code comprehension and summarization, it en-
hances summary quality by generating summaries, re-
ceiving feedback, and using it to improve future sum-
maries. With continuous feedback the model pro-
duced summaries become more accurate in capturing 
source code functionality. (Wan et al., 2018) noted 
the limitations of traditional neural models and used 

deep reinforcement learning to enhance summary 
quality through feedback. They achieved better re-
sults but suggested that future research should use 
more complex reward functions and prioritize human 
feedback.  

(Wang et al., 2022) further improved it by propos-
ing a combination of reinforcement learning with hi-
erarchical attention mechanisms. This combination 
allowed the model to understand the overall context 
of the code, but also to focus on the details of it. 

4.5 Hybrid Models 

(Hu et al., 2020) proposed a hybrid model, which 
combines lexical and syntactical analysis for achiev-
ing better and more efficient source code summaries. 
This model uses a neural network that processes lex-
ical information and a syntactic analyzer to improve 
the comprehension of the code structure. The results 
are comments and code summaries that are more ac-
curate and of higher quality. 

(Parvez et al., 2021), proposed a hybrid model that 
combines retrieval-based techniques with generative 
models. Through the retrieval part, the proper code 
snippets are identified and extracted from a large da-
taset. Then, these are used by a neural network which 
produces more accurate and reliable summaries. 

(Lu et al., 2023), proposed a method that com-
bines deep learning models with semantic analysis, 
which can capture the syntactic and the semantic 
structure of the source code. Thus, it is possible to 
produce summaries that not only focus on being con-
cise, but also provide important contextual infor-
mation, which improves the quality of the summary. 

5 DISCUSSION 

In this section, we commented on the findings of the 
review, identified some issues and proposed direc-
tions for further research. We organized this discus-
sion using three main research questions. 

5.1 RQ1 

Which Are the Current Machine Learning Models 
to Generate Summaries for Source Sode? 
It is observed that in recent years, various models 
have been proposed that use different machine learn-
ing techniques, but it is noteworthy that they all focus 
on a common factor, which is to achieve a better un-
derstanding of the structure of the source code, either 
at the semantic or syntactic level, in order to have a 
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better view of the functionality of the code that is be-
ing analysed. 

Current transformer-based models, such as 
CodeBERT, and Codex (Khan and Uddin, 2022) have 
undoubtedly presented very encouraging results and 
remarkable accuracy in generating automated code 
summaries. For example, Codex achieves an average 
BLEU score of 20.63 across six programming lan-
guages, showing an 11.2% improvement compared to 
older state-of-the-art methods such as CoTexT (Phan 
et. Al., 2021). Similarly, CodeBERT have shown 
great progress on many datasets, especially for Java 
and Python, allowing the parallel processing of the 
data. (Feng et al., 2020)  

However, despite this progress, there are still lim-
itations on how they can understand the intention and 
the logic of the developer behind the code they are 
examining. 
1. Metric Limitations: BLEU and ROUGE cannot be 

fully associated with human understanding. (Sta-
pleton et al., 2020) found that programmers per-
formed better with human generated summaries 
than with machine-generated summaries despite 
high BLEU scores. 

2. Contextual and semantic gaps: Current models of-
ten have difficulty capturing deeper intentions or 
logical relationships within the code. For exam-
ple, BLEU scores drop by 4-6 points for complex 
methods. (Stapleton et al., 2020) 

When choosing a machine learning model, the au-
thors recommend prioritizing how well programmers 
understand the generated summaries, rather than just 
the evaluation metric scores. This is because high 
scores don't always reflect the actual comprehension 
of the summaries by developers. 

Future research should focus on developing more 
intelligent models that analyse both the syntactic and 
semantic structure of code. This includes considering 
the history of code changes and the intentions behind 
each approach. Additionally, it will be nice to enable 
models to perform real-time analysis of source code, 
speeding up development. This would eliminate the 
need to execute code from scratch each time, as the 
model would already have updated crucial details. 

Finally, these models can improve collaboration 
between teams. Summarization tools provide crucial 
information about each team’s code, helping them un-
derstand it quickly and efficiently. 

5.2 RQ-2 

What Factors Should Be Considered When Select-
ing a Machine Learning Model for Code Summa-
rization and Comprehension? 

Choosing the most suitable model for a source 
code summarization and comprehension task is criti-
cal. A key factor to consider is adaptability. Related 
to the adaptability part, models can adapt to different 
programming languages, and it is worth mentioning 
that they can perform efficiently even with limited 
training data. Two of these use cases are one-shot 
learning, where the model performs a task by learning 
from a single example, and few-shot learning which 
allows the model to understand and summarize source 
code using a small number of training examples. An 
evaluation performed by (Khan and Uddin, 2022), 
showed that Codex model outperformed other models 
in six programming languages when trained with few-
shot examples. Therefore, adaptability makes these 
models very useful in the field of software engineer-
ing, especially in cases such as comprehending iden-
tifier names, APIs and different coding styles. More-
over, they are useful in tasks where the available data 
is limited, and large-scale model training is not possi-
ble. For example, the TL-CodeSum method, pre-
sented by (Hu et al., 2018), uses API sequences as 
mid-range representations to capture long-range de-
pendencies between code points and APIs, to improve 
the understanding and summarization of source code.  

