
MODE: A Customizable Open-Source Testing Framework for IoT
Systems and Methodologies

Rares, Cristea1, Ciprian Paduraru1 and Alin Stefanescu1,2

1Department of Computer Science, University of Bucharest, Romania
2

{rares.cristea, ciprian.paduraru, alin.stefanescu}@unibuc.ro

Keywords: IoT, Fuzzing, Vulnerabilities, Application, Deployment, Guided.

Abstract: With the growing integration of software and hardware, IoT security solutions must become more efficient
to maintain user trust, boost enterprise revenue, and support developers. While fuzzing is a common test-
ing method, few solutions exist for fuzzing an entire IoT application stack. The absence of an open-source
application set limits accurate methodology comparisons. This paper addresses these gaps by providing an
open-source application set with real and artificially injected issues and proposing a framework for guided
fuzzing. The solutions are language-agnostic and compatible with various hardware. Finally, we evaluate
these methods to assess their impact on vulnerability discovery.

1 INTRODUCTION

The rapid growth of Internet of Things (IoT) ap-
plications has outpaced testing methodologies. IoT
spans smart car systems, healthcare, transportation,
vendor applications, and smart cities. IoT systems
typically involve software for interconnected sen-
sors, actuators, apps, gateways, and servers. The
diversity of manufacturers complicates ensuring re-
liability and security. Problems arise at all levels,
from isolated apps to protocols and interactivity over
time. These vulnerabilities expose systems to attacks
such as Distributed Denial-of-Service (DDoS) (Al-
Hadhrami and Hussain, 2021)and identity manage-
ment issues (Sadique et al., 2020).

M. Bures et al. (Bures et al., 2020) highlight the
challenges of interoperability and integration testing
in IoT systems, stressing the need for IoT-specific
approaches to handle the combinatorial complexity
of diverse devices. Limited standardization further
hinders platform-agnostic testing tools (Dias et al.,
2018).

In Fig. 1 we represent the four challenges in defin-
ing a comprehensive IoT testing setup. These chal-
lenges are further split between artifact and virtual
challenges.

1. Testing Devices - There is no common basis for
evaluating testing approaches using an applica-
tion set with known, identifiable software issues.

Such a set would enable comparative evaluation
and rapid experimentation with various test meth-
ods, directly enhancing the testability of interop-
erability vulnerabilities.

2. Testing Orchestrator - A unique aspect of IoT
systems is the ”hub” or device orchestrator, which
compensates for the limited computing power
of simple sensors and manages connections and
communications. Most systems have a local edge
device, while others rely on cloud-based orches-
tration.

3. Testing Methodologies - Many testing methods
exist, but no clear framework compares them.
Functional tests are the most common, while
newer methods, like guided fuzzing, extend clas-
sical approaches to IoT. These face challenges
such as interactivity and persistence at the appli-
cation layer, requiring efficiency comparable to
other solutions.

4. Testing Context - IoT-specific issues can be af-
fected by factors external to the system (Seeger
et al., 2020) (Kühn et al., 2018) or third-party sys-
tems (El-hajj et al., 2019).

This article builds upon our previous work
(Păduraru et al., 2021), where we first introduced our
abstraction of the communications in an IoT system
and continued in (Cristea et al., 2022) to introduce the
application set and the functional framework, which

Cristea, R., Paduraru, C. and Stefanescu, A.
MODE: A Customizable Open-Source Testing Framework for IoT Systems and Methodologies.
DOI: 10.5220/0013267500003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 441-448
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

441

Figure 1: Graphical representation of the cus-
tomizable components of the testing framework.

were necessary stepping stones to provide this arti-
cle’s fuzzing methodology. The previously discov-
ered and introduced bugs are described and used in
the fuzzing methodology.

In our previous work (Păduraru et al., 2021) we
explored a theoretical framework that would enable
more complete testing of IoT systems, by designing
a communications system that simulates real-life IoT
networks and allows developers or testers to leverage
their preferred testing methodologies over the system.
We further developed in (Cristea et al., 2022) an appli-
cation set that works as a proof of concept of the theo-
retically described framework and a proof-of-concept
version of the framework.

The contributions of this article are threefold:

• We define a testing framework offering variability
across all four vertices of diversification. This was
achieved by adding a fuzz testing methodology
for end-to-end IoT scenarios. Our solution also
leverages the developer’s assumptions and prior
knowledge about possible data flows at runtime.

