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Abstract: This study introduces a new approach to determine whether GitHub repositories are professional or exploratory
by analyzing README.md files. We crawled and manually labeled a dataset that contains over 200 reposito-
ries to evaluate various classification methods. We compared state-of-the-art Large Language Models (LLM)
against traditional Natural Language Processing (NLP) techniques, including term frequency similarity and
word embedding-based nearest-neighbors, using RoBERTa. The results demonstrate the advantages of LLMs
on the given classification task. When applying a zero-shot classification without multi-step reasoning, GPT-
4o had the overall highest accuracy. The implementation of a few-shot learning showed a mixed result in
different models. Llama 3 (70b) achieved 89.5% accuracy when using multi-step reasoning, though such
improvements were not consistent across all models. Also, our experiments with word probability threshold
filtering showed mixed results. Our findings highlight important considerations regarding the balance between
accuracy, processing speed, and operational costs. For time-critical applications, we found that direct prompts
without multi-step reasoning provide the most efficient approach, while the model size made a smaller contri-
bution. Overall, README.md content proved sufficient for accurate classification in approximately 70% of
cases.

1 INTRODUCTION

Determining the nature and maturity of software
projects is an important task for a variety of reasons.
Relying on software that is not maintained profession-
ally can cause security vulnerabilities, bugs, and other
problems. Even the extraction of knowledge from
software repositories, like learning from source code,
integration, or the decisions made, can depend on the
quality of the repository. In a current research project,
we investigate these possibilities for extracting tech-
nology decisions using ML. It is particularly impor-
tant that the database is reliable when it comes to the
automated generation of recommendations for use or
the decision to migrate between technologies. This is
why we present an automated classification attempt
to determine whether a software repository is profes-
sionally maintained or if it is for exploration purposes
by using the README.md files. These markdown
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files are often available and presented in repositories
on hosting platforms, like GitHub and are typically
used to describe the project, its purpose, and how to
use it. In doing so, in this paper the following novel
research question is addressed:

Can we determine whether a software
repository is professionally maintained or
if it is for exploration purposes using the
README.md files?
Furthermore, in addition to the presentation of a

new annotated dataset and an evaluation to clarify
the research question, the work includes a discussion
of the methodologies and results, considering factors
such as classification time and costs. The structure
of this paper is as follows: Section 2 covers related
work, followed by the definition of professional and
exploratory projects in Section 3 and details about
the dataset created in Section 4. The methodology
for classification is addressed in Section 5. Section 6
presents the results, while Section 7 provides a discus-
sion of these findings and key observations, followed
by Section 8, which shows limitations. Finally, Sec-
tion 9 concludes the paper and Section 10 gives an
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overview for future work.

2 RELATED WORK

Researchers have investigated various approaches to
classify software repositories, drawing insights from
documentation like README.md files and other
metadata sources. Though existing literature has not
specifically labeled repositories as ”professional” or
”exploratory,” scholars have examined README.md
content to establish different classification schemes.

Prana et al. (Prana et al., 2019) examined
README.md files from 393 GitHub projects by
manually annotating Sections in documents. They
built a classification system to identify common con-
tent types, including ”What” and ”How” categories.
Their system reaches an F1-score of 0.75, confirm-
ing README.md files as rich sources of repository
insights. The team’s findings revealed a crucial gap:
many files lacked sufficient information about project
purpose and status, pointing toward possibilities for
more sophisticated classification methods.

Petrovic et al. (Petrovic et al., 2016) tackled the
challenge of finding similar GitHub projects by com-
bining textual descriptions with user engagement met-
rics, including forks and stars. Their solution fea-
tured an Artificial Neural Network (ANN) with an
auto-encoder to reduce dimensions, with similarity
assessments based on euclidean distance calculations.
Despite not addressing the classification into profes-
sional and exploratory project, their work reinforces
the value of README documentation in repository
classification efforts.

Xu et al. (Xu et al., 2017) developed REPERSP,
a recommendation system for discovering software
projects. Using TF-IDF and cosine similarity on both
documentation and source code, they incorporated
user behavior (e.g., forks and stars) for a more com-
prehensive similarity measure. While aimed at rec-
ommendations, this approach could extend to distin-
guishing repository types.

Zhang et al. (Zhang et al., 2017) created Re-
poPal to detect similar GitHub repositories by analyz-
ing README.md files and user-interaction data, em-
ploying TF-IDF vectors and cosine similarity. Their
methodology, which focused on project similarity,
could potentially classify repositories by maintenance
level.

