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Abstract: GraphQL is a new query language for APIs that has a different structure from the commonly used REST API,
making it difficult to apply conventional automated testing methods. This necessitates new approaches. This
study proposes GQL-QL, an automated testing method for GraphQL APIs using reinforcement learning. The
proposed method uses Q-learning to explore the test space. It generates requests by selecting API fields and
arguments based on the schema and updates Q-values according to the response. By repeating this process and
learning from it, efficient black-box testing is achieved. Experiments were conducted on publicly available
APIs to evaluate the effectiveness of the proposed method using schema coverage and error response rate as
metrics. The results showed that the proposed method outperformed existing methods on both metrics.

1 INTRODUCTION

Graph Query Language (GraphQL) is a query lan-
guage for APIs released by Meta in 2015 and
has attracted attention as an alternative to REST
APIs(GraphQL Foundation., 2024). It is used in some
of the APIs provided by large services such as Face-
book, Shopify, GitHub, and GitLab. Unlike REST
APIs, GraphQL has a single endpoint where clients
can specify the required fields to retrieve data. This
prevents over-fetching or under-fetching of data and
allows multiple operations to be performed in a sin-
gle API call, enabling fast and secure processing.
However, GraphQL often deals with nested objects
or objects that may involve circular references, mak-
ing it highly complex. Additionally, since it does not
conform to HTTP specifications, it is difficult to use
HTTP status codes for error handling.

Web services are often large and complex, result-
ing in a vast number of potential test cases. End-to-
end (E2E) testing alone may not be sufficient for early
detection of issues or identifying detailed causes of
failures. Therefore, automated API testing plays an
important role in development.

Automated testing for REST APIs has gained sig-
nificant attention. According to Golmohammadi et
al.’s survey (Amid Golmohammadi, 2023), more than
90 papers related to REST API testing had been pub-
lished by 2022. Recent examples of tools that au-
tomatically generate test cases for REST APIs in-

clude EvoMaster (Andrea Arcuri, 2021), RESTler
(Vaggelis Atlidakis, 2019), Morest (Yi Liu, 2022),
and ARAT-RL (Myeongsoo Kim, 2023a). Addition-
ally, various approaches exist such as AGORA (Juan
C. Alonso, 2023), which automatically generates test
oracles, and NLPtoREST (Myeongsoo Kim, 2023b),
which enhances tests using natural language process-
ing.

However, research on automated testing for
GraphQL APIs is still limited; we have identified
only four approaches so far (discussed in Section 2.3).
Moreover, since GraphQL APIs differ significantly
from REST APIs in their approach, it is challenging
to apply existing automated testing methods designed
for REST APIs directly.

In this study, we propose GQL-QL—a black-box
testing method for GraphQL APIs using reinforce-
ment learning. Black-box testing refers to a tech-
nique that tests the system under test (SUT) with-
out using its internal structure or code. This makes
it suitable for applying to other types of APIs com-
pared to white-box testing methods that rely on inter-
nal structures or code. Additionally, since GraphQL
API tests involve a vast exploration space and dy-
namic responses can be utilized in black-box testing,
we believe it is well-suited for exploration using rein-
forcement learning. Therefore, we base our approach
on existing reinforcement learning-based automated
testing methods for REST APIs.

Experiments were conducted using actual
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GraphQL APIs to evaluate our method based on two
metrics: error response rate and schema coverage.
The results showed that our method outperformed
existing methods on both metrics.

This paper is structured as follows: Section 2 in-
troduces related work; Section 3 explains the pro-
posed method GQL-QL; Section 4 presents experi-
mental methods and results along with discussions;
finally, Section 5 concludes this study with future di-
rections.

2 BACKGROUND

2.1 GraphQL

GraphQL refers to both a query language for APIs
and a server-side runtime. In GraphQL, resources are
fetched by extracting a tree structure starting from a
specific node in a graph structure that represents the
application’s data model. Clients can request only the
necessary resources and specify the structure of the
returned results, thus reducing both the size of the re-
sults and the number of network calls.