To select the most suitable machine learning 
model for source code summarization, several factors 
that affect the performance and usability of the model 
are considered: 
1. Handling long-range dependencies and scalabil-

ity: The ability of the model to handle long-range 
dependencies is critical for understanding com-
plex code structures, where functions and varia-
bles may be placed in different parts of the source 
code. (Ahmad et al., 2020) proposed a transformer 
architecture combined with self-attention mecha-
nisms to capture long-range dependencies within 
the source code. This technique outperformed tra-
ditional RNN-based models, including LSTMs, in 
terms of producing more accurate and relevant 
summaries. Additionally, scalability ensures that 
the model can handle large datasets and more 
complex tasks, offering solutions to big data chal-
lenges. 

2. Parallel information processing: Transformers 
can process source code using the Self-Attention 
Mechanism (Vaswani et al., 2017) to analyze mul-
tiple aspects of the code at the same time, increas-
ing speed and efficiency. 

3. Use of reliable evaluation metrics: The use of re-
liable evaluation metrics allows the performance 
of the model to be measured accurately.  

Based on these findings, we propose some future re-
search directions: 
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1. Expanding language support: Current models 
mainly focus on a few programming languages 
like Python, commonly used in machine learning. 
Future models need to be more adaptable to vari-
ous programming environments and styles. 

2. Improving data quality: Models often learn from 
datasets with errors or unhelpful comments, 
which affects summary accuracy. Fixing these da-
taset issues is essential to improve model reliabil-
ity. 

3. Resource efficiency: For large code bases, a mod-
el's runtime efficiency and computing power are 
crucial. Future models need to balance perfor-
mance and resource consumption to ensure prac-
tical usability. 

5.3 RQ-3 

What Are Possible Future Directions for Research 
and Development for Code Summarization, Con-
sidering Current Limitations and Emerging 
Trends? 
Apart from the research directions mentioned in the 
two previous sections, another important research fo-
cus should be scalability and performance. As code-
bases continuously grow, models need to process 
larger amounts of datasets, while maintaining accu-
racy and reducing computational power. The goal is 
to optimize current models and architectures to 
achieve greater efficiency. This could be done by de-
veloping neural networks, which would require less 
processing power and computational resources but 
still produce accurate and reliable summaries of the 
source code. In other words, these models should han-
dle larger amounts of data without the need for more 
expensive hardware. 

An additional question is how these models could 
be integrated in developers' IDEs to continuously pro-
duce summaries that are up to date as the code is writ-
ten? 

As we have already mentioned in the paper, a very 
common issue faced is the diversity in the coding 
style of developers. Future research should focus on 
how machine learning models can adapt more effec-
tively to different coding styles, possibly through di-
rect feedback, and thus offer greater personalization 
and efficiency. 

Another relevant challenge is the issue of biases. 
How can we detect and moderate the biases observed 
in the data used to train machine learning models? 

Machine learning models are trained on data that 
often contain biases. Future research should focus on 
creating algorithms that can detect and reduce biases 
and unwanted distortions in the summaries, ensuring 

that the generated summaries are accurate and truth-
ful. At the same time, ethical issues are extremely im-
portant, including the need to ensure that automated 
summaries do not accidentally reveal sensitive or pri-
vate information, such as credentials or copyright in-
formation. In addition, it is necessary to respect the 
licenses and rights of the source code, so that the sum-
maries produced do not violate licensing terms or 
even reveal parts of the code that should not be made 
public. 

A key question is how we can develop mecha-
nisms which ensure that artificial intelligence is ap-
plied responsibly and ethically, while giving the nec-
essary attention to user’s privacy and the integrity of 
generated results. 

To address these issues, we propose some future 
research directions: 
1. For IDE integration, models must be dynamically 

updated with new information, without the need 
for training from scratch every time. This ensures 
that summaries remain accurate and updated. 

2. Personalized feedback (e.g. reviews or quick edits 
from developers) can help customize summaries 
to the specific needs of a team, improving overall 
productivity. 

3. An innovative idea for reducing biases in AI mod-
els is the integration of self-evaluating mecha-
nisms. Through these, the model will continu-
ously evaluate its responses to identify and correct 
potential biases. This idea is based on finding a 
way for models not to rely only on external fac-
tors, but to learn from their own responses, specif-
ically in the ethics part to achieve a higher level of 
integrity. 

6 CONCLUSIONS 

This literature review examined source code summa-
rization and comprehension using machine learning 
techniques. It highlights progress and challenges, 
with deep learning, especially transformers, leading 
the way.  

While deep reinforcement learning shows prom-
ise, it evolves slowly. Significant progress requires 
both syntactic and semantic code understanding, as 
well as new performance metrics.  

Finaly, three umbrella research questions were 
proposed to guide future research directions. 
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