Capiluppi et al. (Capiluppi et al., 2020) used a
graph-based model to analyze semantic relationships
in Java projects by examining the README.md and
pom.xml files. Their work illustrates that detailed
documentation analysis reveals key repository char-

acteristics, relevant for professional-exploratory clas-
sification.

Rao and Chimalakonda (Rao and Chimalakonda,
2022) explored artifact similarity in Java projects,
transforming text (e.g., pull requests, issues, commit
messages, README.md) into vectors with Sentence-
BERT and measuring similarity through cosine simi-
larity. Though their focus was finding similar repos-
itories, their results highlight README.md files as
critical for various classification tasks.

3 PROFESSIONAL OR
EXPLORATORY PROJECTS

First it is necessary to define what exactly is meant
by professional and exploratory projects in context
of this work. Since there is no general definition
of these terms, we will provide a definition, which
was conducted inductively based on the crawled
README.md files. The following criteria are used to
determine whether the software in a repository is pro-
fessionally maintained or rather has a similar purpose
or if it rather has some kind of exploration purpose:

Professional Projects Contain...

1. Open-Source Projects: Software projects that
are publicly available and developed collabora-
tively by a community of contributors.

2. Internal Corporate Projects: Software projects
developed within an organization to support its in-
ternal operations, processes, and workflows.

3. Commercial/Revenue-Generating Projects:
Software projects that are developed and sold
as commercial products or services to generate
revenue for the organization.

4. Commissioned/Contract-Based Projects: Soft-
ware projects undertaken by a development team
or agency on behalf of a client, with a specific set
of requirements and a defined scope.

5. Enterprise-Grade Projects: Software projects
that are designed and developed to meet the strin-
gent requirements of large-scale, mission-critical
enterprise systems.

6. Production-Ready Components: Software
projects developed to provide reusable compo-
nents, modules, libraries, or widgets that can
be integrated into other software systems for
production-ready applications.
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Exploratory Projects Contain...

1. Tutorials/Examples: Software projects that are
primarily created for educational or demonstra-
tion purposes to teach specific programming con-
cepts, techniques, or best practices. These
projects are often small in scope, focused on a par-
ticular feature or functionality, and intended to be
easily understood and replicated by learners.

2. Prototypes: Software projects that are built to
validate an idea, test the feasibility of a concept
or explore potential solutions to a problem. Pro-
totypes are typically not intended for production
use, but rather to gather feedback, identify tech-
nical challenges, and inform the development of a
more polished, production-ready application.

3. Proofs of Concept (PoC): Similar to prototypes,
PoCs are developed to demonstrate the viability of
a particular approach, technology, or solution to a
problem. These projects are often small in scale
and focused on validating a specific hypothesis or
claim rather than building a complete, production-
ready application.

4. School/Training Projects: Software projects cre-
ated as part of educational programs, such as
university courses, coding bootcamps, or internal
training initiatives. These projects focus primar-
ily on the learning process, allowing students to
apply their knowledge and develop practical pro-
gramming skills.

5. Research Projects: Software projects that are
part of research efforts, focused on showcas-
ing novel technologies, algorithms, or techniques
without emphasizing long-term aspects such as
software architecture or intending to make the
system productive.

6. Technology Exploration/Testing: Software
projects developed to experiment with new
technologies, languages, frameworks, or tools,
without a specific production-oriented goal in
mind. These projects are often small-scale,
exploratory in nature and may not have a clear
end-user or business value.

7. Experimental/R&D Projects: Software projects
that are part of research and development efforts,
focused on advancing the state-of-the-art in a par-
ticular domain or exploring innovative solutions
to complex problems. These projects may not
have immediate commercial or practical applica-
tions but are driven by a desire to push the bound-
aries of what is possible with technology.

8. Hobby/Personal Projects: Software projects de-
veloped by individuals for their own personal in-

terest, enjoyment, or learning, without a focus
on commercial or enterprise-level requirements.
These projects are often driven by the creator’s
passion, curiosity, or desire to explore a particu-
lar domain or technology.

4 DATASET

To apply different techniques for classification, we
needed a dataset. Since we did not find related work
or data, which we can use, we crawled, annotated and
analyzed README.md files from software project
repositories on GitHub. In the following we describe
the data collection and annotation process, as well as
giving some insights into this new dataset, which is
publicly available at:

https://github.com/CCWI/sw-repo-
classification-study
In addition to the data, the linked repository pro-

vides the classification source code, including the
prompts and instructed output structure for each ex-
periment.

