
Addressing Label Leakage in Knowledge Tracing Models

Yahya Badran1,2 a and Christine Preisach1,2 b

1Karlsruhe University of Applied Sciences, Moltekstr. 30, 76133 Karlsruhe, Germany
2Karlsruhe University of Education, Bismarckstr 10,76133 Karlsruhe, Germany

{yahya.badran, christine.preisach}@h-ka.de

Keywords: Knowledge Tracing, Knowledge Concepts, Data Leakage, Intelligent Tutoring Systems, Sparsity, Deep
Learning.

Abstract: Knowledge Tracing (KT) is concerned with predicting students’ future performance on learning items in intel-
ligent tutoring systems. Learning items are tagged with skill labels called knowledge concepts (KCs). Many
KT models expand the sequence of item-student interactions into KC-student interactions by replacing learn-
ing items with their constituting KCs. This approach addresses the issue of sparse item-student interactions
and minimises the number of model parameters. However, we identified a label leakage problem with this
approach. The model’s ability to learn correlations between KCs belonging to the same item can result in
the leakage of ground truth labels, which leads to decreased performance, particularly on datasets with a high
number of KCs per item. In this paper, we present methods to prevent label leakage in knowledge tracing (KT)
models. Our model variants that utilize these methods consistently outperform their original counterparts. This
further underscores the impact of label leakage on model performance. Additionally, these methods enhance
the overall performance of KT models, with one model variant surpassing all tested baselines on different
benchmarks. Notably, our methods are versatile and can be applied to a wide range of KT models.

1 INTRODUCTION

Knowledge tracing (KT) models are essential for per-
sonalization and recommendation in intelligent tutor-
ing systems (ITSs). Furthermore, some KT models
can provide mastery estimation of the skills or con-
cepts covered in the coursework. These concepts are
typically listed by the ITS and referred to as Knowl-
edge Concepts (KCs). Each question in the course-
work can be assigned a set of KCs that are required
to pass it. For example, a simple question such as
”1+5−3 =?” might be tagged with two KCs: ”sum-
mation” and ”subtraction”. The mastery estimation of
KCs can form a state representation of the student at a
point in time which can be the basis for a recommen-
dation algorithm.

Many KT models use KCs to address the issue
of data sparsity, which is due to the large number
of questions available in ITS and the limited student-
question interactions(Liu et al., 2022; Ghosh et al.,
2020). To achieve this, each question can be unfolded
into its constituting KCs, creating a new KC-student
interaction sequence instead of question-student in-

a https://orcid.org/0009-0006-9098-5799
b https://orcid.org/0009-0009-1385-0585

teractions. Since the number of KCs is relatively
much smaller than the number of questions, this ap-
proach helps mitigate the sparsity problem and also
minimizes the number of parameters required in the
model.

When using the KC-student sequence, KCs of the
same question form a subsequence. In production set-
tings, the subsequence labels are either fully known
(if the student responded to the question) or fully un-
known (if the student has not interacted yet with the
question). To accurately evaluate models trained on
the KC-student sequence, it is crucial to apply tech-
niques that replicate production settings. Failing to
do so can result in ground-truth label leakage during
evaluation, leading to misleading results(Liu et al.,
2022). Unfortunately, this issue is often overlooked
in the literature, causing reported performance met-
rics to be artificially inflated compared to the model’s
true performance(Liu et al., 2022).

Moreover, we noticed that models trained using
this method can learn to leak ground-truth labels be-
tween KCs of the same question instead of inferring
predictions based on the preceding questions in the
sequence. As a result, models trained using this ap-
proach experience a decline in performance. The un-

Badran, Y. and Preisach, C.
Addressing Label Leakage in Knowledge Tracing Models.
DOI: 10.5220/0013275200003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 85-95
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

85

derlying reason is that deep learning models can learn
to infer if KCs belong to the same question or not
and, thus, learn to leak ground-truth labels between
KCs of the same question. This problem is more pro-
nounced with datasets containing a high average num-
ber of KCs per question because such datasets are
more likely to contain correlated KCs (KCs that are
more likely to occur together in the same question).

It is important to note that classical models,
such as Bayesian Knowledge Tracing (BKT)(Corbett
and Anderson, 1994), employ a strong indepen-
dence assumption between knowledge components
(KCs)(Mao, 2018; Abdelrahman et al., 2023). These
models do not learn dependencies between KCs and
therefore do not suffer from this label leakage prob-
lem. While these classical models are more inter-
pretable, their performance often does not match that
of deep learning methods (Khajah et al., 2016; Gervet
et al., 2020; Nagatani et al., 2019). Accordingly,
this paper concentrates exclusively on Deep Learning
Knowledge Tracing (DLKT) models, which are capa-
ble of learning intricate dependencies between KCs.

To address the label leakage problem and show
its effect, we eliminate any computational path that
could leak ground truth labels during both training
and evaluation using different methods. One method
that we propose replaces ground-truth labels with a
MASK label whenever leakage might occur, inspired
by masked language modeling (Devlin et al., 2019).
The advantage of this method is that it can be ap-
plied to various architectures. Our model variants that
employ these methods significantly outperform their
original counterparts, which highlights the impact of
label leakage.

Evaluating models on the KC-student interac-
tion sequence can suffer yet from another problem.
The length of the KC-student interaction sequence is
longer than the question-student sequence, which is
ignored in benchmark comparisons that do not en-
force a fixed sequence length of questions across dif-
ferent KT models. Most benchmarks use datasets
with a small average number of KCs per question,
hence, the difference in length between the expanded
KC sequence and the original question sequence is
usually small for such datasets. However, once the
dataset has larger average KCs per question, the
model that uses the KC-student sequence is evaluated
on sequences with fewer questions, which can result
in unfair comparison.