• We extend the existing testing methodology with
a distributed systems testing application called
RESTler (Atlidakis et al., 2019).

• We provide an open-source application set that al-
lows the users to apply the testing methods that
we defined and compare them with new method-
ologies. Other developers can include their ap-
plications, thus extending the existing application
set.

The paper is structured as follows: Section 2 re-
views IoT testing efforts. Section 3 formalizes the
IoT software stack using graphs. Section 4 details
guided fuzzing methods. Section 6 evaluates these
methods and their complementarity with functional
testing. Section 7 concludes with future work.

2 RELATED WORK

Software testing is a vital part of the software devel-
opment lifecycle. In IoT systems, this is more chal-
lenging due to the broad range of attack surfaces.
Most IoT-specific tools are vendor-specific, support-
ing only limited devices and protocols (Dias et al.,
2018).

Various organizations have issued standards for
IoT system design. The W3C consortium proposed
taxonomies for IoT vocabulary 1, including a JSON-
formatted ”Things Description” to abstract interac-
tions in IoT systems. While thorough, this proposal
requires extensions for real-world applications and
existing communication protocols. Few ISO stan-
dards address IoT, such as ISO/IEC 21823-1:2019,
which outlines a framework for IoT interoperabil-
ity 2, though these are rarely adopted in industry
(Gaborović et al., 2022).

Communication interfaces for IoT were explored
in (Păduraru et al., 2021) and applied in (Cristea et al.,
2022), with OpenAPI identified as a strong candi-
date for RESTful APIs. AsyncAPI, derived from
OpenAPI, extends support to protocols like MQTT
(Tzavaras et al., 2023).In IoT, low-power devices re-
quire an orchestrator to handle data processing. Typ-
ically, an IoT hub serves this role locally, but it can
be offloaded to the cloud or a hybrid edge-cloud setup
(Wu, 2021).

Bures et al. (Bures et al., 2020) suggest that
”cross-over techniques between path-based testing
and combinatorial interaction testing for close APIs
in IoT systems” can be beneficial. The RESTler
(Atlidakis et al., 2019) tool suite supports this ap-
proach, effectively analyzing cloud services using
REST APIs. Architecturally, it identifies producer-
consumer relationships from OpenAPI specifications.
Our framework builds on RESTler by incorporating
system-defining graphs, input/output variable dictio-
naries, and user-supplied communication flows to en-
hance effectiveness. (Bures et al., 2020) also review
interoperability and integration testing literature, con-
cluding that IoT-specific test configurations require
tailored tactics beyond RESTler’s capabilities, a chal-
lenge further explored by (Lin et al., 2022).

In our previous work (Cristea et al., 2022), we pro-
posed fuzzing to deeply explore application vulnera-
bilities. Advanced fuzzers like AFL and its improve-
ment AFL++ (Fioraldi et al., 2020) include imple-
mentations tailored for IoT. FIRM-AFL (Zheng et al.,
2019) combines user and system mode emulation for
optimal performance. (Eceiza et al., 2021) outlines

1https://www.w3.org/2023/10/wot-wg-2023.html
2https://www.iso.org/standard/71885.html

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

442

Figure 2: An example of a compatibility graph for an IoT
software stack includes sensors (S0,S1,S2,S3) collecting
video inputs (Vinit), image filtering nodes (F0,F1,F2,F3), a
central hub (C) connecting all nodes, and processing nodes
(P0,P1,P2) for tasks like detecting abnormal events.

fuzzing challenges in embedded systems, with test
case generation being a key focus of tools like ”Build-
ing Fast Fuzzers” (Gopinath and Zeller, 2019) and
Skyfire (Wang et al., 2017), which uses grammar and
example data to create cases precise enough for pre-
testing yet broad enough to uncover errors.

RESTful HTTP APIs have also been studied.
(Martino et al., 2016) developed a framework to an-
alyze Java or C/C++ code of IoT applications, gen-
erating a common semantic interface suited for open-
source projects. In contrast, our approach assumes
developer-provided interfaces, enabling custom in-
tegration with closed-source applications exposing
APIs.

