
WFQ-Based SLA-Aware Edge Applications Provisioning

Pedro Henrique Sachete Garcia1 a, Arthur Francisco Lorenzon3 b, Marcelo Caggiani Luizelli1 c,
Paulo Silas Severo de Souza1 d and Fábio Diniz Rossi2 e

1Federal University of Pampa, Brazil
2Federal Institute Farroupilha, Brazil

3Federal University of Rio Grande do Sul, Brazil
fl

Keywords: Application Performance, Edge Provisioning, Resource Allocation.

Abstract: Provisioning delays can severely degrade the performance of real-time applications, especially in critical sec-
tors such as healthcare, smart cities, and autonomous vehicles, where fast and reliable responses are essential.
While managing data traffic effectively, existing flow scheduling techniques often fail to account for high-
level metrics like Service-Level Agreements, leading to suboptimal prioritization of critical applications. This
paper introduces a novel algorithm designed to optimize network bandwidth allocation for edge applications
by incorporating SLA-based metrics. Evaluations demonstrate that our proposal outperforms conventional
scheduling techniques. The results show that under varying infrastructure usage levels, our proposal consis-
tently reduces provisioning times and minimizes delay violations for edge applications.

1 INTRODUCTION

The provisioning of edge applications is currently fac-
ing a pressing challenge (Temp et al., 2023). The in-
creasing complexity and volume of connected devices
are demanding fast and efficient responses. Any de-
lay in this provisioning process can compromise the
performance of applications that rely on low latency
and high availability, which are essential characteris-
tics in edge computing environments (Temp. et al.,
2023). In scenarios with high demand for process-
ing and data transfer, even a slight delay in provi-
sioning can lead to service degradation, performance
drops, interruptions, or even system failures. These
outcomes are unacceptable in critical contexts such as
in industries and smart cities. The delay in provision-
ing can be caused by infrastructure overload, lack of
resource prioritization, or poor data flow management
(Souza. et al., 2022).

Flow scheduling techniques are one approach to
addressing this demand for prioritization in edge ap-

a https://orcid.org/0009-0005-7487-854X
b https://orcid.org/0000-0002-2412-3027
c https://orcid.org/0000-0003-0537-3052
d https://orcid.org/0000-0003-4945-3329
e https://orcid.org/0000-0002-2450-1024

plication provisioning (Cho and Easwaran, 2020).
These techniques are designed to dynamically man-
age and allocate data flows, prioritizing those that re-
quire more bandwidth and minimal latency. In edge
computing, flow scheduling can organize data traffic,
allowing critical applications, such as the ones men-
tioned, to gain priority access to network resources
(Tang et al., 2021). This way, it is possible to op-
timize provisioning time, minimizing delays for the
applications that need the fastest response. However,
most current flow scheduling techniques have a sig-
nificant limitation: they do not consider high-level
metrics, such as compliance with the service level
agreements (SLAs) of the applications. These SLAs
establish performance and availability parameters that
must be maintained to ensure the quality of the ser-
vice provided (Ramneek and Pack, 2021). Ignoring
these metrics can result in poor prioritization of flows,
where critical applications may not receive the proper
attention in terms of resource allocation, even though
they theoretically need wider bandwidth or lower la-
tency.

The article introduces a tool called SLWQ
(Service-Level Weighted Queuing), which focuses on
efficient network bandwidth allocation to accelerate
the transfer of container images over the network,
thereby improving the speed and efficiency of provi-

Garcia, P. H. S., Lorenzon, A. F., Luizelli, M. C., Severo de Souza, P. S. and Rossi, F. D.
WFQ-Based SLA-Aware Edge Applications Provisioning.
DOI: 10.5220/0013268000003950
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 159-166
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

159



sioning edge applications. SLWQ is an adaptation of
the Weighted Fair Queueing (WFQ) algorithm, incor-
porating the applications SLA as a weight to allocate
network resources more effectively. By prioritizing
applications with higher service requirements, SLWQ
ensures that critical applications receive more band-
width, leading to faster provisioning times. Although
WFQ was originally developed for managing network
flow control, SLWQ extends this concept to resource
allocation, demonstrating its viability in contexts that
require high-level metrics to manage resource distri-
bution and guarantee compliance with service level
agreements (SLAs).

