
Keywords:

Abstract: Puns are clever wordplays that exploit sound similarities while contrasting different meanings. Such complex
puns remain challenging to create, even with today’s advanced large language models. This study focuses on
generating Japanese juxtaposed puns while preserving the original meaning of input sentences. We propose
a novel approach, applying Direct Preference Optimization (DPO) after supervised fine-tuning (SFT) of a
pre-trained language model, utilizing synthetic data generated from the SFT model to refine pun generation.
Experimental results indicate that our approach yields a marked improvement, evaluated using neural network-
based and rule-based metrics designed to measure pun-ness, with a 2.3-point increase and a 7.9-point increase,
respectively, over the baseline SFT model. These findings suggest that integrating SFT with DPO enhances
the model’s ability to capture phonetic nuances essential for generating juxtaposed puns.

1 INTRODUCTION

In recent years, natural language generation has
made remarkable advances. Large Language Models
(LLMs) have achieved significant results in various
text generation tasks, such as translation, summariza-
tion, and code generation (Zhao et al., 2023). Despite
the advances, generating humor remains a challeng-
ing task. Although it is reported that ChatGPT (Ope-
nAI, 2022) can produce humorous output, research by
Jentzsch et al. shows that novel humor creation re-
mains difficult, as much of LLM’s humor relies on
existing patterns (Jentzsch and Kersting, 2023).

One well-known form of humor is the pun, which
typically involves wordplay based on phonetic simi-
larities between words. For example, “I scream every
time I see ice cream” and “I used to be a banker, but I
lost interest” demonstrate this wordplay.

Previous research has proposed various ap-
proaches to pun generation, including database-driven
methods (Araki, 2018) and training a Transformer
on pun databases (Hatakeyama and Tokunaga, 2021).
Researchers have also tried to align pun generation

with human preferences through two-stage tuning
using Direct Preference Optimization (DPO) (Chen
et al., 2024). However, existing methods insuffi-
ciently consider the meaning of the generated puns,
focusing mainly on creating puns that incorporate
specific input words. For instance, when trying to
generate a pun expressing “It won’t snow tomorrow,”
one might expect an output like “I guess, no snow
tomorrow.” Yet, generating such meaning-preserved
puns remains challenging in previous studies.

In this study, we focus on Japanese juxtaposed
puns, which present two phonemically similar and se-
mantically different sequences of phonemes that ap-
pear together (Yatsu and Araki, 2018). For instance,
“I scream every time I see ice cream” qualifies as
a juxtaposed pun since “I scream” and “ice cream”
share phonemic similarity and carry different mean-
ings. This form of wordplay is independent of cultural
background knowledge and can be evaluated based
solely on the text, making it easily applicable across
languages. In Japanese, the phrase “布団が吹っ飛ん
だ” (The futon blew away; futon ga futton da) is an
example of a pun where the humor comes from the
similar sounds in the words. Even people who don’t
understand Japanese can recognize it as a pun if they
hear how it is pronounced.

Pun generation requires balancing phonetic and
semantic constraints, making it difficult to produce

Natural Language Processing, Natural Language Generation, Language Models, Preference Learning, Humor
Generation, Pun Generation.

Tomohito Minami, Ryohei Orihara a, Yasuyuki Tahara b, Akihiko Ohsuga c and Yuichi Sei d

The University of Electro-Communications, Chofu, Japan
minami.tomohito@ohsuga.lab.uec.ac.jp, orihara@acm.org, {tahara, ohsuga, seiuny}@uec.ac.jp

Punish the Pun-ish: Enhancing Text-to-Pun Generation
with Synthetic Data from Supervised Fine-Tuned Models

a https://orcid.org/0000-0002-9039-7704
b https://orcid.org/0000-0002-1939-4455
c https://orcid.org/0000-0001-6717-7028
d https://orcid.org/0000-0002-2552-6717