4.1 Data Collection

Since no existing dataset classifies software repos-
itories in a comparable way, we curated and an-
notated our own. Using the GitHub API, we ex-
tracted README.md files from various repositories,
focusing solely on this common format and exclud-
ing less prevalent formats like README.rst, which
are beyond our study’s scope. The final dataset
comprises 200 randomly selected repositories from
GitHub, each containing at least one README.md
file.

In general, repositories are very heterogeneous in
terms of structure and content. They can contain a
wide variety of files. One of the most important files
in a repository is the README.md file, which typi-
cally provides an overview of the project, its purpose,
how to use it, and other relevant information. It is
often present in the root directory of the repository
and is displayed automatically on repository’s host-
ing platforms, like GitHub and GitLab pages. The
README.md file is written in markdown format. In
some cases, multiple README files may be present
in different directories of the repository to provide in-
formation about standalone or additional software, as
well as software components, which are typically in-
cluded in the main software as submodules.

Another aspect to consider is time. README
files can be changed and updated several times dur-
ing the development of a project. This can result in
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a README file of a project that is in an early stage
of development containing less detailed information
than the README file of a project that is in an ad-
vanced stage of development. To take these differ-
ences into account, we also crawled all available ver-
sions of a README file and removed duplicates.

By analyzing the crawled files to identify a com-
mon structure, we found that README.md files pro-
vide a comprehensive overview of a project, guiding
users from an understanding of the project’s nature
and purpose to an appreciation of how they can uti-
lize and contribute to it. Typically, some of the fol-
lowing categories of information, which were found
and summarized by Prana et al. (Prana et al., 2019)
and from our dataset, are provided:

1. What: A title and an introduction or overview of
the project, usually at the beginning. Often, at
least a title is available.

2. Why: Comparisons to other projects or advan-
tages of the current project. (Not common)

3. How: The most frequent category, including in-
structions on usage, configuration, installation,
dependencies, and troubleshooting.

4. When: Information about the status, versions,
and functionality of the project (complete or in
progress).

5. Who: Credits, acknowledgments, license infor-
mation, contact details, and code of conduct.

6. References: Links to additional documenta-
tion, support resources, translations, and related
projects.

7. Contribution: Instructions on how to contribute
to the project, including forking or cloning the
repository.

4.2 Annotation

After crawling, 200 repositories were randomly se-
lected for manual annotation. The annotation was car-
ried out by two people who read the README.md
files of the repositories and categorized the projects
as ‘professional’, ‘exploratory’ and ‘not assignable’
according to their assessment. The third label ’not
assignable’ was introduced because in some cases the
README files did not contain enough information to
make a clear classification. Prana et al. (Prana et al.,
2019) already mentioned that many README files
lack information regarding the purpose and status of
the project. We found that often README files do
not contain any information, in addition to a header
and a few words. When the header and the description

body are not clear enough to make a classification, the
project was labeled as ’not assignable’.

The annotations were then compared, and all dis-
crepancies were discussed in order to reach a full
agreement. The definition was further refined to bet-
ter separate the classes for cases that are difficult to
categorize. A total of 200 annotated repositories were
used as test data. A negligible amount of data was
used to create and optimize LLM prompts and to val-
idate the classical NLP techniques. Text in languages
other than English was translated using Google Trans-
late and DeepL.com to ensure that the annotators
could understand the content of the README files.

As a result, we created a test dataset with 74
exploratory, 65 professional, and 61 not assignable
repositories.

4.3 Data Insights

To get an idea about the annotated README texts,
we checked various features and patterns that distin-
guish professional software projects from exploratory
projects and collected meta-data on software reposi-
tories. We analyzed the subject areas (topics), given
languages and qualities of the repositories. In Figure
1 the text length of all texts and by each label is
provided. It is noticeable that exploratory labeled
text is smaller with a mean of 998 characters, while
READMEs of repositories with label professional
has a mean of 3374 characters. However, we have
noticed that there are repositories that are still in the
initial phase and only provide a small README text,
but the description indicates a professional back-
ground. For example, the following README.md
text is from a repository with currently 23 stars, 16
watches, 8 forks and around 800 commits, which is
versioned in a commit from 2016 in the Repository
https://github.com/CMSgov/bluebutton-data-server
(accessed on 27th September 2024):

”CMS Blue Button Server
The CMS Blue Button project provides Medi-
care beneficiaries with access to their health
care data and supports an ecosystem of third-
party applications that can leverage that data.
This project provides the FHIR server used as
part of Blue Button.”