This paper provides the following contributions:

• We provide empirical evidence for ground-truth
label leakage in commonly used KT models.

• We introduce a number of methods to prevent la-
bel leakage.

• Our model variants that utilize the introduced
methods exhibit competitive performance, win-
ning different benchmarks.

• We used datasets with varying average number
of KCs per question and use the same sequence
lengths across different models for a fair compar-
ison.

• We publish our implementation as an open source
tool: https://github.com/badranx/KTbench.

2 RELATED WORK

Originally knowledge tracing was mostly based on
educational theories such as Item Response The-
ory (IRT) and mastery learning (Abdelrahman et al.,
2023). One example of such models is BKT which
learns a Hidden Markov Model, where each skill cor-
responds to two states, one indicating mastery and the
other not. These models do not represent any depen-
dencies between different KCs and thus they do not
suffer from the problem of label leakage discussed
in this paper. However, this comes at the expense of
being less expressive and typically resulting in lower
performance overall.

Deep learning is capable of capturing more com-
plex relations. The first DLKT model was Deep
Knowledge Tracing (DKT)(Piech et al., 2015) which
uses recurrent neural networks (RNNs) to model the
sequence of student interactions. Later, more DKT
variants were introduced (Yeung and Yeung, 2018;
Nagatani et al., 2019). However, most of these mod-
els operate at the KC level on an expanded sequence
and thus they can suffer from label leakage.

(Liu et al., 2022) discussed label leakage issues
during evaluation. They proposed a method that
mimic production settings to effectively evaluate KT
models. However, they did not address the effect of
label leakage on model performance. Moreover, their
method is computationally expensive. Instead, we
propose straightforward modifications to the original
models that eliminate the need for specialised evalua-
tion methods.

Attention-based models, such as Transform-
ers(Vaswani et al., 2017), offer a strong alternative
to RNNs. Attention mechanisms require specialized
masks to prevent unwanted data leakage within the
sequence. For instance, preventing a model from ac-
cessing future information can be achieved using a
simple triangular matrix. (Oya and Morishima, 2021)
presented a modified mask to prevent leakage be-
tween questions within each group. These groups are
specific to their chosen dataset, in which students only

CSEDU 2025 - 17th International Conference on Computer Supported Education

86

receive feedback for the whole group instead of indi-
vidual questions. This is done to properly model the
student learning behavior, which is a special case for
the used dataset. Similarly, we implement masks to
prevent label leakage for attention based KT models
that operate on the expanded KC sequence.

3 KNOWLEDGE TRACING

Let Q be the set of all questions. We represent the
student interaction at time t as a tuple (qt ,rt) where qt
represents the question and rt represents the student
response which is either 1 if the answer is correct or
0 otherwise. Let (q1,r1) , . . . ,(qt−1,rt−1) represent a
chronological sequence of interactions by a single stu-
dent up to time t−1. The main goal of a DLKT model
is to predict rt for qt ,

r′t = DLKT (qt ;(qt−1,rt−1), . . . ,(q1,r1)) (1)

where r′t is the model prediction.
Let C be the set of all KCs. Since each question is

tagged with a number of KCs, we represent the one-
to-many mapping between each question and its KCs
as m : Q → 2C where 2C is the set of all subsets of
KCs.

Many models expand the question-student interac-
tion sequence into a KC-student interaction sequence.
Each question in the sequence is expanded to its con-
stituting KCs as illustrated in Figure 1. For exam-
ple, given an ordering over the KCs in C, let q be
a question with n KCs then each interaction (q,r)
can be expanded into multiple interactions as follows:
(c1,r) . . . ,(cn,r) where m(q) = {c1,c2, . . . ,cn}. This
results in longer sequence lengths. Note that some
models retain q in the expanded sequence, while oth-
ers drop it completely.

As the number of KCs is usually much smaller
than the number of questions, this serves to miti-
gate the effect of sparse item-student interactions (Liu
et al., 2022). Additionally, it can minimise the num-
ber of model parameters (Ghosh et al., 2020).

✓ ✓✓ ✓ ✓✕

✓ ✕ ✓

Figure 1: Expanding a question-student interaction se-
quence into a KC-student interaction sequence. The green
and red symbols are correct and incorrect respectively.

To illustrate this further, we review two important
models that utilize this approach, DKT and AKT.

3.1 Review of Deep Knowledge Tracing

Deep Knowledge Tracing (DKT) was the first model
to utilize deep learning for the knowledge tracing task
(Piech et al., 2015). The model is mainly a recurrent
neural network (RNN) with two variations: vanilla
RNN and Long short-term memory (LSTM). In this
work, we only consider the LSTM variant. The origi-
nal implementation completely discards the questions
and takes the expanded KC-student interaction se-
quence as input in order to predict a future response

r′t = DKT (ct ;(ct−1,rt−1), . . . ,(c1,r1)) (2)

Each KC-response pair, (c,r), is mapped to a
unique vector embedding e(c,r) in order to be pro-
cessed by the recurrent model which in turns outputs
a sequence of hidden states {ht} that are passed to a
single-layer neural network as follows:

yt = σ(Wht +b) (3)
where W , b, and σ are the weight, bias and sig-

moid activation function respectively. The output yt
has a dimensionality equivalent to the cardinality of
KCs such that each dimension represents the prob-
ability of a correct response for the corresponding
KC. Thus, the model prediction would be r′t = yt[ct],
which is the value at dimension ct .