Minami, T., Orihara, R., Tahara, Y., Ohsuga, A. and Sei, Y.
Punish the Pun-ish: Enhancing Text-to-Pun Generation with Synthetic Data from Supervised Fine-tuned Models.
DOI: 10.5220/0013262900003890
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 1093-1100
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

1093

high-quality puns. Furthermore, defining clear rules
for evaluating puns is difficult because their humor re-
lies on human subjectivity. To address the challenges,
we propose a two-stage procedure. First, we perform
supervised fine-tuning (SFT) on the LLM to learn ba-
sic pun generation skills. Next, we apply Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024) to
align the model with human preferences by introduc-
ing preference pairs generated from the SFT model
and ground truth puns.

This DPO process allows the model to align more
closely with human preferences, enabling it to capture
the essential features of puns more effectively. Ex-
perimental results show that our approach improves
the pun-ness metrics, with a 2.3-point increase in neu-
ral network-based scores and a 7.9-point rise in rule-
based scores over the baseline SFT model.

The key contributions of this study are: (i) De-
velopment of an LLM generating juxtaposed puns
while preserving sentence meaning. (ii) Proposal of
a framework for constructing pun-paraphrase pairs
from a pun-only dataset. (iii) Demonstration that
DPO-based learning with synthetic data improves pun
quality over simple supervised fine-tuning.

2 RELATED WORKS

2.1 Pun Generation

Japanese Pun Database. Araki et al. constructed a
Japanese pun database containing 67,000 entries col-
lected from web sources (Araki et al., 2018; Araki
et al., 2020). Japanese puns typically have two phone-
mically similar components: a seed expression and a
transformed expression. A seed expression consists
of one or more independent morphemes or phrases.
In contrast, a transformed expression is a phoneme se-
quence located elsewhere in the sentence that sounds
similar to the seed expression.

The database classifies puns into two categories:
juxtaposed and superposed. Juxtaposed puns, ex-
emplified by “I scream every time I see ice cream,”
explicitly contain both the seed expression (I scream)
and the transformed expression (ice cream) within a
sentence. Superposed puns, exemplified by “You’ve
got to be kitten meow!”, rely on the implicit seed ex-
pression (kidding me), which can be inferred from
background knowledge or context.

Pun Generation via GAN and Reinforcement
Learning. Luo et al. proposed Pun-GAN (Luo
et al., 2019), a system that generates English puns us-
ing a Generative Adversarial Network (GAN) (Good-

fellow et al., 2014) and reinforcement learning. Pun-
GAN’s generator generates puns, and the discrimina-
tor determines whether the pun is machine-generated.
For human-created puns, the discriminator also iden-
tifies the meaning of the pun word. Feedback is given
as a reward based on two factors: machine-generation
detection and the ambiguity of the seed expression’s
meaning. The generator learns to maximize the re-
ward, and the discriminator learns to detect puns gen-
erated by the generator.

Pun Generation via Curriculum Learning. Chen
et al. introduced a multi-stage curriculum learning
framework to improve LLMs’ pun-generation capa-
bilities (Chen et al., 2024). Their method generates
humorous sentences from word pairs containing a pun
and an alternative word. Learning process through
DPO-based optimization: first refining puns’ struc-
tural features, then improving humor quality. This
sequential two-stage approach improves each element
progressively. Their evaluation of the method on Chi-
nese and English datasets showed superior perfor-
mance over existing models.

2.2 Preference Learning

Reinforcement Learning from Human Feedback.
Ziegler et al. used reinforcement learning to fine-tune
pre-trained language models based on human prefer-
ences (Ziegler et al., 2020). This method is known
as Reinforcement Learning from Human Feedback
(RLHF). In RLHF, a reward model is learned from
human evaluations, guiding the language model to
maximize this reward. The result is more natural text
generation with consistent stylistic elements, includ-
ing emotional expression and descriptive richness.