By analyzing the languages used in the README
files, we found that the majority of the README
files are written in English. Besides that, we found
the README.md files to cover a wide range of
project types, including web applications, libraries
and frameworks, data analysis tools, DevOps and
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Figure 1: Distribution of text lengths in the README files.

deployment tools, microservices, IoT and hardware-
related projects. While Java is the most frequently
mentioned programming language, other languages
such as Python, JavaScript, and C# are included as
well.

5 METHODOLOGY

Classifying software components as exploratory or
professional requires understanding the context of the
README texts. Traditional machine learning meth-
ods need extensive training data for reliable models,
but advances in large language models (LLMs) now
enable effective text classification with minimal train-
ing data. Given their ability to handle extensive text
and contextual information, LLMs are promising for
this task.

The core approach transforms text into word em-
beddings, representing them as vectors in an n-
dimensional space for classification. Birunda and
Devi (Selva Birunda and Kanniga Devi, 2021) re-
viewed embedding methods, categorizing them as:
traditional, static, and contextualized. For our dataset,
we tested models from all categories, emphasizing
contextualized embeddings, including smaller pre-
trained models like BERT and RoBERTa, and modern
LLMs.

We explored optimization strategies for LLMs,
such as zero-shot, few-shot learning, multi-step rea-
soning, and word probability filtering. Techniques
like Retrieval Augmented Generation (RAG) (Gao
et al., 2024) and fine-tuning were not feasible due to
the limited size of the dataset. Similarly, ensemble
methods were excluded to maintain cost and time ef-
ficiency.

The following Section details the models and ap-
proaches we applied:

5.1 TF-IDF and Similarity Measures

At first, we tried a zero-shot text classification method
leveraging Term Frequency-Inverse Document Fre-
quency (TF-IDF) combined with a cosine similarity
which was also applied by related work, like Xu et
al. (Xu et al., 2017) or Zhang et al. (Zhang et al.,
2017). This method is categorized by Birunda and
Devi (Selva Birunda and Kanniga Devi, 2021) as ”tra-
ditional word embeddings”.

First we define categories using the definition of
each class from Section 3. Then we convert all input
texts into high-dimensional vectors that represent the
importance of words within the context of the corpus
using TF-IDF. Subsequently, we calculate the cosine
similarity between the vector representation of the in-
put text and those of the predefined category descrip-
tions. The category that yields the highest similarity
score to the input text is selected as the classification
outcome.

To improve the robustness of the classification
and prevent misclassifications due to low similarity
scores, we implemented a confidence-based rejection
mechanism. This mechanism allowed the classifier to
abstain from making uncertain predictions by label-
ing inputs with low similarity as ”not assignable.” For
this we find for each input x the class c with the high-
est cosine similarity score sim(x,c) among the classes
c∈C and apply the threshold t. The classification rule
can be described as:

ŷ(x)=

{
argmaxc∈C sim(x,c) if maxc∈C sim(x,c)≥ t
”not assignable” if maxc∈C sim(x,c)< t

Adjusting t, we control the confidence level of
the classifier. A higher threshold resulted in fewer
but more confident classifications, while a lower t in-
creased coverage but included less certain predictions.
Then we optimized the threshold against the applied
evaluation metrics.

5.2 Nearest-Neighbor Search

We further explored a classification approach using
word embeddings combined with a nearest-neighbor
algorithm from the category ”static word embed-
dings”. In this method, both the input texts and the
category descriptions are represented as vectors by
averaging the embeddings of their constituent words.
This approach captures the semantic information of
the texts and categories within a continuous vector
space.

The classification process involves the following
steps:
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1. Compute Embeddings: Calculate the embed-
ding for each class description and each input text
by averaging the word embeddings from a pre-
trained word embedding model.

2. Build Nearest-Neighbor Model: Use the embed-
dings of the class descriptions to create a nearest-
neighbor model based on cosine distance.

3. Classify Input Texts: For each input text, find the
nearest class by identifying the class description
whose embedding is closest to that of the input
text.

4. Assign Labels: Assign the input text to the near-
est class, except the probability lies under a dis-
tance threshold td , in which case a confidence-
based rejection mechanism, like in the approach
from 5.1.