The benefits of migrating to GraphQL have been
presented in various studies. In a survey by Brito
et al., seven REST APIs were migrated to GraphQL,
and it was reported that the size of the returned JSON
documents was reduced by up to 99%(Gleison Brito,
2019). Another study showed that implementing API
queries with GraphQL required less effort than with
REST APIs, especially for complex endpoints with
many parameters(Gleison Brito, 2020).

In GraphQL, queries must be written according to
the schema. To examine accessible resources, clients
can use introspective queries on the API to obtain
information such as queries, types, fields, and argu-
ments. Listing 1 shows part of a schema obtained
by sending an introspective query to the SpaceX
GraphQL API(Apollo Graph Inc., 2023).

Listing 1: Part of the SpaceX GraphQL API schema.

1"kind": "OBJECT",
2"name": "Query",
3"description": null,
4"fields": [
5 {
6 "name": "capsule",
7 "description": null,
8 "args": [
9 {

10 "name": "id",
11 "description": null,
12 "type": {
13 "kind": "NON_NULL",
14 "name": null,
15 "ofType": {

16 "kind": "SCALAR",
17 "name": "ID",
18 "ofType": null
19 }
20 },
21 "defaultValue": null
22 }
23 ],
24 "type": {
25 "kind": "OBJECT",
26 "name": "Capsule",
27 "ofType": null
28 },
29 "isDeprecated": false,
30 "deprecationReason": null

In this example, information about the Query ob-
ject, which contains a set of available queries as fields,
and the schema information for the capsule query in-
cluded in those fields is shown. The capsule query
takes an ID-type argument called id, and its field is
retrieved as a Capsule object. The fields of the Cap-
sule object are described elsewhere in the schema.

An example query based on this schema is shown
in Listing 2.

Listing 2: Example query for SpaceX GraphQL API.

1query {
2 capsule(id: "5e9e2c5bf35918ed873b2664"){
3 id
4 missions {
5 name
6 }
7 status
8 type
9 }

10}

In this example, id is specified as an argument, and
id, missions, status, and type are specified as fields
from the Capsule object. Since missions is a Capsule-
Mission object, name is specified from its fields. In
this way, it is possible to use objects without specify-
ing all their fields.

The response to this query would look like List-
ing 3. As shown here, when performing queries
in GraphQL, it is necessary to create requests using
appropriate object types and scalar types based on
schema information.

Listing 3: Example response from SpaceX GraphQL API.

1{
2 "data": {
3 "capsule": {
4 "id": "5e9e2c5bf35918ed873b2664",
5 "missions": null,
6 "status": "retired",
7 "type": "Dragon 1.0"
8 }
9 }

10}
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GraphQL has five default scalars: Int, Float,
String, Boolean, and ID. Additionally, users can de-
fine custom scalars. Typical examples include dates,
emails, and UUIDs.

2.2 Q-Learning

Reinforcement Learning (RL) is a type of machine
learning where an agent learns by interacting with
its environment(Richard S. Sutton, 2018). The agent
selects actions in various states and receives re-
wards from the environment based on those actions.
Through trial and error in these interactions—where
actions lead to changes in state—the agent learns be-
havior that maximizes cumulative reward.

Q-learning is a reinforcement learning algorithm
used to estimate an optimal action-value function (Q-
function)(Christopher J. C. H. Watkins, 1992). The
Q-function represents the sum of immediate rewards
obtained by an agent executing action a in state s, plus
future cumulative rewards expected when following
an optimal policy thereafter. These future rewards
are discounted by a discount factor γ. In Q-learning,
Q-values for specific actions taken in each state are
recorded in a Q-table and updated using Equation (1).

Q(s,a)← Q(s,a)+α[r+ γmax
a′

Q(s′,a′)−Q(s,a)]

(1)
Here α is the learning rate; γ is the discount factor;

r is the immediate reward; s′ is the state after action a;
and maxa′Q(s′,a′) represents the maximum Q-value
for actions a′ available in state s′.