3 ABSTRACTING THE IoT
TESTING ENVIRONMENT

In this section, we first formally define the abstrac-
tions we propose for the case of testing an IoT soft-
ware stack based on graph theory. We then discuss
some technical aspects required to implement graph
mapping in a practical implementation. Finally, most
of this section is devoted to presenting our proposed
methods for end-to-end hierarchical fuzz testing of
the implemented software stack in an IoT environ-
ment.

3.1 Graph Based Mapping

Continuing the work in (Cristea et al., 2022), we for-
malize the specification of connected IoT components
using graph terminology. Fig. 2 describes an example
of compatibility graph compatibility graph, Gcompat .

We describe the producer/consumer relationship
between devices using an oriented graph with the fol-
lowing rule:

1. V - a set of nodes representing processes .

2. E - a set of oriented edges describing the possible
connections between the processes (nodes in V).
An edge e(source,destination) ∈ E, represents
that the output produced by the source node will
connect to the input in the consumer, destination
node. Further, for each node v ∈ V , we con-
sider a set of incoming nodes, Vin(v) = {vin ∈
V ∥(vin,v) ∈ E}, and outgoing nodes, Vout(v) =
{vout ∈V ∥(v,vout) ∈ E}.

3. Developers can provide a knowledge base for
each node v ∈ V , specifying input and output in-
terfaces I fin(v) and I fout(v).

4. Developers can define hard requirements for de-
ployment by specifying non-removable nodes Vr
and edges Er in Gcompat .

5. Developers can specify probabilities ProbV and
ProbE for nodes and edges, reflecting realistic us-
age scenarios where some processes and connec-
tions are more common.

At runtime, a subset G ⊆ Gcompat of the com-
patibility graph executes the required tasks. At
time t, user requests or system events determine
a subset of the graph, initiating communication
flows between nodes. These flows represent se-
quences of ordered nodes processing inputs and
outputs. Pure input nodes in G are Vinit(G) =

{N(1)
1 ,N(2)

1 , . . . ,N(R)
1 }, while output-only nodes are

Vout(G) = {N(1)
Num1

,N(2)
Num2

, . . . ,N(R)
NumR

}. All nodes and
communication links belong to Gcompat .

Communication between applications is centrally
managed at the top level, with decentralization at
lower levels. The orchestrator, a central hub appli-
cation node (marked as C in Fig. 2), is implemented
in our framework. Its role is to trigger requests to
applications, collect data, and forward it within the
communication flow. Hierarchically, each node may
have its own central node, as discussed in Section 6. A
top-level central node, commonly described in IoT lit-
erature, simplifies process management, aids message
observation, and improves fuzzing process control.

3.2 Communication and Endpoint
Specifications

By using the OpenAPI specification, applications can
automatically identify (through smart code agents)
the set of all endpoints for inter-application commu-
nication in the IoT software stack defined by the com-
patibility graph Gcompat . This also allows our frame-
work to automatically identify the set of initial nodes
(without input dependency), i.e., Vinit(Gcompat), and
the format of input-output buffers, Bu f f erout ,

MODE: A Customizable Open-Source Testing Framework for IoT Systems and Methodologies

443

Bu f f erin, for each node. Then, RESTler helps gen-
erate the source code needed to send requests and
process responses between applications based on the
given compatibility graph. The code generated in
this step is a textitRESTler grammar. The resulting
component can then be used by two other compo-
nents: (a) RESTler Test to check the availability of
each endpoint, and (b) RESTler Fuzz to generate and
run guided tests and systematically explore the state
space of the graph.

4 FUZZING METHODS

We assume that the developer is generally willing
to specify a set of functional tests, as described in
(Păduraru et al., 2021), (Cristea et al., 2022), repre-
senting various communication flows in the deployed
application as a whole as part of any common soft-
ware development process.

FuncTestsSApp =

{Test1 = (G1,B fin(G1),B fout(G1)), . . .

TestN = (GN ,B fin(GN),B fout(GNd))}
(1)

For a given IoT software stack of applications
SApp, we denote this set as FuncTestsSApp , Eq.
1. Thus, a functional test in our abstract defini-
tion is an instance of G as well as specifications
for inputs and the corresponding expected outputs,
i.e. B fin(G) = ∪B fin(v)∥v∈Vinit (G) and B fout(G) =
∪B fin(v)∥v∈V (G)and∄e∈E(G),s.t.source(e)=v

Our proposed fuzzing methods operate at two hi-
erarchical levels:

• Level 1: The graph level where different instances
of G ⊆ Gcompat are fuzzed. This simulates the use
of different nodes and communication flows from
the original compatibility graph. The purpose of
fuzzing at this level is to detect as many poten-
tial problems associated with the different flows
at runtime.