Formally, the embeddings for each class descrip-
tion c ∈ C are calculated and then a nearest-neighbor
model with cosine distance is used to find the closest
class for each input text x. While dist(x,c) is the co-
sine distance between embeddings, the classification
rule was implemented in the following way:

ŷ(x) =

{
argminc∈C dist(x,c), if dist(x,c)≤ td ,
”not assignable”, if dist(x,c)> td .

We optimize td against accuracy and F1-score to
maximize performance metrics.

5.3 Transformer-Based Language
Model

In some cases, the README file may contain infor-
mation relevant to the classification task, but it can
be buried in a large amount of text or is not clearly
labeled. This can make it challenging to extract the
relevant information and use it for classification. This
is a task where transformer models with an attention
mechanism (Vaswani et al., 2017) can be particularly
useful, as they are context aware. This is why the
review (Selva Birunda and Kanniga Devi, 2021) cate-
gorize them as ”contextualized word embeddings”.

For this study we chose a large RoBERTa model
from FacebookAI (Liu et al., 2019), which is a fine-
tuned version of BERT for the zero-shot classification
task.

5.4 Large Language Models (LLM)

Current LLMs are typically transformer-based lan-
guage models, like BERT or RoBERTa, but are
trained on a larger amount of data and come with
more parameters. This is why the benefits described

in Section 5.3, such as context awareness, also ap-
ply to LLMs. LLMs can better understand both the
classification task context and the input text context,
extracting relevant information even when it is im-
plicit or hidden in large text. With their larger input
(context) size, they support advanced techniques like
reasoning, leading to improved performance on zero-
shot classification tasks.

In this study, we used several LLMs to classify the
software repositories and some advanced techniques
to optimize the results. In the following, the selected
models and the applied techniques are described.

5.4.1 Selected Models

We chose comparable models from different
providers, including OpenAI, Anthropic, Google, and
Meta. We selected the most popular and largest mod-
els, as well as smaller versions of these models for
comparison. The selected models are the following.

1. OpenAI

• Large: GPT-4 (Version: 08-06)
• Small: GPT-4-Mini (Version: 07-18)

2. Anthropic

• Large: Claude 3.5 Sonnet (Version: 06-20)
• Small: Claude 3 Haiku (Version: 03-07)

3. Google

• Large: Gemini 1.5 Pro (Version: 001)
• Small: Gemini 1.5 Flash (Version: 001)

4. Meta

• Large: Llama 3.1 (405B parameters)
• Medium: Llama 3 (70B parameters)
• Small: Llama 3 (8B parameters)

Similar prompts and configurations were used for
all models, including a temperature setting of 0.0, to
ensure the most consistent results possible.

5.4.2 Multi-Step Reasoning with Structured
JSON Output

Various prompting techniques have shown that LLMs
can perform complex reasoning tasks without task-
specific few-shot examples. Kojima et al. (Kojima
et al., 2022) introduced zero-shot Chain of Thought
(Zero-shot-CoT), a method that elicits step-by-step
reasoning from LLMs using a simple prompt like
adding ”Let’s think step by step”. Building upon this
concept, we apply a modified approach that combines
multi-step reasoning with structured JSON output.
This method incorporates reasoning elements directly
into the JSON structure. For the multi-step-reasoning,
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we instruct the LLM to discuss, pre-classify the text
for each subclass, verify the chosen subclasses and
summarize the reasoning by comparing all arguments,
before a final classification should be performed. We
also request to classify each class separately first
and then combined, to get insights into each class
probability. The approach using multi-step reason-
ing should ensure that the model has gone through
a comprehensive reasoning process before arriving at
its conclusion. By explicitly prompting the model for
intermediate steps and explanations, we encourage it
to engage in more detailed and transparent reasoning.

We apply the procedure to all selected LLMs to
test whether possible improvements in the results of
the respective models. For multi-step reasoning, we
tested different output instructions with the various
LLMs.

5.4.3 Word Probability Filtering

Similar to the confidence-based rejection mechanism,
we implemented in TF-IDF and cosine similarity ap-
proach as well as the nearest-neighbor search, we are
able to perform a probability-based relabeling if the
LLM / API provides the probabilities of the genera-
tion tokens.

In case of OpenAI, the API provides such loga-
rithmic probabilities, which we used to optimize a
threshold against accuracy and F1-score. In this study
we compared the results for all models which support
this and discuss them in the following.