Direct Preference Optimization. Rafailov et al. in-
troduced Direct Preference Optimization (DPO) as
an alternative to RLHF. Unlike RLHF, DPO directly
learns user preferences using classification loss from
paired data, avoiding reinforcement learning and its
complex training processes. This simplification en-
ables stable and efficient learning. DPO has achieved
performance comparable to or better than reinforce-
ment learning methods across tasks such as sentiment
adjustment, summarization, and dialogue generation,
improving learning efficiency and task outcomes.

3 PROBLEM DEFINITION

Previous studies have focused on generating puns
by incorporating specific input words. For example,

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1094

given weak and week, a model might generate the
pun “I lift weights only on Saturday and Sunday be-
cause Monday to Friday are weak days.” In contrast,
this research tackles generating juxtaposed puns from
arbitrary sentences, preserving their original mean-
ing. For instance, given “Seeing ice cream makes
me shout”, a model generates “I scream every time I
see ice cream.” Unlike previous studies, this approach
does not depend on explicitly provided pun words; in-
stead, it leverages phonetic wordplay to align with the
input’s semantics.

This study particularly focuses on generating
Japanese juxtaposed puns, which are popular in Japan
and have plentiful data available. For example, given
the input “布団が飛んでいきました” (futon ga tonde
ikimashita; the futon flew away), the model generates
the pun “布団が吹っ飛んだ” (futon ga futton da; the
futon blew away).

4 METHOD

4.1 The Pun Paraphrase Dataset

In this study, we explore the task of generating
Japanese juxtaposed puns from arbitrary Japanese
sentences. To fine-tune a pre-trained language model
through supervised learning, a dataset with paired
puns and their paraphrased versions is required.

To create the dataset, which we call the pun para-
phrase dataset, we generated pairs of puns and their
paraphrased versions using the pun database (Araki
et al., 2018), a resource composed solely of puns.
This database contains juxtaposed puns, their struc-
tural information, and human evaluations.

4.1.1 Splitting the Pun Dataset

First, we have split the pun dataset into training, val-
idation, and test sets. Random splitting could cause
data leakage. In the context of puns, due to common
set phrases and popular expressions, similar or identi-
cal puns often appear multiple times in the dataset. If
such related puns appear across different splits, per-
formance metrics might be inflated, reflecting memo-
rization instead of generalization. To address this, we
developed a specialized splitting method.

We have divided the puns in the database into
groups. Let d(S,T) denote the edit distance between
S and T , and E(S) represent the set of seed and trans-
formed expressions of pun S. For any two juxtaposed
puns S and T , we have grouped them if d(S,T) ≤ 4
and there exist s∈E(S), t ∈E(T) such that d(s, t)≤ 1.
This approach aggregates similar puns.

Next, we have assigned each group to the train-
ing, validation, or test set, ensuring that similar puns
stayed within one set. This minimizes data leakage.
We have split the dataset into training, validation, and
test sets in a ratio of 90:5:5, resulting in 58,193 / 3,165
/ 3,164 puns, respectively.

4.1.2 Paraphrasing

To paraphrase the puns, we have filtered the database
for entries with an average annotator score of 2 or
higher on a 5-point scale1. This resulted in 62,429
puns for paraphrasing. The entire dataset was also
used for training neural network-based pun detection
in Section 6.1.

For paraphrase, we have used GPT-4o mini (gpt
-4o-mini-2024-07-18) (OpenAI, 2024b) and gen-
erated 10 paraphrases for each pun, specifying 10
styles: standard, colloquial, formal, descriptive, po-
etic, concise, for children, exaggerated, negative, and
positive. The prompt is available online2 (Prompt A).

This yielded 645,008 pairs of puns and para-
phrases. We have selected pairs meeting both criteria:

• Cosine similarity between their text embedding
vectors generated by text-embedding-3-larg
e (OpenAI, 2024a) is 0.7 or higher.

• Normalized edit distance is 0.5 or higher

To prevent imbalance, we have randomly selected
up to three paraphrases per pun from filtered re-
sults. This resulted in 172,167 pairs of puns and para-
phrases, split into training, validation, and test sets
containing 155,779 / 8,161 / 8,227 pairs, respectively.