This paper is organized as follows: Section 2
presents Edge conceptualization, applications provi-
sioning ans SLA. Section 3 presents the problem def-
inition. Section 4 presents SLWQ. Section 5 presents
evaluations and results discussion. Section 6 presents
the related work. Section 7 presents conclusions and
future work.

2 BACKGROUND

Edge computing architecture is an infrastructure
model aimed at decentralizing data processing and
storage, bringing them closer to end devices and users
(Satyanarayanan et al., 2009). Instead of relying on
centralized servers in a remote data center, edge com-
puting uses distributed nodes close to data sources
to perform tasks and store information. This ap-
proach reduces latency, improves efficiency, and en-
ables the execution of applications that require real-
time response. Edge computing is particularly suit-
able for use cases involving the Internet of Things
(IoT) (de Souza et al., 2017), where a large number
of devices generate and consume data in nearby lo-
cations. Thus, edge architecture complements cloud
computing by keeping processing power close to the
user without the need to continuously transmit large
volumes of data to distant servers (Pitstick et al.,
2024).

Application provisioning in edge computing in-
volves several essential steps and components to en-
sure that services are made available quickly and ef-
fectively. The container-based architecture plays a
crucial role in this process (Hu et al., 2023). Contain-
ers are lightweight units that encapsulate an applica-
tion and all its dependencies, ensuring it runs consis-
tently in any environment (Xavier et al., 2013). By
using containers in edge computing, it is possible to
ensure that applications are distributed and deployed
quickly, facilitating scalability and resource manage-
ment. Container registries are repositories where con-

tainer images are stored and managed. These reg-
istries can be accessed by edge nodes, which down-
load the necessary images for application provision-
ing. Using local and distributed registries is an effec-
tive strategy to reduce provisioning latency since im-
ages are closer to the nodes that request them, avoid-
ing the transfer time from a centralized server (Temp
et al., 2024).

An aspect of successful application provisioning
in edge computing is the efficient management of net-
work channels and flows. Since the edge operates
with limited resources, the available bandwidth may
be scarce and needs to be used as efficiently as pos-
sible (Kassir et al., 2020). A well-managed network
is essential to ensure that edge computing delivers on
its promises of low latency and high efficiency, be-
cause network flows directly influence the ability to
efficiently provision applications in edge computing,
allowing them to be delivered as quickly as possible
and within the parameters required by service level
agreements (Karagiannis and Papageorgiou, 2017).

3 PROBLEM DEFINITION

Figure 1 illustrates three different flow control poli-
cies for computer networks, each dealing with four
data flows competing for the same communication
channel. The policies shown are Equal Share, Max-
Min Fairness, and Weighted Fair Queueing, each with
its own approach to allocating the available channel
resources, resulting in different impacts on the perfor-
mance and satisfaction of competing flows with vary-
ing demands.

In the Equal Share policy (Zhao and Chen, 2001),
all flows receive an equal share of the total communi-
cation channel capacity, regardless of their individual
demands. Thus, each flow receives 2.5 units of the
total bandwidth of 10 units. While this approach is
extremely simple and fair in terms of equality, it does
not take into account the differences in each flow’s
needs. For instance, the flow with a demand of 2 re-
ceives 2.5 units, which exceeds its actual need, while
other flows with higher demands may not be fully sat-
isfied. This allocation may result in inefficient re-
source usage since a flow with low demand ends up
receiving more than necessary, while more demand-
ing flows remain underserved.