6 RESULTS

This Section presents the classification results, com-
paring all approaches using various performance met-
rics, including accuracy, precision, recall, F1-score,
and MCC. Table 1 details the outcomes of the zero-
shot classification approach, categorized by different
methodologies such as multi-step reasoning and word
probability filtering. The best model and achieved
metric of each category is marked bold. Additionally,
the best result overall is underlined.

After evaluating the zero-shot approaches, the
tests were repeated using the few-shot approach. Ta-
ble 2 highlights the models that showed improve-
ment in any performance metric. As before, the best-
performing model and its corresponding metric are
emphasized in bold.

7 DISCUSSION

The results show that most LLMs outperform the
Non-LLM approaches in terms of accuracy, preci-
sion, recall, F1-score and MCC. Only the smallest
Llama 3 (8b) model performed worse than a TF-
IDF with cosine similarity in every test case. In-
terestingly, the large models Llama 3.1 (405b) and
Gemini 1.5 Pro also did worse than the classical ap-
proach when multi-step reasoning is used. The over-
all best zero-shot results were achieved using cur-
rent OpenAI’s large model GPT4o, applying a di-
rect prompt without any reasoning before classifica-
tion. Among the smaller models, which are reason-
ably cheaper and faster in inference, Google’s Gem-
ini 1.5 Flash achieved the best results using direct
prompts to perform a zero-shot classification. We
used a few-shot approach, giving the LLMs several
examples for each class as context before they made
classifications. The results were mixed. Since the ex-
tension of a prompt introducing examples increases
the costs and inference-time, we are only focusing on
the LLMs, which improved from this approach. Com-
pared to zero-shot results, we were able to increase
the performance of Llama 3 (70b)r including multi-
step reasoning to a point that it outperformed all zero-
shot approaches and achieved the overall best result
for our classification task with an accuracy of 89.5%.
Also, Claude 3.5 Sonnetr improved by 4.5% to 88%
accuracy. Both results were achieved by using multi-
step reasoning.

The application of multi-level reasoning to im-
prove the classification performance of LLMs overall
led to inconsistent results. While certain models, in-
cluding GPT4o-Mini, Claude 3.5 Sonnet and Llama
3 (70b), performed better with this approach, others
showed a drop in performance. Figure 2 illustrates
these different effects.

Figure 2: Changes in model performance by replacing a
direct prompt with multi-step reasoning prompt.

On closer examination of the results, it is also no-
ticeable that in our tests the use of multi-step reason-
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Table 1: Comparison of zero-shot approaches, including multi-step reasoning and word probability filtering results.

API-Provider Approach / Model Accuracy F1-score Precision Recall MCC
Non-LLM Approaches

Self-hosted
TF-IDF & Similarity 0.615 0.623 0.629 0.621 0.423
Word2Vec & NN 0.590 0.539 0.647 0.616 0.467
RoBERTa large 0.390 0.312 0.268 0.376 0.0681

LLMs (Direct Prompt)

OpenAI GPT4od 0.890 0.890 0.893 0.889 0.835
GPT4o-Minid 0.825 0.825 0.851 0.821 0.743

Google Gemini 1.5 Prod 0.820 0.816 0.845 0.813 0.736
Gemini 1.5 Flashd 0.860 0.859 0.861 0.861 0.792

Anthropic Claude 3.5 Sonnetd 0.765 0.741 0.820 0.753 0.667
Claude 3 Haikud 0.685 0.691 0.698 0.688 0.526

Self-hosted
Llama 3 (405b)d 0.810 0.794 0.849 0.799 0.730
Llama 3 (70b)d 0.705 0.626 0.795 0.683 0.596
Llama 3 (8b)d 0.575 0.564 0.643 0.564 0.374

LLMs (Multi-Step Reasoning Prompt)

OpenAI GPT4or 0.860 0.860 0.876 0.863 0.798
GPT4o-Minir 0.830 0.830 0.831 0.830 0.745

Google Gemini 1.5 Pror 0.510 0.495 0.678 0.526 0.355
Gemini 1.5 Flashr 0.700 0.697 0.711 0.696 0.552

Anthropic Claude 3.5 Sonnetr 0.835 0.830 0.860 0.826 0.760
Claude 3 Haikur 0.675 0.667 0.707 0.690 0.540

Self-hosted
Llama 3 (405b)r 0.485 0.475 0.639 0.499 0.304
Llama 3 (70b)r 0.845 0.836 0.858 0.838 0.774
Llama 3 (8b)r 0.525 0.496 0.614 0.506 0.297

LLMs (Word Probability Filtering)
OpenAI GPT4o-MinisProba 0.862 0.862 0.861 0.860 0.790

Table 2: Comparison of the few-shot approach, which improved the LLM results.