In reinforcement learning methods like ε-greedy
are often used to balance exploration and exploita-
tion(Richard S. Sutton, 2018). In Q-learning an ex-
ploration rate ε is set such that with probability 1− ε,
actions with higher Q-values based on current knowl-
edge are chosen (exploitation), while with probability
ε, random actions are selected (exploration).

In automated API testing requests are sent to the
SUT, rewards are obtained based on responses which
are then used to update values.

2.3 API Testing

AutoGraphQL proposed by Zetterlund et
al.(Louise Zetterlund, 2022) is one existing ap-
proach for automated testing of GraphQL APIs.
This tool automatically generates test cases using
GraphQL queries operated by users in production
environments. Through oracles that verify whether
responses conform to GraphQL schemas, schema
violations can be detected.

Vargas et al.(Daniela Meneses Vargas, 2018) pro-
posed deviation testing for GraphQL APIs. This ap-
proach automatically generates tests with small devi-
ations from manually created test cases and detects
failures by comparing their execution results.

A property-based method for generating black-
box test cases from schemas was proposed by Karls-
son et al.(Stefan Karlsson, 2021). This method takes
a GraphQL schema as input and randomly gener-
ates GraphQL queries and argument values using
property-based techniques. It represents one of the
first studies aimed at fully automating test case gener-
ation for GraphQL APIs.

Additionally, Belhadi et al.(Asma Belhadi, 2024)
proposed methods using evolutionary computation
alongside random-based methods. If source code
for a GraphQL API is available and written in sup-
ported programming languages, test cases are gener-
ated through evolutionary search. For black-box test-
ing without source code access, random search is used
to generate queries. These approaches have been in-
tegrated into EvoMaster—an open-source tool for au-
tomated testing of APIs(Andrea Arcuri, 2021).

For REST APIs specifically, ARAT-RL uses
reinforcement learning for automated test-
ing(Myeongsoo Kim, 2023a). This method effi-
ciently explores vast input spaces in API testing by
dynamically analyzing request-response data using
Q-learning to prioritize API operations and param-
eters. Each API operation corresponds to a state;
selecting specific parameters or scalar value mapping
sources corresponds to actions handled through
separate Q-tables. Rewards based on response status
codes update Q-values accordingly.

3 METHOD

In this study, we propose GQL-QL, an adaptation of
ARAT-RL with improvements to make it suitable for
GraphQL APIs.

First, the schema of the SUT is retrieved using an
introspective query, and Q-values are assigned to each
field and argument for initialization. Next, requests
are generated by referencing the Q-values of fields
and arguments, prioritizing API operations while se-
lecting fields and arguments. Then, based on the con-
tent of the response, the rewards for each value are
updated, and requests are generated repeatedly.

The details of each step are described below.
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3.1 Initialization

In this section, we determine the structure of the Q-
table based on the retrieved schema and assign initial
values.

First, we set the learning rate α, discount rate γ,
and exploration rate ε, and retrieve the schema of the
SUT using an introspective query. The schema ob-
tained here has a graph structure, but to make it easier
to trace parameters and their associated fields when
generating requests, we reshape the schema data into
a tree structure with the name of each API operation
as the root node. To prevent circular references in ob-
ject fields, we set a maximum depth for object fields.
If an object reference exceeds this depth, that field is
treated as a leaf node.

Next, we initialize the Q-table for parameters and
scalar value mapping sources with an empty dictio-
nary. The Q-table for scalar value mapping sources is
structured so that each mapping source field belongs
to a specific API operation, with each value initialized
to 0. The Q-table for parameters is managed in a tree
structure based on the reshaped schema data, where
arguments and fields are assigned to each API opera-
tion as shown in Figure 1. Each node in the parameter
tree contains information such as name, Q-value, an
array of belonging fields (child nodes), whether it is
an array or not, whether it allows NULL values or not,
and whether it was selected during request genera-
tion. Only leaf nodes contain information about scalar
types. Each node in the field tree contains informa-
tion such as name, Q-value, and an array of belong-
ing fields (child nodes). Finally, we record how many
times each parameter name appears in the parameter
Q-table and initialize each node’s Q-value based on its
appearance count. Parameters that appear frequently
are likely important and are prioritized for selection.