• Level 2: The buffers of the deployed processes.
After applying Level 1 and obtaining a graph G,
our methods can continue fuzzing on the input
nodes in G, i.e., the set Vinit(G). An important
feature of our framework is the support for persis-
tence testing at this level.

A key challenge in fuzzing is efficiently manag-
ing resources to identify critical issues, especially in
IoT systems with complex communication and persis-
tence needs. Expanding on prior work (Cristea et al.,
2022) using BDD for functional testing, the current
strategy automates the analysis of developer-defined

patterns and input-output hints to guide fuzzing ef-
fectively.

4.1 Fuzzing at the Graph Level

The algorithm for fuzzing a subgraph G ⊆ Gcompat in-
volves three main steps:

1. Initialization: An initial graph G = (Vr,Er) is
created, containing only the required nodes and edges
to define a valid starting point.

2. Sampling Input Nodes: A random subset of
input nodes from Vinit(G) is added to G. The num-
ber of nodes is sampled from a user-defined range
[MinInitNodes,MaxInitNodes], allowing the graph’s
initial size to be tailored to the test scenario.

3. Dynamic Edge Addition: For a random
number of steps (from [MinSteps,MaxSteps]), edges
are added to G from Gcompat , provided their source
nodes are already in G and the edges are not yet in-
cluded. Edge selection follows user-defined probabil-
ities (ProbE).

Parameterization of node and step ranges ensures
the algorithm adapts to different Gcompat sizes. The
resulting graph G provides a flexible runtime instance
for fuzzing, combining scalability and randomness
for effective IoT system testing.

4.2 Fuzzing at the Processes’ Buffers
Level

Starting from a fixed graph G, this fuzzing plane gen-
erates diverse values and parameters for application
endpoints by modifying the input buffers of input
nodes, Vinit(G), and their associated buffers, B fin(G).
The fuzzing process has two main objectives:

(a) Ensure output nodes v, which lack connections
to other nodes in G, produce in-range output values
for each parameter in B fout(v).

(b) Test the individual processes (nodes) involved
in the flows of G for common problems such as
crashes, non-determinism, etc.

4.2.1 Guiding the Fuzzing Process

The initial set of functional tests defined by the de-
veloper for the IoT software stack, i.e., FuncTestSApp ,
can serve as the first level to suggest how to prioritize
testing efforts. Thus, we propose a three-level fuzzing
methodology. We define with Testk ∈ FuncTestSApp
defining the k-th functional test.

Each of these test specifications, which represent
a workflow in a graph G, has a set of input variables/-
parameters Inputs(Testk) ⊆ B f sin(G) that maps the
variable names Pnamei to their corresponding outputs

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

444

Pvaluei , with 1 ≤ i ≤ card(Inputs(Testk)). In addition,
we extract the possible ranges of values given for each
variable name of a given application Inputs(Testk)
from all values given by users in the entire test set
and the optional hints in the data dictionaries.

These ranges of values are further aggregated and
generative models are built for each parameter P. For
example, if P is a string type variable, this genera-
tive model becomes a regular string pattern expres-
sion (grammar). For numeric values, the learning pro-
cess creates a value set D(P) consisting of all the val-
ues given by the user in the functional tests for P, i.e.,
D(P) = {Value(P)1,Value(P)2,}, where the mini-
mum and maximum of these values are determined,
i.e., min(D(P) and max(D(P). Thus, Range(P) =
[min(D(P),max(D(P)] .

If node v and its application A = App(v) have
a set of input parameters {P1, ...,PnumInputs(A)}, then
the range of inputs generated for it by the fuzzing
mechanism is denoted by InputSpan(A)i, where i
is the index of the method used for the spanning
process (more details later in this section). The
span of the input of the fixed graph instance G used
by the fuzzing process at this level can be writ-
ten as: InputSpan(G)i = ∪{InputSpan(App(v))i|v ∈
Vinit(G)}

The sampling of the value for each input param-
eter P of an application is controlled by one of the
following three functor methods, referred to as input
span levels in the text that follows:

1. Input Span Layer 1 - The first sampling method
selects one of the discrete values in D(P). Thus,
this method generates permutations between the
known values/clues given for each parameter.