4.2 Training a Pun Generation Model

We aim to develop a language model that transforms
input sentences into juxtaposed puns while preserv-
ing their meanings. The model is trained through the
following main steps:

1. Supervised fine-tuning (SFT) of a pre-trained lan-
guage model using the pun paraphrase dataset to
enable it to generate pun-style sentences. We call
this model the SFT model.

2. Inference on the training and validation sets using
the SFT model.

3. Further optimization with Direct Preference Op-
timization (DPO), using the SFT model outputs

1The scoring scale: 5 (very funny), 4 (funny), 3 (av-
erage), 2 (unfunny), 1 (very unfunny or not a pun) (Araki
et al., 2018).

2The prompts used in this study can all be found here:
https://link.trpfrog.net/pun-ish

Punish the Pun-ish: Enhancing Text-to-Pun Generation with Synthetic Data from Supervised Fine-tuned Models

1095

labeled as dispreferred and ground truth puns la-
beled as preferred, to enhance generation quality.

While SFT enables language models to generate
pun-style text, ensuring high-quality outputs remains
challenging due to the difficulty of creating a complex
pun structure while preserving meaning. Therefore,
we apply DPO using paired SFT outputs and ground
truth puns to enhance the model’s understanding of
pun structure and content.

4.2.1 Fine-Tuning with Pun Paraphrase Dataset

For supervised fine-tuning in pun generation, we use
the pun paraphrase dataset created in Section 4.1. By
training on pun-paraphrase pairs, the model learns
to transform input sentences into puns while main-
taining their meaning. The specific prompt and re-
sponse templates for this training are available online
(Prompt B).

4.2.2 Inference with the SFT Model

We apply the SFT model to generate puns from the
pun paraphrase dataset’s training and validation sets.
The generated puns are combined with their corre-
sponding input paraphrases and ground truth puns,
forming a triplet. We call this the pun preference
dataset, used for subsequent preference training.

4.2.3 Preference Training

While SFT enables basic pun-style text generation,
achieving high-quality outputs requires additional op-
timization. Effective pun generation demands not
only stylistic transformation, such as replacing the
original expressions with conversational ones fre-
quently found in Japanese puns, but also meaning
preservation and clever wordplay that reflects the
characteristics of puns. We address this challenge
through Direct Preference Optimization (DPO).

DPO improves model performance by maximiz-
ing the probability gap between preferred and dis-
preferred outputs. However, focusing solely on this
probability gap can decrease the absolute probabil-
ity of preferred outputs during training. For exam-
ple, even if the probability of both the preferred and
dispreferred outputs decreases, the DPO loss is mini-
mized as long as the probability gap increases. To ad-
dress this limitation, we used the APO-zero loss func-
tion from Anchored Preference Optimization (APO)
(D’Oosterlinck et al., 2024). APO-zero is designed to
increase the probability of the preferred output while
decreasing the probability of the dispreferred out-
put. It is particularly effective when ground truth data
quality exceeds model output quality. In our case, it

is effective because the ground truth puns have higher
quality than the SFT model-generated puns.

By using DPO with APO-zero, we enhance the
model’s pun generation capability beyond basic SFT.
In this stage, we use the pun preference dataset gen-
erated in Section 4.2.2. We label the outputs from the
SFT model as dispreferred texts and the original puns
from the pun database as preferred texts. This com-
parison between model-generated puns and human-
created ones enables the model to learn subtle nu-
ances, helping it generate high-quality puns with a
nuanced understanding of pun structures, rather than
simply replicating stylistic elements.