The Max-Min Fairness policy (Min et al., 2009),
in turn, seeks to maximize the allocation for smaller
flows, ensuring that each flow receives the maximum
possible amount without compromising the minimum
required for other flows. In the presented example, the
flow with a demand of 2 receives exactly 2 units, fully

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

160



Figure 1: Comparison of flow scheduling policies.

meeting its need. The remaining flows receive 2.67
units each, as, after satisfying the demand of flow 2,
the rest of the bandwidth is distributed equally among
the remaining flows. While this approach is fairer
by considering the specific needs of the flows, it still
does not take into account differentiation of priorities
among flows. Moreover, the performance of larger
flows is impacted because the policy focuses on pro-
tecting smaller flows, even if this results in limiting
flows with higher demands.

The third policy presented is Weighted Fair
Queueing (Al-Sawaai et al., 2010), which uses dif-
ferent weights for each flow, reflecting their rela-
tive demand. In this example, flows are weighted
according to their demands and priorities: the flow
with a demand of 3 receives more resources (3.63
units), followed by the flow with a demand of 4 (3.45
units), then the flow with a demand of 5 (2.58 units),
and lastly the flow with a demand of 2 (0.34 units).
This approach tries to provide proportional treatment
to flows based on their demands and priorities and
proves more efficient from a bandwidth utilization
perspective, as it considers the specific needs of each
flow. However, like the previous policies, Weighted
Fair Queueing ignores the importance of differentiat-
ing flows based on criteria such as the criticality of the
applications or the context in which they are running.
Thus, it may not be the best approach for applications
that need faster provisioning or have specific quality
of service requirements.

Although these policies are effective in traditional
network environments, they are not suitable for edge
computing environments, where it is necessary to
consider factors beyond equitable or proportional re-
source distribution. In an edge computing scenario,
it is essential to prioritize certain applications, such
as critical ones that need to be provisioned quickly to
ensure a good user experience or to meet specific op-
erational requirements. Additionally, the size of the
data being transferred, such as large images, must be
taken into account, especially in channels with lim-
ited bandwidth, where an allocation based solely on
demand may not meet the real needs of more sensi-
tive applications.

4 SLWQ: SERVICE-LEVEL
WEIGHTED QUEUING

This work proposes an alternative approach to
network flow management, called ”Service-Level
Weighted Queueing” (SLWQ), which expands upon
the concept of the Weighted Fair Queueing (WFQ)
technique. While WFQ uses weights proportional to
the demands of the flows to determine bandwidth dis-
tribution, SLWQ incorporates weights derived from
high-level metrics, such as application service level
agreements (SLA). This approach allows allocations
to be adjusted not only to the flows’ demands but also
to the specific requirements of each application, align-
ing resource allocation with the characteristics and
needs of each flow.

Figure 2: Service-Level Weighted Queuing policy.

In Figure 2, we can see four distinct application
flows, each with a specific demand and SLA. The
SLWQ policy considers both the application demand
and SLA to determine resource allocation. For in-
stance, the application with demand 2 and High SLA
receives an allocation of 2.0 units (100% of the re-
quested demand), while the application with demand
3 and Medium SLA receives 3.0 units (also 100%
of the requested demand). The remainder is divided
among applications with low SLA. This discrepancy
occurs because SLA plays a crucial role in determin-
ing the weight assigned to each application, directly
impacting how much bandwidth each one receives.
Unlike traditional WFQ, which distributes resources
based on proportional demands, SLWQ prioritizes ap-
plication flows with higher levels of importance, as

WFQ-Based SLA-Aware Edge Applications Provisioning

161



indicated by the SLA metric, even if it means par-
tially sacrificing the allocation of lower-SLA applica-
tion flows.

In environments where multiple services compete
for the same resources, it is essential for network
management to recognize the difference in impor-
tance between these services. SLWQ allows more
sensitive applications to be prioritized, while less crit-
ical applications can be delayed or receive fewer re-
sources as long as this does not significantly com-
promise their operation. Also, SLWQ aims to opti-
mize the use of network resources in situations where
application demands and requirements are heteroge-
neous and often conflicting. In edge computing en-
vironments, where resources are limited and rapid re-
sponse is essential, the use of SLWQ can ensure that
critical applications receive the necessary treatment
to meet their SLA requirements, while maximizing
overall network efficiency and maintaining satisfac-
tory performance for all applications involved.