The original implementation of DKT uses two
methods to compute the vector e(c,r). One is a one-hot
encoding of the tuple (c,r), which means the result-
ing vector has a dimension of two times the number
of KCs, |C|. Given the fact that this vector can have
a very large dimension with higher number of KCs,
they suggest to sample a random vector with fixed-
dimension d for each pair (c,r), e(c,r) ∼ N (0,I). In
both methods, the vectors are fixed and not part of the
learned parameters.

Some recent implementations of DKT do not use
these two methods (Liu et al., 2022; Wu et al., 2025).
Instead, each (c,r) is mapped to a unique learned
vector embedding of a fixed dimension d. Which is
equivalent to passing a one-hot encoding to a linear
layer with no bias which outputs d features before
passing it to the LSTM but at much lower computa-
tional cost. Thus, we similarly adopt this approach in
our work.

3.2 Review of Attentive Knowledge
Tracing

Attentive Knowledge Tracing (AKT) (Ghosh et al.,
2020) utilizes a self-attention mechanism to produce
a contextualized representation of both, questions and

Addressing Label Leakage in Knowledge Tracing Models

87

student responses. Unlike scaled dot-product atten-
tion which depends on the order of the items in the se-
quence, AKT attention weights incorporate informa-
tion about the relatedness between questions, which
corresponds to increased attention weight for related
questions in the sequence. It also incorporates student
forgetting effects which corresponds to a decrease in
attention weight with time (time is substituted by the
order of the item in the sequence). They call this
monotonic attention mechanism.

AKT has two self-attention based encoders. One
is called the question encoder which is responsible for
contextualized question representation. It takes em-
beddings computed from the input sequence without
student response data (qt−1,ct−1), . . . ,(q1,c1). The
question encoder utilizes monotonic attention to out-
put a contextualised representation, xt , of the current
question qt

xt = fqenc(e(qt ,ct),e(qt−1,ct−1), . . . ,e(q1,c1)) (4)

Where e(qt ,ct) is the embedding vector of (qt ,ct).
The other encoder is called knowledge encoder which
produces a contextualized student knowledge repre-
sentation, yt , as it takes embeddings computed from
KCs and student response input data

yt = fkenc(e(rt−1,ct−1,qt1)
, . . . ,e(r1,c1,q1)) (5)

Where e(rt ,ct ,qt) is the embedding vector of
(rt ,ct ,qt). The outputs of both encoders are passed to
a knowledge retriever, which utilizes a special mono-
tonic attention mechanism to retrieve relevant past
knowledge for the current question,

ht = fkr(x1, . . . ,xt ,y1, . . . ,yt−1) (6)
Lastly, the output of the knowledge retriever, ht , is

passed to a feed-forward network to predict the ques-
tion response on a specific KC. For an overview of the
AKT architecture, see Figure 2.

AKT has two attention masks. The first is
a lower triangular mask to prevent any connec-
tion between the output xt or yt and future items,
{(rt+1,ct+1,qt+1) ,(rt+2,ct+2,qt+2) , . . .}, which is
used by both encoders. The second is a strictly lower
triangular mask (where the main diagonal contains ze-
ros) to prevent any connection between r′t and both
current and future items in the sequence which is used
by the knowledge retriever. However, AKT still suf-
fers from label leakage despite the provided attention
masks. The reason is its use of the KC-student in-
teraction sequence as input which we will explain in
more details in section 4.

The embeddings are constructed using an ap-
proach inspired by the Rasch model which estimates

the probability of a student answering a question cor-
rectly using two parameters: the difficulty of the ques-
tion and the student’s ability (Rasch, 1993). Using the
Rasch model approach, it constructs two types of em-
beddings for both (qt ,ct) and (rt ,ct ,qt) as follows:

e(qt ,ct) = ect +µqt ·dct (7)

e(rt ,ct ,qt) = e(ct ,rt)+µqt · f(ct ,rt) (8)

Both dct and f(ct ,rt) are vector embeddings, called
”variation vectors”, while µqt is a scalar representing
question difficulty. ect is the embedding for each KC.
Furthermore, the embedding of the concept-response
pair is defined as

e(ct ,rt) = ect +grt (9)

Where g1 and g0 are embeddings for the correct
and incorrect response, respectively.

Add & Norm

Feed Forward

Add & Norm

Monotonic
Attention

(peek current)

Add & Norm

Monotonic
Attention

(mask current)

Add & Norm

 Monotonic
Attention

(peek current)

Feed Forward

Add & Norm

Prediction Network

Embedding Embedding

Figure 2: Overview of the AKT model architecture. This is
a simplified version, some blocks are repeated. Each atten-
tion block in the figure takes the sequence of inputs—value,
query, and key—from left to right.

4 PROBLEM STATEMENT

We divide the problems addressed in this paper into
two main parts: those that arise during evaluation and
those that arise during training.

CSEDU 2025 - 17th International Conference on Computer Supported Education

88

4.1 Evaluation Problems

In (Liu et al., 2022), the authors described two meth-
ods to evaluate models that operate on the expanded
KC-student interaction sequence. They called the first
method ”one-by-one” evaluation, shown in Figure 3,
which involves evaluating the expanded sequence per
KC, while ignoring the original question-student se-
quence.

The second method is what they call an ”all-in-
one” evaluation, which involves evaluating all KCs
belonging to the same exercise at once, independently
of each other, as shown in Figure 4. Afterwards, out-
puts belonging to the same question are reduced us-
ing a chosen aggregation function, such as the mean,
to represent the final prediction for the corresponding
question. In this work, we always apply the mean as
an aggregation method.