API-Provider Approach / Model Accuracy F1-score Precision Recall MCC

Anthropic Claude 3.5 Sonnetr 0.880 0.880 0.892 0.876 0.822
Claude 3 Haikud 0.700 0.708 0.714 0.704 0.548

Self-hosted

Llama 3 (70b)d 0.875 0.873 0.893 0.870 0.817
Llama 3 (70b)r 0.895 0.893 0.896 0.893 0.843
Llama 3 (8b)d 0.595 0.559 0.745 0.600 0.459
Llama 3 (8b)r 0.570 0.568 0.677 0.581 0.411

ing often led to LLMs categorizing fewer texts and
instead rating them as ”not assignable”. As an exam-
ple, we refer to a comparison of confusion matrices
from the direct prompt and the multi-step reasoning
prompt of GPT4o, Gemini 1.5 Pro and Claude 3.5
Sonnet in Figures 6, 7, 8. The results appear to be
classified more cautiously or weighed up more care-
fully if the decision is discussed in detail beforehand
and arguments for and against the respective class
are explained. We observed that cases which aren’t
clearly defined often aren’t assigned to either class,
even though the instructions specify making a classi-
fication if there are any indications.

In summary, we are unable to say that models gen-
erally perform better in this particular use case classi-
fying Repositories by README.md files using multi-
step reasoning. However, especially in the case of
the performance gains observed with Llama 3 (70b),

it should be noted that the open-weights model per-
forms comparatively well against the large LLM mod-
els from Google, OpenAI and Anthropic.

Finally, we tested whether the results of the mod-
els could be improved by extracting the token proba-
bility for the respective label and changing it to ‘Not
assignable’ if it fell below a certain threshold. Al-
though in the case of GPT4o it did not provide any ad-
vantages and GPT4o-Minir could hardly benefit from
it, the simple approach GPT4o-Minis shows signifi-
cantly better results. The chart in Figure 3 visualizes
how the accuracy of a model changes with different
probability thresholds. The best accuracy of 86.2%
was determined at a threshold of 91%. All classifi-
cations below this probability were re-labeled as ’not
assignable’, leading to improved results.

Since costs and speed are also an important factor
for use on potentially millions of software reposito-
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Figure 3: Threshold-Accuracy Curve for GPT4o-Minis.

ries from GitHub and other hosting platforms, in ad-
dition to the measured metrics, we analyzed them as
well. Since we did not ensure to have the best possi-
ble, comparable hardware or test settings, we would
like to point out fundamental differences and empha-
size their magnitude instead.

Figure 4 shows the differences between the most
promising approaches by visualizing the average
query time per README in seconds compared to the
other LLMs. The measurements show that the direct
query with the smallest input prompt and the small-
est output is the fastest across all model sizes con-
sidered, while querying with reasoning during the in-
ference led to significantly higher query times. The
measurements also show that smaller LLM sizes re-
sult in faster queries, although the speed increase is
much smaller compared to the requested output size.

Figure 4: Mean duration of inference to classify the test data
by each LLM in seconds.

While the request times favor the choice of a di-
rect prompt without reasoning, making LLMs such as
GPT4od a good choice due to their good accuracy, the
costs must also be considered as a further decision di-
mension. While we cannot determine the costs for a
self-hosted LLM, such as Llama 3 or 3.1, we were at
least able to use the current API costs of the providers
of the other models for calculation. Figure 5 com-

pares the average costs of the approaches and models
for classifying the test dataset in $.

Figure 5: Mean prices of each inference to classify the test
data by each LLM in $.

The plot shows that the costs of the models de-
pend primarily on the size of the model. Reason-
ing, which leads to more input and output tokens,
increases the cost of a query as well, but less when
for example comparing the costs of GPT4o-Minid and
GPT4o-Minir.

In conclusion, it can be stated that a classifica-
tion of software repositories is possible based on the
README files, for around 70% providing enough
information to label them as exploratory or profes-
sional, with LLMs delivering the best results. This
is a sufficient start but should be increased in further
work with additional features such as stars, watches,
number of contributors, number of commits or other
aspects such as licensing, if available, so that more
projects can be clearly classified.