5 EXPERIMENT

Supervised Fine-Tuning. In our experiments, we
first fine-tuned the Japanese version of the Gemma 2
2B model (google/gemma2-2b-jpn-it) on the pun
paraphrase dataset (Section 4.1) for five epochs using
LoRA (Hu et al., 2022) with rank r = 16, α = 64, and
dropout = 0.1. The batch size was eight, the learning
rate was 3×10−5 with AdamW, and a cosine anneal-
ing scheduler with a 10% warmup ratio was applied.
The model from the second epoch, achieving the low-
est validation loss, was selected. For inference to cre-
ate the pun preference dataset, puns were generated
with a temperature of 0.8 and top-p = 0.8.

Fine-Tuning with DPO. Building on the super-
vised fine-tuned model, we trained it with DPO for
two epochs using LoRA with rank r = 16, α = 64,
and dropout = 0.1. The batch size was two, with gra-
dient accumulation steps set to four. The maximum
learning rate was 1×10−7 with AdamW, and a cosine
annealing scheduler was applied, with the first 10% of
steps used for warmup. For DPO, we used APO-zero
as the loss type, with a beta value of 0.5.

Text Generation. We used top-p sampling (p =
0.8) with a temperature of 0.8 to generate puns. For
comparison, GPT-4o (gpt-4o-2024-11-20) (Ope-
nAI, 2024c) was employed under identical settings.

6 EVALUATION

This study automatically evaluated the generated puns
using several metrics.

Edit Distance. Edit distance, a metric for measur-
ing string similarity, was used to evaluate the similar-

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1096

ity between generated and reference puns. We also
calculated it for the Romanized forms of the puns,
where Japanese text is transliterated into Latin charac-
ters (e.g., “ありがとう” (thank you) becomes “ariga-
tou”). Since Romanization reflects the phonetic fea-
tures of Japanese, this evaluates phonetic similarity.

Semantic Similarity. To evaluate the semantic sim-
ilarity between the input sentence and generated pun,
we used OpenAI’s text-embedding-3-large em-
bedding model (OpenAI, 2024a). Cosine similarity
between the embeddings of the input and the gener-
ated pun served as the semantic similarity metric.

Pun-ness. We evaluated the pun-ness of the gener-
ated text using a neural network-based pun detector, a
rule-based pun detector, and a pun DB-based metric.
Details are provided in Section 6.1.

LLM-as-a-Judge. To evaluate the quality of gener-
ated puns comprehensively, we used LLM as an au-
tomated evaluator, comparing our model to baselines
on semantic similarity, pun quality, humor, and over-
all quality. Details are provided in Section 6.2.

6.1 Pun-ness

Pun-nessD(t) = min
d∈D

EditDistance(tr,dr)

max(|tr|, |dr|)
(1)

Precision Recall F1
CPDN (NN-based) 0.927 0.898 0.913
DaaS (Rule-based) 0.761 0.812 0.786

6.2 LLM-as-a-Judge Evaluation

We employed an automated evaluation method us-
ing large language models (LLMs), based on a previ-
ous study showing that strong LLMs can approximate
human judgments with high agreement rates (Zheng
et al., 2024). We used OpenAI’s GPT-4o (gpt-4o-2
024-11-20) as the evaluator with a temperature pa-
rameter of 0 to ensure consistency.

We compared outputs from four sources: our pro-
posed model, the base model, the SFT model, and
ground truth puns, through pairwise comparisons.
Each evaluation involved a randomly sampled tuple
(Input, Output A, Output B) from the test set, with
500 tuples per model pair. To avoid self-enhancement
bias, we excluded GPT-4o outputs. To minimize po-
sition bias, we alternated output order and recorded
draw in case of conflicts.

Outputs were evaluated on four criteria: semantic
similarity to the input, quality as a juxtaposed pun,
humor, and overall quality. The evaluator selected the
better output or considered both acceptable. The eval-
uation prompts are available online (Prompt C).