2. Input Span Layer 2 - In the second layer, a sam-
ple is drawn from the range of values for each pa-
rameter R(P). Permutations of values between the
minimum and maximum values of each variable
are determined if the variable P is numeric, or a
string corresponding to the regular grammar if P
is a string type. At this level, the first tests are gen-
erated with values that have not been used before.

3. Input Span Layer 3 - The third layer samples the
value even over a wider range, taking into account
the entire set of possible values that the parame-
ter’s value type P can take, i.e., Rtype(P). This is
the most general form of fuzzing and does not re-
quire any prior knowledge of the input parameter,
i.e., it can be applied without hints, dictionaries of
possible values for data types, or functional tests.

The algorithm in Listing 1 performs end-to-end
fuzzing of a workflow within the graph G, using one

Listing 1: Fuzzing at input buffers level and checking re-
sults.

f u z z P r o c e s s (s p a n L a y e r I n d e x) :
Initialize applications in G
For each A = App(v) wi th v ∈Vinit(G) :

I n s t a n t i a t e A
Sample tests for persistency testing
NumTests =

Uni f ormSample(MinPersistTests,MaxPersistTests)
For testIter i n 1 . . .NumTests :

Set new values
For each i n p u t p a r a m e t e r P of A :

SetValue(A,P) = SampleValue(P,spanLayerIndex)
S i m u l a t e e x e c u t i o n o f G
E v a l u a t e r e s u l t s

of three sampling methods to set parameter values. It
includes persistence checking, retaining the previous
application state in G at each input generation step.
Setting the persistence parameter to 1 makes the al-
gorithm equivalent to classical fuzzing, which clears
memory state on each pass. The algorithm supports
distributed execution due to the independence of sam-
pling processes.

4.2.2 Scheduling Efforts

Technically,
InputSpan(G)1 ⊆ InputSpan(G)2 ⊆ InputSpan(G)3.
While InputSpan(G)1 is a finite set, the others are
potentially infinite, so resource prioritization must be
applied.

To make sense of the computational overhead,
our method proposes the following time partitioning
among the three levels defined above. We consider
as the user’s input parameter the total time allowed
for the fuzzing process, denoted by TimeAllowed.
In addition, the user also specifies the percentage of
this total time that should be spent approximately
performing the fuzzing on each of the three layers.

Results Checking. The evaluation of results comes
from the call Evaluate results in Listing 1, line 13.
The first level checks if fuzzing values produce out-
puts within the range defined by disconnected output
nodes in G, referred to as Cond in Section 4.2. This
harmlessness testing, valued in industry, enables basic
checks and security testing. The second level iden-
tifies common fuzzing issues, such as segmentation
errors and boundary crossings.

Fuzzing methods in software testing cannot ensure
completeness, but user hints from functional tests or
dictionaries can reduce time and effort. For example,
if a camera sensor app produces only 360× 240 im-
ages, not knowing this fixed resolution could lead the
algorithm to search an infinite range, missing the cor-

MODE: A Customizable Open-Source Testing Framework for IoT Systems and Methodologies

445

rect one. Our evaluation ensures all injected errors in
layer 1 (and possibly layer 2) are caught, while new
issues are identified in layers 2 and 3.

5 RESULTS

The main parts of the resulting framework are the ten
applications, the backend support to facilitate their
deployment, testing, and an overview of how users
can extend or replace existing applications without
sacrificing background infrastructure. The imple-
mented back-end infrastructure can be reused with
minimal developer effort. All the artifacts presented
in the framework are available open source and docu-
mented including the process of adding and removing
existing applications.

The applications were originally developed as part
of an undergraduate course in Software Engineering
at the University of Bucharest in the 2020-2022 aca-
demic years. The goal of the course was to teach stu-
dents software engineering methods and practices in
the areas of IoT and security. The students were free
to choose what type of IoT device they would create
the software for. We selected from the final projects
those that could be best reused for security testing.
Our experiment aligns with (Liu, 2005), showing that
real use cases motivate students while also helping
identify issues in their source code. The pedagogical
process that enabled student-led contribution to the
application set is detailed in (Cristea and Păduraru,
2023).