5 EVALUATION AND
DISCUSSION

In this section, we evaluate the performance of the
SLWQ (Service-Level Weighted Queuing) algorithm
compared to other network provisioning policies by
analyzing the results of provisioning time (as seen
in Figure 3) and delay violations (illustrated in Fig-
ure 4). Our evaluation focuses on three distinct lev-
els of prioritization: low, medium, and high prior-
ity applications. As expected, SLWQ effectively pri-
oritizes high-priority applications over medium and
low-priority ones, demonstrating significant improve-
ments over traditional queuing policies.

5.1 SLWQ

The Service-Level Weighted Queueing (SLWQ) pre-
sented in Algorithm 1 is an approach designed to
manage bandwidth allocation efficiently, driven by
service levels (SLA), and catering to the specific de-
mands of each flow in a network. Table 1 consists
of notations used in the Algorithm. The core of
SLWQ lies in its ability to prioritize flows with higher
criticality, as specified in the SLAs, while adjusting
the allocation according to each flow’s demand re-
quirements. This process is achieved by combining
weights based on SLA and relative demands, ensur-
ing that the most critical flows receive greater prior-
ity and a proportionally more significant share of the
available bandwidth.

Table 1: SLWQ Notations.

Symbol Description
cap Total available bandwidth
dem Array of demands for each flow
wgt Array of priority weights for each flow
exp Exponent applied to each demand
alloc Array of allocated bandwidths
valD List of valid demands
totW Total weight for allocation
capRem Remaining capacity

The algorithm’s input consists of several essential
parameters. First, it takes the total available band-
width, which represents the maximum resource that
can be distributed among flows. Next, it uses an ar-
ray of demands, where each position represents the
specific bandwidth demand of a flow. There is also
an array of weights, where each weight is associated
with the priority of the corresponding flow, indicating
the relative importance of the flow based on its SLA.
Additionally, the algorithm uses a parameter called
“exp,” an exponent applied to each demand to cre-
ate a weighted distribution; this configuration allows
for adjusting the allocation of resources according to
each demand and priority profile.

Algorithm 1: Service-Level Weighted Queueing (SLWQ).

1: Input:
2: cap→ Total available bandwidth
3: dem[]→ Array of demands for each flow
4: wgt[] → Array of priority weights for each

flow
5: exp→ Exponent for weighted allocation
6: Output:
7: alloc[] → Array of allocated bandwidths for

each flow
8: Initialize alloc as a zero array of the same length

as dem
9: Define valD as the list of tuples (d,w, i) where

each d > 0, with w as the corresponding weight
and i as the index

10: Set totW ← ∑(d,w,i)∈valD(dexp)×w
11: Initialize capRem← cap
12: for each (d,w, i) in valD do
13: Compute alloc←min

(
capRem×(dexp×w)

totW ,d
)

14: Update alloc[i]← alloc[i]+alloc
15: Update capRem← capRem−alloc
16: Update totW ← totW− (dexp×w)
17: if totW ≤ 0 or capRem < 0 then
18: break
19: end if
20: end for
21: return alloc

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

162



(a) Infrastructure usage: 25%. (b) Infrastructure usage: 50%. (c) Infrastructure usage: 75%.

Figure 3: Provisioning Time: Number of violations of the SLA established as acceptable for the migration or provisioning of
each application. When this threshold is crossed, it means that users have moved to a location less close to where the service
is provisioned, and it means that a new service must be provisioned on another edge node that is closer to such users.

(a) Infrastructure usage: 25%. (b) Infrastructure usage: 50%. (c) Infrastructure usage: 75%.

Figure 4: SLA Delay Violations: Number of violations of the acceptable application delay threshold. When this threshold is
crossed, it means that the service is too far from the registry located in the core of the cloud.