7 RESULTS AND DISCUSSION

7.1 Quantitative Evaluation

Table 2 shows the results of the quantitative evalu-
ation. Fine-tuning the Japanese Gemma 2B model
with our pun paraphrase dataset outperformed GPT-
4o across most metrics, except for semantic similar-
ity. It indicates that our dataset, designed for generat-
ing puns, helped the model learn pun-ness effectively.
In contrast, GPT-4o emphasized semantic similarity
over pun-ness, resulting in higher semantic similarity
scores. High semantic similarity can limit the flexibil-
ity required for puns, as seen in GPT-4o’s results. The
results suggest that GPT-4o shows lower pun-ness,
while our model achieves higher pun-ness with lower
semantic similarity than GPT-4o.

Additional training with DPO enables our model
to surpass baseline scores on all three pun-ness met-
rics. We attribute this to DPO’s preference learning
approach, which captured pun characteristics that su-
pervised fine-tuning alone was unable to capture.

Table 1: Classification performance of the CPDN and DaaS
pun classifier.

Neural Network-Based Pun Detection. We used
the Convolutional Pun Detection Network (CPDN)
(Minami et al., 2023) to detect juxtaposed puns. Jux-
taposed puns feature words with similar phonemes.
CPDN detects puns by leveraging this characteris-
tic. Table 1 shows the results of the pun classifier.
We used the percentage of texts identified as puns by
CPDN as the neural network-based pun-ness.

Rule-Based Pun Detection. We used DaaS, a rule-
based pun detector (Ritsumeikan University Dajare
Club, 2020). DaaS processes text into readings and
morphemes, checking for puns via overlapping mor-
phology, exact character matches, or phonetic simi-
larities. We used the percentage of texts identified as
puns by DaaS as the rule-based pun-ness.

Pun DB-Based Metrics. We also evaluated pun-
ness using the minimum normalized edit distance be-
tween the Romanized form of a generated pun and
puns in the pun database. Let tr be the Romaniza-
tion of text t. The pun DB-based pun-ness in the pun
database D is defined as follows.

Punish the Pun-ish: Enhancing Text-to-Pun Generation with Synthetic Data from Supervised Fine-tuned Models

1097

Table 2: Quantitative evaluation results for pun generation. Bold indicates the best value, underline the second-best, excluding
Input and Ground Truth rows. Semantic denotes the semantic similarity between the input sentence and the generated pun.
NN, Rule, and DB denote the neural network-based, rule-based, and pun DB-based pun-ness metrics, respectively.

Edit Distance (↓) Semantic (↑)
Pun-ness

Original Romanized NN (↑) Rule (↑) DB (↓)

GPT-4o (gpt-4o-2024-11-20) @1-shot 0.702 0.610 0.863 0.273 0.197 0.562
Base model @1-shot 0.814 0.700 0.664 0.098 0.072 0.576

SFT only @0-shot 0.575 0.465 0.813 0.753 0.500 0.401
Ours (SFT + DPO) @0-shot 0.604 0.473 0.738 0.776 0.579 0.394

Input (Test set) 0.626 0.545 1.000 0.349 0.209 0.507
Ground Truth (Test set) 0.000 0.000 0.803 0.905 0.826 0.000

Table 3: Comparison results of generated text, judged by
GPT-4o. Win represents better performance, Draw equal
performance, and Lose worse performance of our method.
Bold indicates the best value, underline the second-best.

Metric Ours vs Win Draw Lose

Semantic
Similarity

Base Model 0.312 0.184 0.504
SFT only 0.106 0.286 0.608

Ground Truth 0.044 0.208 0.748

Juxtaposed
Pun Quality

Base Model 0.898 0.072 0.030
SFT only 0.654 0.258 0.088

Ground Truth 0.318 0.264 0.418

Humor
Base Model 0.676 0.154 0.170

SFT only 0.662 0.220 0.118
Ground Truth 0.338 0.200 0.462

Overall
Quality

Base Model 0.632 0.218 0.150
SFT only 0.652 0.212 0.136

Ground Truth 0.274 0.220 0.506

Our model’s outputs showed lower semantic simi-
larity to the input than the SFT model’s outputs. This
may be attributed to the preference dataset, where
ground truth puns exhibited lower semantic similarity
than the SFT model’s outputs. As a result, the model
guided by DPO learned to favor lower semantic simi-
larity, prioritizing pun characteristics.