Figure 1: Model of parameter Q-table in GQL-QL.

3.2 Prioritization of API Operations
and Parameters

In this section, we select optimal API operations, pa-
rameters, and scalar value mapping sources based on
Q-values to generate requests.

First, we select which API operation to execute.
If a random value is greater than ε, we calculate the
average Q-value from the total Q-value and number
of nodes for all arguments and fields in each API op-
eration. The API operation with the highest average
Q-value is selected; otherwise, a randomly selected
API operation is chosen.

Next, parameters are selected based on their Q-
values, and scalar values are generated using the se-
lected scalar value mapping source. For parameter
nodes at depth d that share the same parent element, a
random integer n is chosen between 1 and (number of
nodes - d). By limiting the number of selected param-
eters in this way, we prevent requests from becoming
excessively large. If a random value is greater than ε,
we select the top n parameters with high Q-values;
otherwise, n available parameters are randomly se-
lected. At this time, if non-NULL parameters have
not been selected yet, they are additionally selected. If
a selected node has children, its depth is updated and
similar processing is performed to select parameters.
When a leaf node containing scalar type information
is selected and if a random value is greater than ε, we
refer to the scalar value mapping source’s Q-table to
use the source with the highest Q-value; otherwise, a
random source is chosen to generate scalar values. In
this study, we use ‘default‘ and ‘random‘ as mapping
sources: ‘default‘ returns preset default values while
‘random‘ returns random values.

In this way, API operations, parameters, and
scalar values for arguments are obtained to generate
requests.

3.3 Update Q-table

In this section, requests are executed based on what
was generated earlier, and then Q-values are updated
according to responses.

Since GraphQL cannot accurately use HTTP sta-
tus codes for error handling purposes, success or fail-
ure is determined by whether an ‘errors‘ object ex-
ists in the response. In case of success, 1 point is
subtracted from the selected scalar value mapping
source’s Q-value; immediate reward r is assigned as
-1; then negative updates are made to selected param-
eter nodes’Q-values using Equation (1). In case of
failure (error), it determines whether it was a valid
error based on error messages. If strings such as ”ex-
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ceeded” or ”throttled” appear in messages indicating
rate limit errors—unlikely related to detecting fail-
ures in SUT—they are treated as invalid errors and
skipped. If retry times can be obtained from mes-
sages, that amount of time will be waited; otherwise
10 seconds will be waited before generating subse-
quent requests again. If errors were valid ones in-
stead (i.e., related to failure detection), 1 point will be
added back into chosen scalar value mapping source’s
Q-value while assigning immediate reward r as +1;
positive updates would then occur within parameter
nodes accordingly using Equation (1). Additionally
recorded logs contain error messages during these
cases.

In summary: by prioritizing both API operations
alongside respective parameters via continuous up-
dates through feedback loops derived from real-time
responses—efficient exploration across entire testing
space becomes feasible.

4 EVALUATION

4.1 Experiment

To evaluate the proposed method, we tested an actual
GraphQL API using GQL-QL. The SpaceX GraphQL
API, which is publicly available and does not require
authentication, was adopted as the test target. The test
environment used Windows 11 with WSL2, and the
CPU was an Intel Core i5-10210U. The learning ex-
ecution time was set to 12 hours, with a learning rate
α of 0.1, a discount rate γ of 0.99, and an exploration
rate ε of 0.1. For comparison with existing methods,
we generated tests using EvoMaster’s black-box test-
ing method, as explained in Section 2.3, with the same
execution time.

The evaluation metrics used were the error re-
sponse rate and schema coverage. The error response
rate indicates the proportion of responses received
that were returned as errors. A higher value suggests a
higher ability to detect failures. Schema coverage in-
dicates the proportion of accessible types and field in-
formation in the schema that could be accessed during
request generation. For calculating coverage, we used
the GraphQL-Inspector(THE GUILD, 2019) cover-
age tool. This tool returns the number of queries,
mutations, and subscriptions in the SUT schema and
the schema coverage when provided with the SUT’s
schema file and GraphQL request files. Schema cov-
erage is calculated using the following metrics:

• Types coverage: The proportion of types in the
schema that were covered by tests.