The SLWQ algorithm begins by initializing an
empty bandwidth allocation array and creating a list
of valid demands, which includes each flow’s de-
mand, weight, and index, filtering out flows with no
demand. It calculates the total weight as the sum
of each demand raised to an exponent multiplied by
its weight. The remaining bandwidth capacity is ini-
tialized to the total capacity. In the main loop, the
algorithm iterates through each flow, calculating the
bandwidth allocation as a proportion of the remaining
capacity based on the flow’s relative weight and de-
mand. To prevent over-allocation, the allocated band-
width is capped at the flow’s demand. The allocated
bandwidth is stored in the array, and the remaining ca-
pacity and total weight are updated accordingly. The
loop ends when either all demands are met or the
bandwidth is fully allocated. The algorithm then re-
turns the final array of allocated bandwidth values, en-
suring prioritized distribution based on demands and
SLAs, while respecting total bandwidth limits and in-

dividual flow demands.

5.2 Provisioning Time Evaluation

Figure 3 presents the provisioning time across three
levels of infrastructure usage: 25%, 50%, and 75%.
Across all tests, SLWQ consistently provides the
fastest provisioning time for high-priority applica-
tions, outperforming Equal Share, Max-Min Fairness,
and even Weighted Fair Queuing (WFQ). This supe-
rior performance can be attributed to SLWQ’s abil-
ity to dynamically adjust resource allocation based on
both the priority and the demand of applications.

At 25% infrastructure usage, all policies perform
relatively well due to the availability of ample re-
sources. However, even under these low-stress con-
ditions, SLWQ demonstrates its advantage by allocat-
ing a higher proportion of bandwidth to high-priority
applications, ensuring their provisioning times remain
minimized. The differences between SLWQ and other

WFQ-Based SLA-Aware Edge Applications Provisioning

163



Table 2: Comparison between SLWQ and Evaluated Scheduling Policies.
Feature/Criteria SLWQ WFQ Max-Min Fairness Equal Share
Priority-based Resource Allocation Yes Partial No No
Latency Minimization High Medium Low Low
Bandwidth Utilization Efficiency High Medium Low Low
Handling of Large Data Volumes Efficient Moderate Poor Poor
Real-time Application Support Strong Moderate Weak Weak
Adaptation to Infrastructure Load Yes No No No
SLA Support Yes No No No

policies become more pronounced as infrastructure
usage increases to 50% and 75%. Under higher loads,
the competing policies—particularly Equal Share and
Max-Min Fairness—fail to adequately prioritize high-
priority applications, resulting in longer provisioning
times for these critical services. In contrast, SLWQ
maintains a strategic allocation of resources, ensur-
ing that the most important applications continue to
receive the necessary bandwidth, thus minimizing de-
lays.

This advantage becomes even more critical un-
der the 75% infrastructure usage scenario, where re-
source contention is at its peak. SLWQ’s prioriti-
zation mechanism ensures that the high-priority ap-
plications, which are often latency-sensitive, experi-
ence the smallest provisioning delays. In compari-
son, WFQ, while better than Equal Share and Max-
Min Fairness, still cannot adapt as effectively to high-
priority demands since it only accounts for demand
and not priority, which is the key differentiator in
SLWQ’s design.

5.3 Delay Violations Evaluation

Figure 4 evaluates delay violations across the same
levels of infrastructure usage. Delay violations occur
when an application is not provisioned within the ex-
pected time frame, potentially leading to performance
degradation. Similar to the provisioning time results,
SLWQ exhibits a clear advantage, particularly in re-
ducing delay violations for high-priority applications.

At 25% infrastructure usage, delay violations
are minimal for all policies, as resources are abun-
dant. However, as usage climbs to 50% and 75%,
SLWQ maintains a lower incidence of delay viola-
tions compared to the other policies. For high-priority
applications, SLWQ nearly eliminates delay viola-
tions, a critical achievement for real-time or mission-
critical services, such as healthcare monitoring or au-
tonomous vehicle data processing.

The failure of Equal Share and Max-Min Fair-
ness to appropriately prioritize high-priority traffic re-
sults in significant delay violations, particularly un-
der heavy infrastructure load. These policies, which
either distribute resources equally or favor smaller
demands, cannot distinguish the urgency of high-
priority applications, leading to unacceptable delays.