The application set is open-sourced, available, and
documented on GitHub3. The current set includes
various smart home applications. These are built
using three different programming languages: Rust,
C++, and Python. The variety in programming lan-
guages used for development follows the diversity
found in the Smart Home market.

Communication between devices is mainly han-
dled through HTTP and complementary functions
through the MQTT protocol using Mosquitto 4.
MQTT’s advantage is that it is lightweight and com-
patible with many operating systems and hardware,
from lower-powered devices to complete servers. The
solution implies the use of a publisher/subscriber
model for processing messages through the applica-
tion orchestrator node in our graph-based deploy-
ment.

As for deployment, our backend infrastructure
provides immediate support with available scripts and
documentation, using two methods:

3https://github.com/unibuc-cs/IoT-application-set
4https://mosquitto.org/

1. Docker deployment, where each application runs
in a Docker container on a specific IP and PORT .
This has the advantage of being convenient, con-
suming fewer resources, and can be used without
preparation or special hardware. It works on vari-
ous popular operating systems, on users’ local PC,
or in cloud environments.

2. RaspberryPi devices, where any application can
be used on a real embedded RaspberryPi device
(we did our tests on the Raspbian ARM v7l OS).
Communication is handled over the available Wi-
Fi connections.

6 EVALUATION

6.1 Vulnerability Issues and Artificial
Injection

Assessing the literature (Zhu et al., 2022), (Păduraru
et al., 2021), (Cristea et al., 2022), we divide the prob-
lems into three different categories:

1. Application-level problems: most commonly oc-
cur at the application level and result in invalid
responses or crashes.

2. Communication flow problems: The expected be-
havior is not met or undefined behavior occurs af-
ter a runtime flow that connects one or more ap-
plications.

3. Persistence level problems: The expected behav-
ior is not met or undefined behavior occurs after
multiple inputs are applied in sequence, either at a
single application level or using a connected flow
of applications.

Our application suite, developed by independent
teams, reflects real-world IoT scenarios where soft-
ware and devices from different vendors form com-
plex, often unpredictable systems. A list of known
bugs is available in our repository. Currently, there are
15 bugs, including 7 source code issues such as seg-
mentation errors, data range and buffer index checks,
and concurrency problems. These application-level
issues were missed during student testing sessions and
the required functional testing for the final project.

The remaining 8 problems were manually intro-
duced to assess our method’s ability to detect sub-
tle persistence issues and errors in multi-application
communication. For instance, one issue involved the
lack of cleanup in the communication flow between
a SmartTV application (adjusting screen brightness
based on lighting) and a WindowWow application
(serving a smart window). A bug was introduced

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

446

where WindowWow sends excessively high values
outside the TV’s range, preventing the device from
updating brightness or responding effectively.

An example of a persistence error was injected
into the same WindowWow application that uses a
light sensor to automatically control the opening or
closing of curtains connected to the smart window de-
vice.

The following is a list of examples of issues dis-
covered in our application set. Each issue was trig-
gered by one or multiple applications communicating.
Some issues were identified as part of an automated
rule defined in our Hub Application:

• FlowerPower - Application - Flowerpower: does not
check for optional key existence in JSON object on
PUT /settings.

• SmartTV - Application - TV brightness should be set to
a maximum of 10, but the value is not validated by the
app.

• FlowerPower, WindWow - Communication - Rule 2
reduces the window’s luminosity if the temperature is
over 30 degrees, but Rule 3 unnecessarily turns on the
lamp due to low luminosity.

• WindWow - Persistence - WindWow crashes when try-
ing to set luminosity to 25 and curtains are closed
on GET /settings/settingName/settingValue (artificial
bug).

• SmartKettle, WindWow - Communication - SmartKet-
tle’s temperature decreases for WindWow’s tempera-
tures under 0 degrees Celsius instead of increasing.

• SmartTeeth - Application - “localhost” is set as the host-
name of the listening server, refusing outside connec-
tions.

• FlowerPower - Application - In FlowerPower: acti-
vateSolarLamp does not change luminosity.