The ”one-by-one” method does not match real
production settings, as the ground-truth labels are not
available for all KCs of the unanswered questions.
This discrepancy produces misleading evaluation re-
sults (Liu et al., 2022). Thus, in this work, we enforce
the ”all-in-one” evaluation for all models that can leak
ground-truth labels.

✓ ✓✓ ✕
DLKT

✓

✓
✓ ✕

Figure 3: one-by-one evaluation and training on the ex-
panded sequences. Note, c5 ground-truth label can leak to
r′6 as both c5 and c6 belong to the same question, q3.

✓ ✓✓ ✕
DLKT

✓

✓ ✕

Figure 4: The all-in-one evaluation method. Both predic-
tions of c5 and c6 should be produced independently of each
other as they belong to the same question, q3.

However, the ”all-in-one” is expensive to compute
since the sequence needs to be evaluated for each KC
belonging to the same question independently before
aggregating. Therefore, it is not practical to use the
”all-in-one” method on the validation set, but only
once on the test set. As these methods differ, vali-
dation can be misleading and may lead to the selec-
tion of an incorrect model when using methods such
as cross-validation.

The second issue is that the expanded sequence is
usually longer than the original sequence, and thus
the available benchmarks should be used carefully.
All models should be tested against the same num-
ber of questions per sequence for a fair comparison.
However, since a maximum sequence window size
must be enforced, most implementations use the same
window for both, expanded and original sequences,
which leads to unfair comparisons since the expanded
sequence contains fewer questions. This work en-
forces the requirement of consistent question window
size across models to ensure fair comparison.

4.2 Training Problems

The ”all-in-one” method can provide a reliable ap-
proach to evaluate the model to mimic production
setting. However, during training, the expanded se-
quence still contains consecutive ground-truth labels
for the same question. This can cause models to learn
to leak ground-truth labels between KCs, leading to
a deterioration in performance. This issue, along
with the others discussed in the previous section, be-
comes more pronounced when dealing with datasets
that contain a larger number of knowledge compo-
nents per question, as will be demonstrated in sec-
tion 6.

The problem stems from the way the expanded se-
quence is modeled, which does not match the distri-
bution of the data during the production setting. Let
(ct ,rt) and (cτ,rτ) be two interactions in the expanded
sequence, such that τ > t while ct and cτ are two KCs.
Let Bt,τ be the event that t and τ belong to the same
question in the sequence, {ct ,cτ} ⊂ m(qk). Let ∼Bt,τ
be its complement. Let Hτ be all the interaction his-
tory before τ, where (ct ,rt) ∈ Hτ, then the probability
that rt and rτ are equal can be modeled as follows

P(rτ = rt | Hτ) = P(rτ = rt | Hτ,Bt,τ)P(Bt,τ | Hτ)

+P(rτ = rt | Hτ,∼Bt,τ)P(∼Bt,τ | Hτ)

≥ P(Bt,τ | Hτ) (10)

The inequality holds because P(rτ = rt | Hτ,Bt,τ)
is one. A model trained on the expanded KC-student
sequence can implicitly learn P(Bt,τ | Hτ). Conse-
quently, with a high P(Bt,τ | Hτ), the model can learn
to ignore the history except for rt . However, Bt,τ never
occurs in production. This discrepancy between pro-
duction and training will result in lower performance.
Obviously, this is dataset dependent. For example,
Bt,τ never occurs in a dataset with one KC per ques-
tion.

Thus, our goal in this paper is to properly model
the true distribution of the data by masking computa-

Addressing Label Leakage in Knowledge Tracing Models

89

tion paths that can leak ground truth labels to accu-
rately model production settings. We achieve that by
ensuring that the sequence before the time τ, Hτ, does
not contain rt if Bt,τ is true; instead, it should satisfy

Hτ ⊂ {(ct ,rt) | t < τ,∼Bt,τ}∪{ct | t < τ,Bt,τ} (11)

which means we are dropping any ground-truth la-
bel that can leak to prediction at time τ.

5 LABEL LEAKAGE-FREE
FRAMEWORK

The goal is to remove the computation path between
the responses to KCs of the same question in the ex-
panded sequence. This idea shares some similarity
with autoregressive models (Germain et al., 2015),
where the computation path is masked to properly
model the distribution using the autoregressive prop-
erty of random variables to generate a true probability
distribution. In our case, we mask computation paths
that do not exist at production time and can cause
ground-truth labels to leak.

If the model has no computation path between the
responses that correspond to KCs of the same ques-
tion then it does not suffer from label leakage during
training or evaluation, which means they do not re-
quire an expensive ”all-in-one” evaluation.

Note that it is possible to convert the one-to-many
map, m, to a one-to-one mapping by treating each
unique group of KCs that belong to the same ques-
tion as a single KC. This approach is not feasible for
models that rely on individual KC inputs, such as the
Knowledge Query Network model (Lee and Yeung,
2019). Additionally, for datasets with a high number
of KCs per question, the resulting one-to-one map-
ping can have a large range. Finally, questions that
have an unseen set of knowledge components are out-
side the scope of the one-to-one mapping. Therefore,
we exclude this solution from our work.

5.1 Incorporating a Mask Label

We introduce a simple solution that can be applied to
a wide variety of KT models. We simply add a mask
label, MASK, to the expanded sequence alongside the
correct 0 and incorrect 1 response labels. To prevent
label leakage, we replace any ground truth label (0
and 1) with MASK if it is followed by another KC of the
same question in the sequence as shown in Figure 5.
With this approach, each KC subsequence, that corre-
sponds to a single question, has only one ground-truth
label at the end while the rest have MASK labels.