Although WFQ performs better by allocating more
bandwidth to larger demands, it still results in a sub-
stantial number of delay violations under high load,
as it lacks the application-SLA focus that SLWQ im-
plements.

5.4 Discussion

The key strength of SLWQ lies in its ability to bal-
ance the competing demands of multiple applications
while ensuring that the highest-priority ones receive
preferential treatment. In contrast to Equal Share,
which treats all applications equally regardless of
their importance, and Max-Min Fairness, which pri-
oritizes smaller flows, SLWQ intelligently adjusts its
resource allocation to reflect both the application’s de-
mand and its criticality. This results in significantly
better provisioning times and fewer delay violations
for high-priority applications, especially in scenarios
with limited resources.

WFQ, while closer to SLWQ in terms of account-
ing for the differing demands of applications, still
falls short in environments where application prior-
ity must be considered. WFQ allocates bandwidth
proportionally based on demand but does not fac-
tor in the criticality of each application. This lim-
itation is particularly evident under high infrastruc-
ture usage, where SLWQ’s additional consideration
of service-level agreements (SLAs) allows it to out-
perform WFQ.

SLWQ’s ability to incorporate high-level met-
rics such as application priority into the queuing
mechanism ensures that the most important ser-
vices—those with stringent latency and performance
requirements—are given priority over less critical ser-
vices. This approach maximizes overall network effi-
ciency and service quality, particularly in edge com-
puting environments where fast provisioning is often
essential for maintaining the functionality of real-time
applications.

The results demonstrate that SLWQ provides a
robust and effective solution for managing network
provisioning in edge computing environments. Its
ability to adapt to varying levels of infrastructure us-
age while maintaining a focus on application priority
makes it particularly suited to high-demand, resource-
constrained environments. As edge computing con-

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

164



Table 3: Comparison between Related Work and SLWQ.
Feature/Work Shinohara et al. (1997) Jiang et al. (2000) Jutila (2016) Chen et al. (2021) SLWQ (2024)
Type of System Edge modules Cellular Networks IoT Edge Router Cooperative Games Edge Applications

Algorithm WFQ WFQ Fuzzy Weighted Queuing Nucleolus Computation SLA-based WFQ
QoS Guarantees Yes Yes Yes No Yes
Service Classes Multiple traffic classes Multiple service classes Dynamic adaptation Coalition fairness High-level SLA priorities

Priority-based Allocation Partial Partial Yes No Yes
Context Awareness No No Yes Yes (Cooperative) Yes (SLA-driven)

Handling of Bursty Traffic No Yes Yes No Yes
Dynamic Bandwidth Adjustment No No Yes No Yes

tinues to evolve, the need for intelligent resource allo-
cation mechanisms like SLWQ will become increas-
ingly important. Table 1 summarizes the differences
between SLWQ and other flow schedulers, in several
performance evaluation metrics.

6 RELATED WORK

Weighted fair queueing (WFQ) is a scheduling algo-
rithm widely studied in network traffic management.
(Shinohara et al., 1997) proposed a growable switch
architecture with multiple modules, including Edge
modules with large buffers that utilize a weighted
fair queueing scheduler for open-loop traffic. This
approach allows for allocating equivalent bandwidth
based on call admission control, ensuring quality of
service (QoS) guarantees for different traffic classes.
(Jiang et al., 2000) evaluated the performance of the
weighted fair queueing algorithm in providing mul-
tiple service classes for bursty data traffic in cellular
networks, similar to an Edge system. The study fo-
cused on packet scheduling to achieve fair bandwidth
sharing among different types of traffic, highlighting
the importance of efficient queueing mechanisms in
wireless communication systems.