6.2 Test Methods Evaluation

The effectiveness of our proposed fuzzing methods
is evaluated as follows: Each application in the set
was required to have functional tests based on the
BDD methodology (Cristea et al., 2022). However,
source code coverage does not guarantee state cover-
age. For example, a line accessing an array index may
be marked as covered even if only one index value is
tested, leaving many cases untested (Hemmati, 2015).

To evaluate the proposed fuzzing method in List-
ing 1 and the layers defined in Section 4.2.1, we fuzz-
tested each application (node) on a separate physical
process and the central hub node. Next, we applied
system-level fuzz testing, and finally, we assessed
the performance of these methods in detecting both
known and new issues.

The results indicate that functional tests, despite
achieving near-full code coverage, failed to detect
all 15 known issues. The layer,1,method found
6 issues, layer,2,method detected 11, and only the

Figure 3: Visual representation of the effectiveness between
the three fuzzing layers and functional testing. While func-
tional tests are run almost instantly, they are limited as they
are individually crafted. The fuzzing method provides bet-
ter results for issue identification.

layer,3,method uncovered all. Layer 3 relies on
fuzz testing and consumes its time budget, with 6
seconds (96 requests) being sufficient to detect all
bugs. However, blind testing raises resource costs,
emphasizing the need for effective time management.
Functional tests can address known issues first, fol-
lowed by sequential application of the three meth-
ods, with layer,3,method extending beyond regres-
sion windows for thoroughness (Do et al., 2008).

An hour-long fuzz testing session for the current
applications generated 61,860 requests and flagged
1,165 issues. Depending on system configurations,
malformed requests might or might not qualify as
bugs. Testers can adjust fuzzer configurations to bet-
ter define bugs and improve relevance.

This study proposes a framework for evaluating
IoT testing solutions against state-of-the-art methods.
Our approach enhances RESTler (Atlidakis et al.,
2019) by integrating graph terminology, dependency
checks, user-provided hints, and test suites, expand-
ing the testing surface. However, it requires addi-
tional setup effort from developers.

7 CONCLUSIONS AND FUTURE
WORK

This paper presented a framework for testing an IoT
software stack using guided fuzzing and introduced
the first open-source application set offering backend-
level reusability for further experimentation. Artifi-
cial errors were inserted to evaluate the effectiveness
of our fuzzing methods, which work in IoT environ-
ments regardless of programming language or hard-
ware. Results were compared based on efficiency in
detecting problems and computation time. Prelimi-
nary findings show that fuzzing effectively identifies

MODE: A Customizable Open-Source Testing Framework for IoT Systems and Methodologies

447

issues in deployed IoT stacks, particularly when de-
velopers contribute with hints, data dictionaries, and
parameter specifications. These inputs can be man-
ually added or automatically extracted from existing
functional tests within our framework. Future plans
include expanding the application set and source code
issues for better method comparisons and investing in
persistence testing with symbolic and concolic execu-
tion to provide faster feedback by identifying linked
parameters.

ACKNOWLEDGEMENTS

This research was supported by European Union’s
Horizon Europe research and innovation programme
under grant agreement no. 101070455, project DYN-
ABIC.

REFERENCES

Al-Hadhrami, Y. and Hussain, F. K. (2021). DDoS attacks
in IoT networks: a comprehensive systematic litera-
ture review. World Wide Web, 24(3):971–1001.

Atlidakis, V., Godefroid, P., and Polishchuk, M. (2019).
RESTler: Stateful REST API Fuzzing. In 2019
IEEE/ACM 41st ICSE, pages 748–758. ISSN: 1558-
1225.

Bures, M., Klima, M., Rechtberger, V., Bellekens, X., Tach-
tatzis, C., Atkinson, R., and Ahmed, B. S. (2020). In-
teroperability and Integration Testing Methods for IoT
Systems: A Systematic Mapping Study. In Software
Engineering and Formal Methods, pages 93–112.

Cristea, R., Feraru, M., and Paduraru, C. (2022). Building
blocks for IoT testing - a benchmark of IoT apps and a
functional testing framework. In 2022 IEEE/ACM 4th
International Workshop (SERP4IoT), pages 25–32.

Cristea, R. and Păduraru, C. (2023). An experiment to build
an open source application for the Internet of Things
as part of a software engineering course. In 2023
IEEE/ACM 5th International Workshop (SERP4IoT).