✓ ✓✕

✓ ✕ ✓

MASK MASK MASK

Figure 5: Expanding question-student interaction sequence
into KC-student interaction sequence with MASK labels. The
green and red symbols are correct and incorrect respec-
tively.

For example, let q be a question in the sequence
consisting of three KCs (c1,c2,c3) and have a re-
sponse, r, then it would be represented in an expanded
sequence as follows:

. . . ,(q,c1,MASK) ,(q,c2,MASK) ,(q,c3,r) , . . .

Thus, the ground-truth r can not be leaked, as it
happens only at the last item in the sequence of KCs.
Note that the MASK label is included only in the input
sequence to the model, the output is still predicting
only the original ground-truth labels, 0 and 1. This is
applied during both training and inference.

Besides preventing label leakage, the mask label
method adds explicit information about which KCs
make up a question with a small increase in parameter
size. This can be useful as other models, such as DKT,
hide this information completely from the model.

Incorporating the new label into a model, usually
does not need a huge change to the model itself, as
we will see in the introduced model variants that use
this method. To distinguish models that utilize this
method from others, we append ”-ML” to the model
name, which stands for mask label. We introduce
two model variants: mask label DKT (DKT-ML) and
mask label AKT (AKT-ML).

5.1.1 AKT-ML

As explained in section 3.2, AKT uses two separate
vector embeddings for correct and incorrect labels,
denoted as g1 and g0, respectively. Thus, to incor-
porate a MASK label, we only introduce a similar em-
bedding gMASK with the same dimensions as g1 and g0.
Its value is also learned during training similar to g1
and g0.

Building on that, a mask embedding for (ct ,MASK)
is

e(ct ,MASK) = ect +gMASK (12)

Furthermore, we need a new variation vector em-
bedding (see 3.2) for each KC-MASK pair, (ct ,MASK).
Each unique pair can be mapped to a unique varia-
tion vector embedding, f(ct ,MASK), to account for the
new MASK label, which is done similarly to f(ct ,0) and

CSEDU 2025 - 17th International Conference on Computer Supported Education

90

f(ct ,1). With that, we can compute e(MASK,ct ,qt) using
equation 8.

5.1.2 DKT-ML

DKT discards questions from the sequence and thus
only represents a separate embedding for each KC-
response pair, e(ct ,rt). One method to incorporate a
MASK label is by adding a new embedding for each
concept-MASK pair, (ct ,MASK). However, we instead
adapt an approach similar to AKT by using separate
embeddings for each KC, denoted as ect , and separate
embeddings for each label: g0, g1, and gMASK. Thus,
the embedding for (ct ,MASK) is

e(ct ,MASK) = ect +gMASK (13)

which can be passed to the RNN model.

5.2 DKT with Averaged Embeddings

Another approach to avoid label leakage is averag-
ing all the embeddings of the constituting KCs before
passing them to the model. This allows the model
to avoid operating sequentially on the expanded se-
quence but instead on the original question-student
interaction sequence, thus, avoiding all the mentioned
problems. We created a DKT variant that uses this
method, and we call it DKT-Fuse.

DKT-Fuse adds a component that averages all the
concept-response pair embeddings, e(c,r), of a specific
question, q, before passing it to the RNN of DKT.
A similar component has been used in the question-
centric interpretable KT (QIKT) (Chen et al., 2023)
model. The output of the component can be described
as follows:

ē(q,r) =
1

|m(q)| ∑
c∈m(q)

e(c,r) (14)

where m(q) is the set of KCs belonging to that
question, while ē(q,r) is the average of the correspond-
ing input embeddings.

As we described in section 3.1, DKT outputs a
vector of probabilities corresponding to each KC in
the dataset. Since we chose the mean as an aggrega-
tion method, the prediction of DKT-Fuse is the mean
of the probabilities of the constituting KCs, m(q), for
each question q during both training and evaluation.

5.3 Special Attention Masks

We can modify attention masks to cut any computa-
tion path between KCs belonging to the same ques-
tion, and thus prevent label leakage. We apply these

masks to AKT, and we refer to the model by question
masked AKT (AKT-QM).

AKT-QM have the same architecture as AKT
(Ghosh et al., 2020). We only adjust the strictly lower
triangular attention mask of AKT (described in sec-
tion 3.2). To prevent peeking into KCs of the same
question in the KC-question sequence. To do that, we
replace the strictly lower triangular mask with

Ai j =

 0 if Bi, j
0 if i <= j
1 otherwise

(15)

Where Bi, j means ci and c j belong to the same
question in the original sequence. Note that zero
is mapped to −∞ and one is mapped to zero when
computing attention weights, see (Vaswani et al.,
2017). These masks are computed using fancy index-
ing (Harris et al., 2020; Oya and Morishima, 2021).

5.4 Autoregressive Decoding of the
DKT Model

One method to avoid label leakage is to use autore-
gressive decoding for items belonging to the same
question by sampling from the model instead of tak-
ing the ground-truth if a KC-response item can leak.
This solution is computationally tractable, as ground-
truth labels can be replaced with the model output at
each recurrent step while parsing the sequence. We
implement this for DKT and call it Autoregressive De-
coding DKT (DKT-AD).

DKT-AD employs the same architecture as DKT,
with the distinction that the recurrent model substi-
tutes ground-truth response values with model re-
sponse predictions, r′t , at time t if ct+1 and ct belong to
the same question in the sequence. These samples are
treated as constants, and thus no gradient propagation
is performed.