Furthermore, (Jutila, 2016) discussed the impor-
tance of edge computing in managing network re-
sources, traffic prioritizations, and security in the In-
ternet of Things (IoT) context. The author introduced
adaptive edge computing solutions, including fuzzy
weighted queueing (FWQ), to monitor and react to
changes in the quality of service within heterogeneous
networks, emphasizing the role of edge computing
in enhancing network performance. In Cooperative
games, (Chen et al., 2021) explored the computation
of the nucleolus in various game scenarios, includ-
ing fractional edge cover games on weighted graphs.
The study focused on finding fair divisions of pay-
offs among coalition members, highlighting the sig-
nificance of fair resource allocation in cooperative set-
tings.

Table 3 summarizes all related works and com-
pares them with SLWQ, comparing some metrics. Al-
tough the literature review showcases the significance
of weighted fair queueing in optimizing network traf-

fic management, ensuring QoS guarantees, and facil-
itating fair resource allocation in diverse communi-
cation systems, none of the literature considers high-
level metrics such as those service-level agreements
aimed at ensuring quality of service.

7 CONCLUSION AND FUTURE
WORK

The problem addressed in this work revolves around
the inadequacies of traditional flow scheduling tech-
niques in edge computing environments. These tech-
niques, including Equal Share, Max-Min Fairness,
and Weighted Fair Queueing (WFQ), either fail to ac-
count for the specific demands of applications or do
not prioritize them according to their criticality and
Service-Level Agreements (SLAs). In edge comput-
ing environments where resources are constrained and
multiple applications are competing for bandwidth,
these approaches often result in inefficiencies such as
increased provisioning times and higher rates of delay
violations, particularly for high-priority applications.

In this work, we proposed the Service-Level
Weighted Queuing (SLWQ) algorithm, a novel ap-
proach designed to optimize network bandwidth al-
location for edge computing. The results of our
evaluations highlight the advantages of SLWQ over
traditional policies. In our tests, which involved
three distinct levels of application SLA (low, medium,
and high), SLWQ consistently outperformed other
policies, especially under high infrastructure usage.
When provisioning time was measured (as shown in
Figure 3), SLWQ demonstrated a significant reduc-
tion in the time required to provision high-SLA appli-
cations, particularly when compared to Equal Share,
Max-Min Fairness, and WFQ. Additionally, SLWQ
proved to be highly effective in minimizing delay vi-
olations, as depicted in Figure 4. Delay violations oc-
cur when an application fails to be provisioned within
the expected time, which can lead to serious conse-
quences in time-sensitive applications.

Future work could explore the integration of addi-
tional factors, such as energy efficiency or predictive
analytics, into SLWQ’s prioritization framework.

WFQ-Based SLA-Aware Edge Applications Provisioning

165



ACKNOWLEDGEMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior –
Brasil (CAPES) – Finance Code 001.

REFERENCES

Al-Sawaai, A., Awan, I. U., and Fretwell, R. (2010). Per-
formance of weighted fair queuing system with multi-
class jobs. In 2010 24th IEEE International Confer-
ence on Advanced Information Networking and Appli-
cations, pages 50–57.

Chen, N., Lu, P., and Zhang, H. (2021). Computing the
nucleolus of matching, cover and clique games. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 26(1):1319–1325.

Cho, H. and Easwaran, A. (2020). Flow network models for
online scheduling real-time tasks on multiprocessors.
IEEE Access, 8:172136–172151.

de Souza, P. S. S., dos Santos Marques, W., Rossi, F. D.,
da Cunha Rodrigues, G., and Calheiros, R. N. (2017).
Performance and accuracy trade-off analysis of tech-
niques for anomaly detection in iot sensors. In 2017
International Conference on Information Networking
(ICOIN), pages 486–491.

Hu, S., Shi, W., and Li, G. (2023). Cec: A containerized
edge computing framework for dynamic resource pro-
visioning. IEEE Transactions on Mobile Computing,
22(7):3840–3854.

Jiang, Z., Chang, L. F., and Shankaranarayanan, N. (2000).
Providing multiple service classes for bursty data traf-
fic in cellular networks. In Proceedings IEEE IN-
FOCOM 2000. Conference on Computer Communi-
cations. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (Cat.
No.00CH37064), volume 3, pages 1087–1096 vol.3.