• Types fully coverage: The proportion of types
whose fields were fully covered by tests.

• Fields coverage: The proportion of fields in the
schema that were covered by tests.

4.2 Results

The results for schema coverage at each iteration ob-
tained using GQL-QL are shown in Figures 2, 3, and
4.

Figure 2: Types coverage rate per iteration.

Figure 3: Types fully coverage rate per iteration.

Without relying on specific types or fields, these
schema coverages has effectively improved with each
iteration. This result indicates that GQL-QL success-
fully implements an appropriate prioritization and ex-
ploration strategy.

The comparison between GQL-QL and EvoMas-
ter’s black-box testing method is shown in Table 1.

In both metrics—error response rate and schema
coverage—GQL-QL achieved better results than ex-
isting methods. In particular, GQL-QL significantly
outperformed existing methods in terms of types fully
covered. This suggests that Q-learning’s prioritization
mechanism is functioning well while maintaining a
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Figure 4: Fields coverage rate per iteration.

Table 1: Comparison of results between EvoMaster and
GQL-QL.

EvoMaster GQL-QL
Error response rate 13.6% 41.1%
Types coverage 80.3% 82.0%
Types fully coverage 29.5% 70.5%
Fields coverage 67.7% 84.4%

balance between exploitation and exploration without
repeatedly referencing the same API operations or pa-
rameters.

The error response rate per iteration obtained us-
ing GQL-QL is shown in Figure 5. The error codes
and their occurrences are listed in Table 2.

Figure 5: Error response rate per iteration.

Among the recorded errors, some are related to
failure detection, such as INTERNAL SERVER E
RROR, SUBREQUEST HTTP ERROR, and SUB
REQUEST SUBREQUEST MALFORMED RESP
ONSE, but there were also invalid errors like PARS
ING ERROR and GRAPHQL VALIDATION FAI
LED. These invalid errors likely occurred due to is-
sues with data structure during request generation or
missed cases when distinguishing invalid errors. In

Table 2: Recorded error codes and their occurrences.

Error code Error number
PARSING ERROR 602

INTERNAL SERVER ERROR 81
GRAPHQL VALIDATION

FAILED 15
SUBREQUEST HTTP ERROR 1

SUBREQUEST SUBREQUEST
MALFORMED RESPONSE 1

particular, PARSING ERROR accounted for most of
the errors in this experiment; this error was caused by
requests exceeding token limits due to their size, in-
dicating insufficient measures to control request size.

5 CONCLUSION

In this study, we proposed GQL-QL, a reinforcement
learning-based method for automated black-box test-
ing of GraphQL APIs. Using Q-learning, we priori-
tized the API operations and parameters to be tested
and constructed a Q-table in a tree structure to ac-
commodate the GraphQL request format. In com-
parison experiments with existing methods, GQL-QL
achieved better results in both error response rate and
schema coverage. However, challenges remained in
calculating the error response rate.

Four future challenges are identified: First, ex-
panding the method for generating scalar values. In
this study, only default and random values were used,
but it will be necessary to enable testing of more di-
verse patterns, such as intelligently generating values
from schema descriptions. Second, improving the re-
ward assignment method. In the proposed method,
the same reward was given for all errors. By as-
signing different rewards based on error codes or er-
ror message content, it is believed that the likeli-
hood of uncovering more meaningful errors can be
increased. Third, expanding the types of APIs to be
tested. In this experiment, a medium-scale API was
used, but it is desirable to conduct validation on larger,
more practical APIs. Finally, revisiting the evaluation
method for failure detection capabilities. In this study,
we used the error response rate; however, it included
invalid errors. It will be necessary to calculate more
reliable evaluation metrics by using a test GraphQL
API with embedded faults for validation.
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