To illustrate this approach, let q be a question
comprising three KCs, c1,c2,c3, and eliciting a re-
sponse r, then the model parses the following se-
quence:

. . . ,
(
q,c1,r′1

)
,
(
q,c2,r′2

)
,(q,c3,r), . . .

where r is the ground-truth response data of the ques-
tion, q, while r′1 and r′2 are model predictions. Each
prediction depends on the preceding input sequence.

6 EXPERIMENTS

As our focus is on models that utilize KCs, we chose
datasets that have different KC related attributes such

Addressing Label Leakage in Knowledge Tracing Models

91

as KC cardinality, and the average KCs per question.
We also list the number of unique KC groups in each
dataset, where each group corresponds to the set of
KCs belonging to a unique question. These attributes
are shown in Table 1. Further, we discard all extra
features and leave only KCs, questions, student iden-
tifiers and the order of interactions. We mainly use
the following datasets:

• ASSISTments20091. Collected from the AS-
SISTments online tutoring platform between 2009
and 2010. We use the skill-builder version only.

• Riiid2020 (Choi et al., 2020). Collected from an
AI tutor. It contains more than 100 million student
interaction. We only take the first one million in-
teraction from this dataset. Moreover, it’s worth
noting that the Riiid2020 dataset was utilized in a
competition context, permitting the incorporation
of additional features, which we have deliberately
omitted to ensure a fair comparison.

• Algebra2005 (Stamper et al., 2010). This data
was part of the KDD Cup 2010 EDM Challenge.
We only choose the data collected betweeen 2005-
2006, titled ”Algebra I 2005-2006”.

• Duolingo2018(Settles et al., 2018). Collected us-
ing Duolingo, an online language-learning app.
It contains around 6k learners on different lan-
guages. We choose only students with English
background learning Spanish. Further, we choose
word tokens as KCs. Note that a word might con-
sists of multiple tokens.

In order to emphasise the effect of label leak-
age during training, we further process the ASSIST-
ments2009 dataset to contain perfectly correlated
KCs. We achieve this by replacing each KC, c, with
m′(c) and m′′(c), where m′ and m′′ are functions with
disjoint ranges of cardinality equal to the original
number of KCs. This means that each question has at
least two KCs that are perfectly correlated (since they
are duplicates). We abbreviate the generated dataset
with CorrAS09.

6.1 Baselines and Training Setup

To demonstrate the effect of preventing label leak-
age, we compare the proposed model variations in
section 5 with their original counterparts: AKT and
DKT.

We also introduce baselines that do not expand
KCs and therefore avoid the label-leakage problem.
The following baselines are:

1Can be fetched from https://sites.google.com/site/
assistmentsdata/home/

• DKVMN(Zhang et al., 2017) is a memory aug-
mented neural network model. The original im-
plementation does not utilize KCs(Zhang et al.,
2017; Ai et al., 2019)

• DeepIRT(Yeung, 2019): Similar to DKVMN but
it incorporate item response theory (IRT)(Rasch,
1993) into the model to improve explainability. It
also does not utilize KCs.

• QIKT(Chen et al., 2023): The model extracts
knowledge from both questions and KCs before
using IRT to output predictions to improve inter-
pretability.
All models were trained with the ADAM opti-

mizer (Kingma and Ba, 2015) with learning rate 10−3.
DKT based models were trained with a batch size of
128 while all others were trained with a batch size of
24. For each dataset, we perform 5-fold cross vali-
dation on 80% of the students. We hold 20% of the
students as a test set. The metric used to assess perfor-
mance is the area under the receiver operating charac-
teristics curve (AUC)

All models were tested at the end of each fold on
the same leave-out test set. Moreover, all models were
tested at the question-level. For models that use an
expanded sequence, the prediction for each question
is calculated as the mean of the model’s outputs across
all the KCs that constitute the question.

DKT and AKT are tested with the ”all-in-one”
method. However, they are chosen based on a ”one-
by-one” evaluation on the validation set during train-
ing which is what all implementations do according
to our knowledge. This is because performing ”all-
in-one” evaluation is expensive to compute and using
it for validation is not practical. This creates a diver-
gence between validation and testing that can result in
choosing the wrong model as explained in section 4.1.

On the other hand, all introduced model variants
in section 5 do not need an ”all-in-one” evaluation.
They use the same method for both validation and
testing, which is to use the output of the basic ”one-
by-one” evaluation but aggregating the results per
question by finding the mean of the constituting KCs.

6.2 Results and Discussion

In order to shed light on the problem of label leak-
age during training (section 4.2), we compared the
original implementations of AKT and DKT to the
model variants introduced in section 5 using the AS-
SISTments2009 and CorrAS09 datasets. CorrAS09
is identical to ASSISTments2009, but with duplicate
KCs. Table 2 shows that both AKT and DKT expe-
rience a significant decrease in performance on Cor-
rAS09, unlike all the introduced model variants.

CSEDU 2025 - 17th International Conference on Computer Supported Education

92

Table 1: Dataset attributes after preprocessing. ques., KCs, studs., KCs/ques. stands for the number of questions, number
of KCs, and average KCs per question respectively. KC-grps. stands for the number of unique KC groups assigned to each
question.

dataset ques. KCs studs. KC-grps. KCs/ques.

Algebra2005 173650 112 574 263 1.353
ASSISTments2009 17751 123 4163 149 1.196
CorrAS09 17751 246 4163 149 2.393
Duolingo2018 694675 2521 2638 7883 2.702
Riiid2020 13522 188 3822 1519 2.291

Table 2: AUC performance results across different model types. The marker † denotes models performing very close to the
best-performing model, indicating a near tie. The marker * indicates not all folds have been tested (one fold is train 64%,
validation 16%, test 20%). The marker ** indicates impractical test on a dataset with a high number of questions for models
that have question embeddings, they can be ignored.