Jutila, M. (2016). An adaptive edge router enabling in-
ternet of things. IEEE Internet of Things Journal,
3(6):1061–1069.

Karagiannis, V. and Papageorgiou, A. (2017). Network-
integrated edge computing orchestrator for application
placement. In 2017 13th International Conference on
Network and Service Management (CNSM), pages 1–
5.

Kassir, S., Veciana, G. d., Wang, N., Wang, X., and
Palacharla, P. (2020). Service placement for real-time
applications: Rate-adaptation and load-balancing at
the network edge. In 2020 7th IEEE International
Conference on Cyber Security and Cloud Computing
(CSCloud)/2020 6th IEEE International Conference
on Edge Computing and Scalable Cloud (EdgeCom),
pages 207–215.

Min, Z., chunming, W., Ming, J., and Jing, Y. (2009). A
resource management algorithm based on multi-path
max-min fairness. In 2009 First International Confer-
ence on Future Information Networks, pages 76–80.

Pitstick, K., Novakouski, M., Lewis, G. A., and Ozkaya, I.
(2024). Defining a reference architecture for edge sys-
tems in highly-uncertain environments. In 2024 IEEE
21st International Conference on Software Architec-
ture Companion (ICSA-C), pages 356–361.

Ramneek and Pack, S. (2021). A credible service level
agreement enforcement framework for 5g edge. In
IEEE INFOCOM 2021 - IEEE Conference on Com-
puter Communications Workshops (INFOCOM WK-
SHPS), pages 1–2.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N.
(2009). The case for vm-based cloudlets in mobile
computing. IEEE Pervasive Computing, 8(4):14–23.

Shinohara, M., Fan, R., Mark, B., Ramamurthy, G., Suzuki,
H., and Yamada, K. (1997). Multiclass large scale atm
switch with qos guarantee. In Proceedings of ICC’97
- International Conference on Communications, vol-
ume 1, pages 453–461 vol.1.

Souza., P., Ângelo Crestani., Rubin., F., Ferreto., T., and
Rossi., F. (2022). Latency-aware privacy-preserving
service migration in federated edges. In Proceedings
of the 12th International Conference on Cloud Com-
puting and Services Science - CLOSER, pages 288–
295. INSTICC, SciTePress.

Tang, H., Wang, Y., and Chen, X. (2021). Network-flow al-
gorithms for virtual service placements in mobile edge
networks. In 2021 IEEE 6th International Conference
on Cloud Computing and Big Data Analytics (ICC-
CBDA), pages 364–368.

Temp., D., Capeletti., I., Goes de Castro., A., Silas Severo
de Souza., P., Lorenzon., A., Luizelli., M., and Rossi.,
F. (2023). Latency-aware cost-efficient provisioning
of composite applications in multi-provider clouds. In
Proceedings of the 13th International Conference on
Cloud Computing and Services Science - CLOSER,
pages 297–305. INSTICC, SciTePress.

Temp, D. C., da Costa, A. A. F., Vieira, A. N. C., Oribes,
E. S., Lopes, I. M., de Souza, P. S. S., Luizelli, M. C.,
Lorenzon, A. F., and Rossi, F. D. (2024). Maper:
mobility-aware energy-efficient container registry mi-
grations for edge computing infrastructures. The Jour-
nal of Supercomputing, 81(1):15.

Temp, D. C., de Souza, P. S. S., Lorenzon, A. F., Luizelli,
M. C., and Rossi, F. D. (2023). Mobility-aware reg-
istry migration for containerized applications on edge
computing infrastructures. Journal of Network and
Computer Applications, 217:103676.

Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C.,
Lange, T., and De Rose, C. A. F. (2013). Performance
evaluation of container-based virtualization for high
performance computing environments. In 2013 21st
Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pages 233–
240.

Zhao, Y. and Chen, C. (2001). The algorithm and model
of trash: A scheme enforcing equal share. In Pro-
ceedings 2001 International Conference on Computer
Networks and Mobile Computing, pages 425–432.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

166