Dias, J. P., Couto, F., Paiva, A. C., and Ferreira, H. S.
(2018). A Brief Overview of Existing Tools for Test-
ing the Internet-of-Things. In 2018 IEEE ICST, pages
104–109.

Do, H., Mirarab, S., Tahvildari, L., and Rothermel, G.
(2008). An empirical study of the effect of time con-
straints on the cost-benefits of regression testing. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on FSE.

Eceiza, M., Flores, J. L., and Iturbe, M. (2021). Fuzzing
the Internet of Things: A Review on the Techniques
and Challenges for Efficient Vulnerability Discovery
in Embedded Systems. IEEE Internet of Things Jour-
nal. Conference Name: IEEE Internet of Things Jour-
nal.

El-hajj, M., Fadlallah, A., Chamoun, M., and Serhrouchni,
A. (2019). A Survey of Internet of Things (IoT) Au-

thentication Schemes. Sensors, 19(5):1141. Number:
5 Publisher: Multidisciplinary Digital Publishing In-
stitute.

Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. (2020).
AFL++ : Combining Incremental Steps of Fuzzing
Research.

Gaborović, A., Karić, K., Blagojević, M., and Plašić, J.
(2022). Comparative analysis of ISO/IEC and IEEE
standards in the field of Internet of Things.

Gopinath, R. and Zeller, A. (2019). Building Fast Fuzzers.
arXiv:1911.07707 [cs].

Hemmati, H. (2015). How Effective Are Code Coverage
Criteria? In 2015 IEEE International Conference on
Software Quality, Reliability and Security, pages 151–
156.

Sadique, K., Rahmani, R., and Johannesson, P. (2020).
“IMSC-EIoTD: Identity Management and Secure
Communication for Edge IoT Devices”. en. In: Sen-
sors 20.22 (). (Visited on 03/07/2022).

Kühn, F., Hellbrück, H., and Fischer, S. (2018). A Model-
based Approach for Self-healing IoT Systems:. In
Proceedings of the 7th International Conference on
Sensor Networks, pages 135–140.

Lin, J., Li, T., Chen, Y., Wei, G., Lin, J., Zhang, S., and
Xu, H. (2022). foREST: A Tree-based Approach for
Fuzzing RESTful APIs. arXiv:2203.02906 [cs].

Liu, C. (2005). Enriching software engineering courses
with service-learning projects and the open-source ap-
proach. In Proceedings of the 27th ICSE, pages 613–
614. ACM.

Martino, B. D., Esposito, A., and Cretella, G. (2016). To-
wards a IoT Framework for the Matchmaking of Sen-
sors’ Interfaces. In 2016 Intl IEEE Conferences on
Ubiquitous Intelligence & Computing (UIC/ATC/S-
calCom/CBDCom/IoP/SmartWorld), pages 888–894.

Păduraru, C., Cristea, R., and Stăniloiu, E. (2021). Rive-
rIoT - a Framework Proposal for Fuzzing IoT Appli-
cations. In 2021 IEEE/ACM 3rd International Work-
shop (SERP4IoT), pages 52–58.

Seeger, J., Bröring, A., and Carle, G. (2020). Optimally
Self-Healing IoT Choreographies. ACM Transactions
on Internet Technology, 20(3):27:1–27:20.

Tzavaras, A., Mainas, N., and Petrakis, E. G. M. (2023).
OpenAPI framework for the Web of Things. Internet
of Things, 21:100675.

Wang, J., Chen, B., Wei, L., and Liu, Y. (2017). Skyfire:
Data-Driven Seed Generation for Fuzzing. In 2017
IEEE Symposium on Security and Privacy (SP), pages
579–594. ISSN: 2375-1207.

Wu, Y. (2021). Cloud-Edge Orchestration for the Internet of
Things: Architecture and AI-Powered Data Process-
ing. IEEE Internet of Things Journal, 8(16):12792–
12805. Conference Name: IEEE Internet of Things
Journal.

Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., and
Sun, L. (2019). FIRM-AFL: high-throughput greybox
fuzzing of iot firmware via augmented process emula-
tion. In Proceedings of the 28th USENIX Conference
on Security Symposium.

Zhu, X., Wen, S., Camtepe, S., and Xiang, Y. (2022).
Fuzzing: A Survey for Roadmap. ACM Computing
Surveys, pages 230:1–230:36.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

448