ASSISTments09 CorrAS09 Algebra05 Riiid20 Duolingo2018

DKT 0.6990±0.0007 0.6312±0.0014 0.8070±0.0004 0.5961±0.0003 0.6518±0.0013
DKT-ML 0.7185±0.0003 0.7163±0.0006 0.8178±0.0003 0.6568±0.0004 0.8681±0.0004
DKT-AD 0.7180±0.0005 0.7148±0.0002 0.8161±0.0003 0.6554±0.0003 0.8679±0.0003
DKT-Fuse 0.7066±0.0005 0.7074±0.0008 0.8175±0.0003 0.6491±0.0003 0.8786±0.0001
AKT 0.7334±0.0017 0.6361±0.0020 0.7591±0.0045 0.6136±0.0015 0.7017±0.0183
AKT-ML 0.7543±0.0010 0.7552±0.0010 0.8282±0.0011† 0.7411±0.0007 0.8807±0.0013
AKT-QM 0.7193±0.0134 0.7368±0.0011 0.7919±0.0072* 0.7289±0.0034 0.8052*

QIKT 0.7472±0.0008 0.7484±0.0007 0.8290±0.0007 0.7306±0.0005 −**

DeepIRT 0.7215±0.0010 0.7215±0.0010 0.7779±0.0003 0.7312±0.0002 0.5294±0.0002**

DKVMN 0.7215±0.0011 0.7215±0.0011 0.7768±0.0003 0.7327±0.0003 0.5296±0.0001**

Furthermore, the introduced models greatly
outperform their original counterparts on the
Duolingo2018 and Riiid2020 datasets as seen in
Table 2. Both of these datasets have high average
number of KCs per question. Moreover, Riiid2020
has the highest count of unique KC groups rela-
tive to its question count. This suggest a strong
negative effect of label leakage, which becomes
more pronounced with an increase in the number of
KCs per question. The introduced models are also
outperforming their original counterpart on datasets
with few KCs per question. However, the label
leakage effect is not as significant.

Finally, models trained with a mask label, MASK,
exhibit competitive performance. Specifically, AKT-
ML is winning in nearly all benchmarks, even sur-
passing models that do not expand knowledge con-
cepts (KCs).

All benchmark results were tested with a window
size of 150 questions, which is a fixed window size
unless the sequence does not contain 150 questions.
If the model requires an expanded KC-student se-
quence, the 150 questions are further processed into
an expanded sequence of KC-student interactions,
thus avoiding inconsistent sequence lengths between
models that expand the original sequences into KCs
and models that do not (KDVMN, QIKT, DeepIRT).
Note that the 150 questions can be expanded to

around 400 in a dataset like Duolingo2018. If we
do not enforce this, we can falsely increase perfor-
mance results. For example, DKT has a mean AUC of
0.6622 over a fixed expanded sequence length of 150
KCs instead of 150 question on the Duolingo2018
dataset, which is an improvement over the reported
value of 0.6518 in Table 2. Similarly, it has a mean
AUC of 0.815 for the Algebra2005 dataset, which is
higher than the reported value of 0.8070.

Lastly, as we mentioned in section 4, the ex-
pensive to compute ”all-in-one” method that mim-
ics a true production environment for these mod-
els diverges from the validation loss used to choose
these models during training (”one-by-one” method).
These validation results are misleading due to the la-
bel leakage problem. For example, the AUC vali-
dation results during training on the CorrAS09 are
extremely higher than the ASSISTments2009 dataset
despite having the same question data, see Figure 6.

To encourage reproducibility, the results of this
work can be reproduced using our open-source tool,
available at https://github.com/badranx/KTbench.

7 CONCLUSIONS

In this work, we identified a ground-truth label leak-
age problem in KT models that are trained on the ex-

Addressing Label Leakage in Knowledge Tracing Models

93

0 5 10 15 20 25 30 35
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

Algebra2005
DKT
DKT-ML

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

CorrAS09

DKT
DKT-ML

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epochs

ASSISTments2009
DKT
DKT-ML

Figure 6: Validation loss on the CorrAS09, Algebra2005, and ASSISTments2009 datasets. The ”one-by-one” method is
used for the original DKT model and DKT-ML, our variant of DKT with added mask label. DKT has inflated results as it
simply learned to leak labels. This becomes more pronounced for datasets with higher KCs per question (Algebra2005 and
CorrAS09). DKT-ML demonstrates similar performance on CorrAS09 and ASSISTments2009.

panded KC-student interaction sequence. Given the
importance of these models, we introduced a number
of methods to avoid the label leakage problem. Our
model variants that use these methods outperformed
their original counterparts, and some showed compet-
itive performance in general.

The importance of this work is to shed light on the
problem of label leakage and to influence future KT
model architectures to avoid certain design choices
that can lead to this problem, especially when dealing
with data that has a relatively high average number of
KCs per item.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers
for their valuable comments and constructive feed-
back. This work was funded by the federal state of
Baden-Württemberg as part of the Doctoral Certifi-
cate Programme ”Wissensmedien” (grant number
BW6 10).

REFERENCES

Abdelrahman, G., Wang, Q., and Nunes, B. (2023). Knowl-
edge tracing: A survey. ACM Comput. Surv., 55(11).