8 THREATS AND LIMITATIONS

The fast-growing number and rapid updates of LLM
in combination with the various optimization ap-
proaches makes evaluation difficult. It is often only
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possible to make use case and dataset-specific state-
ments at a specific point in time instead of deriving
generally applicable rules. We were unable to per-
form any model-specific prompt optimizations within
the scope of the study due to the time and effort in-
volved, which might have improved individual model
results, such as the large Llama 3.2, which performed
comparatively poorly considering its size.

It cannot be ruled out that in difficult cases the an-
notation of the README files was labeled incorrectly
by both annotators. However, the annotations were
discussed to reach an agreement. A larger number of
annotators might reduce the possible error rate. Also
consulting the authors of the repositories could lead to
more accurate results but is time consuming and not
feasible for a larger number of repositories.

Another problem could be the number of anno-
tated repositories, which is relatively low. This could
affect the validity of the results. A larger number of
annotated repositories could lead to more accurate re-
sults. The selection of repositories for annotation was
random, which could affect the representativeness of
the results. A targeted selection of repositories that
are representative of the different, domain-specific or
technical categories or certain metadata, such as the
number of stars or forks, could lead to more accurate
results.

The clear separation of software repositories into
the categories ‘professional’ and ‘exploratory’ is not
always unambiguous. In some cases, it can be diffi-
cult to clearly categorize repositories. For example,
there are professionally maintained tutorial reposito-
ries that can be classified as professional in certain
contexts. In the context of our motivation behind the
approach of this study to derive design decisions from
these repositories, such cases fall into the exploratory
category. Our intention is primarily to separate such
tutorials from possibly productively used software to
consider migrations between design elements, such as
technologies, separately from the repository origin.
Another example: If a repository of professionally
managed software contains components that are cat-
egorized as exploratory (a mix), the entire repository
is still categorized as professional, and decisions must
be filtered at a different level.

As this categorization may be use case specific,
this should be considered as a limitation of the work
for a general statement.

9 CONCLUSION

In a novel approach to categorize software reposi-
tories as exploratory or professional based on their

README.md texts, we have established a detailed
definition and annotated a new dataset of over 200
repositories from GitHub. Our evaluation of vari-
ous approaches reveals that LLMs generally outper-
form classical NLP approaches in classifying soft-
ware repositories based on README files. Ope-
nAI’s GPT4o model achieved the best zero-shot clas-
sification results without multi-step reasoning, while
Google’s Gemini 1.5 Flash showed strong perfor-
mance among the smaller, cost-efficient models. The
few-shot approach improved the accuracy of some
LLMs, notably Llama 3 (70b) and Claude 3.5 Son-
net, achieving the highest accuracy of 89.5% with
multi-step reasoning using Llama 3. Filtering based
on word probability thresholds showed mixed results,
with GPT4o-Mini benefiting from this method, equal
to Gemini 1.5 Flash. However, the tested approaches,
such as few-shot and multi-step reasoning, did not
consistently lead to better results, which is why the
methodology must be evaluated according to the use
case.

Time and cost considerations also highlighted that
smaller models and direct prompt-based queries led
to faster, more cost-effective classification, especially
when reasoning steps were omitted. Overall, the
study demonstrates that classification of README-
based repositories is feasible on around 70% of the
data, which was assignable.

10 FUTURE WORK

We showed that it is possible to classify a major part
of software repositories based on the README files,
but there are still challenges to overcome. One of the
main challenges is the lack of information in many
README files. To overcome this challenge, we plan
to explore other sources of information, such as the
number of stars, forks, watches, issues, commits, and
other things, like code comments, commit messages,
licensing and issue discussions. We also plan to in-
vestigate other approaches, such as fine-tuning the
Llama 3 model to optimize the classification results
even further. Another challenge is the lack of anno-
tated data. We therefore plan to extend the dataset by
adding more data and including more annotators to
reduce bias.

This study was conducted with the aim of au-
tomatically extracting design and architecture deci-
sions from existing software repositories and making
them available for a recommendation system or as a
database for an LLM. Further studies on the research
project are planned.
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APPENDIX

Figure 6: Changes in classification by OpenAI GPT4o with
direct and multi-reasoning step by comparison of normal-
ized CMs.

Figure 7: Changes in classification by Google Gemini 1.5
with direct and multi-reasoning step by comparison of nor-
malized CMs.

Figure 8: Changes in classification by Anthropic Claude 3.5
Sonnet with direct and multi-reasoning step by comparison
of normalized CMs.
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