Ai, F., Chen, Y., Guo, Y., Zhao, Y., Wang, Z., Fu, G.,
and Wang, G. (2019). Concept-aware deep knowl-
edge tracing and exercise recommendation in an on-
line learning system. In Proceedings of the 12th In-
ternational Conference on Educational Data Mining,
pages 240–245, Montréal, Canada. International Edu-
cational Data Mining Society (IEDMS).

Chen, J., Liu, Z., Huang, S., Liu, Q., and Luo, W. (2023).
Improving interpretability of deep sequential knowl-

edge tracing models with question-centric cognitive
representations. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(12):14196–14204.

Choi, Y., Lee, Y., Shin, D., Cho, J., Park, S., Lee, S., Baek,
J., Bae, C., Kim, B., and Heo, J. (2020). Ednet: A
large-scale hierarchical dataset in education. In Inter-
national Conference on Artificial Intelligence in Edu-
cation, pages 69–73, Morocco. Springer.

Corbett, A. T. and Anderson, J. R. (1994). Knowledge trac-
ing: Modeling the acquisition of procedural knowl-
edge. User modeling and user-adapted interaction,
4:253–278.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transformers
for language understanding. In Burstein, J., Doran,
C., and Solorio, T., editors, Proceedings of the 2019
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), pages 4171–4186. Association for Computa-
tional Linguistics.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
(2015). Made: Masked autoencoder for distribution
estimation. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 881–
889, Lille, France. PMLR.

Gervet, T., Koedinger, K., Schneider, J., Mitchell, T., et al.
(2020). When is deep learning the best approach to
knowledge tracing? Journal of Educational Data
Mining, 12(3):31–54.

Ghosh, A., Heffernan, N., and Lan, A. S. (2020). Context-
aware attentive knowledge tracing. In Proceedings
of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20,
page 2330–2339, New York, NY, USA. Association
for Computing Machinery.

Harris, C. R., Millman, K. J., van der Walt, S., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor,
J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., van Kerkwijk, M. H., Brett, M., Haldane, A., del

CSEDU 2025 - 17th International Conference on Computer Supported Education

94

Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-Marchant,
P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E. (2020). Array pro-
gramming with numpy. Nat., 585:357–362.

Khajah, M. M., Lindsey, R. V., and Mozer, M. C.
(2016). How deep is knowledge tracing? ArXiv,
abs/1604.02416.

Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Confer-
ence on Learning Representations, San Diega, CA,
USA.

Lee, J. and Yeung, D.-Y. (2019). Knowledge query network
for knowledge tracing: How knowledge interacts with
skills. In Proceedings of the 9th International Con-
ference on Learning Analytics & Knowledge, LAK19,
page 491–500, New York, NY, USA. Association for
Computing Machinery.

Liu, Z., Liu, Q., Chen, J., Huang, S., Tang, J., and Luo,
W. (2022). pykt: A python library to benchmark
deep learning based knowledge tracing models. In
Advances in Neural Information Processing Systems,
volume 35, pages 18542–18555. Curran Associates,
Inc.

Mao, Y. (2018). Deep learning vs. bayesian knowledge trac-
ing: Student models for interventions. Journal of ed-
ucational data mining, 10(2).

Nagatani, K., Zhang, Q., Sato, M., Chen, Y., Chen, F.,
and Ohkuma, T. (2019). Augmenting knowledge trac-
ing by considering forgetting behavior. In Liu, L.,
White, R. W., Mantrach, A., Silvestri, F., McAuley,
J. J., Baeza-Yates, R., and Zia, L., editors, The World
Wide Web Conference, WWW 2019, San Francisco,
CA, USA, May 13-17, 2019, pages 3101–3107. ACM.

Oya, T. and Morishima, S. (2021). Lstm-sakt: Lstm-
encoded sakt-like transformer for knowledge tracing.

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L. J., and Sohl-Dickstein, J. (2015). Deep
knowledge tracing. Advances in neural information
processing systems, 28.

Rasch, G. (1993). Probabilistic models for some intelli-
gence and attainment tests. ERIC.

Settles, B., Brust, C., Gustafson, E., Hagiwara, M., and
Madnani, N. (2018). Second language acquisition
modeling. In Proceedings of the thirteenth workshop
on innovative use of NLP for building educational ap-
plications, pages 56–65, New Orleans, LA, USA. As-
sociation for Computational Linguistics.

Stamper, J., Niculescu-Mizil, A., Ritter, S., Gordon, G.,
and Koedinger, K. (2010). [data set name]. [chal-
lenge/development] data set from kdd cup 2010 edu-
cational data mining challenge. Retrieved from http://
pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Wu, L., Chen, X., Liu, F., Xie, J., Xia, C., Tan, Z., Tian, M.,
Li, J., Zhang, K., Lian, D., et al. (2025). Edustudio:

towards a unified library for student cognitive model-
ing. Frontiers of Computer Science, 19(8):198342.

Yeung, C. (2019). Deep-irt: Make deep learning based
knowledge tracing explainable using item response
theory. In Proceedings of the 12th International
Conference on Educational Data Mining, Montréal,
Canada. International Educational Data Mining Soci-
ety (IEDMS).

Yeung, C. and Yeung, D. (2018). Addressing two problems
in deep knowledge tracing via prediction-consistent
regularization. In Proceedings of the Fifth Annual
ACM Conference on Learning at Scale, pages 5:1–
5:10, London, UK. ACM.

Zhang, J., Shi, X., King, I., and Yeung, D. (2017). Dynamic
key-value memory networks for knowledge tracing.
In Proceedings of the 26th International Conference
on World Wide Web, pages 765–774, Perth, Australia.
ACM.

Addressing Label Leakage in Knowledge Tracing Models

95