7.2 LLM-as-a-Judge Evaluation

Table 3 shows the results of the LLM-as-a-Judge eval-
uation. In the LLM-as-a-Judge evaluation, our pro-
posed method outperformed baselines in juxtaposed
pun quality. While quantitative metrics indicate slight
improvement over the baseline SFT model, LLM-as-
a-Judge evaluations suggest that our method’s puns
exhibit markedly more pun-ness given the same in-
put. It shows the effectiveness of our approach.

Furthermore, the proposed method greatly ex-
ceeded the baselines in humor and overall qual-
ity metrics. This suggests that preference learning
through DPO helped capture not only structural ele-
ments of pun-ness but also nuances of humor. This
result is noteworthy because it not only applies to pun
generation but also makes a meaningful contribution
to the broader field of humor generation.

Although pun generation remains challenging for
LLMs, we used an LLM to evaluate puns. When com-
paring our model’s outputs to human-created ground
truth, we observed that Lose received the highest eval-
uation rate. This suggests that GPT-4o can effec-
tively evaluate puns, supporting its use as a metric.
While further investigation is required, LLM-based
pun evaluation appears to be a viable option.

7.3 Observations from Examples

Table 4 shows examples of generated puns. The
example “モヤシ食べちゃった、もうやぁ失点!
(Moyashi tabechatta, mou yaa shitten!; I ate the bean
sprouts, oh no, a point lost!)”. This example high-
lights the model’s ability to generate unique puns
by leveraging phonetic similarities, such as between
“moyashi” (bean sprouts) and “mou yaa shitten” (oh
no, a point lost). Notably, “mou yaa shitten” is an un-
common colloquial phrase in Japanese, intentionally
chosen here to align with “moyashi” and enhance the
pun’s effect.

While effective, adding “mata” (また, again) to
“moyashi tabechatta” (I ate the bean sprouts) to form
“Mata moyashi tabechatta” (またモヤシ食べちゃっ
た, I ate the bean sprouts again) could improve se-
mantic similarity without reducing pun quality. This
suggests the model has yet to fully balance pun-ness
and semantic similarity.

Another example shows that our model produced
a better pun structure than the ground truth.

Ours:
Neta

ネタ
content
or ideas

dukuri

作り
make

ya

屋
specialist

wa

は
is

neta

寝た
slept

shokunin

職人
craftsman

ya

や
a Kansai

dialect ending

!

Ground Truth:
Neta

ネタ
content
or ideas

shokunin

職人
craftsman

wa

は
is

neta

寝た
slept

shokunin

職人
craftsman

desu

です
polite
ending

!

This output of our model uses “Neta....ya,” as a
seed expression. In contrast, the ground truth relies
only on “Neta.”3 Generally, creating puns with long

3“Shokunin” does not meet the criterion of possessing

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1098

Table 4: Examples of generated puns. Romanized expressions and English translations were manually annotated. Parentheses
() and square brackets [] in Romanized expressions indicate the seed and transformed expressions. Pun? indicates if the text
is a pun, and Sim.? indicates if it functions as a paraphrase of the original. ✓ denotes a positive result. Numbers in parentheses
in Pun? show the phoneme count of the seed (greater is better). △ in Sim.? indicates unclear or uncertain similarity. GT
denotes the ground truth. Note that Pun? and Sim.? evaluations in this table are based on the authors’ subjective judgment.

Japanese (Model Output) Romanized Expression English Translation Pun? Sim.?

Input もう一度モヤシを食べて、また大
失敗してしまった！

Mou ichido moyashi o tabete, mata daiship-
pai shite shimatta!

I ate bean sprouts once again and made a big
mistake again!

N/A

GPT-4o モヤシをもう一度食べたら、もや
もやっと大失敗しちゃった！

(Moya)shi o mou ichido tabetara, [moya]
moya tto dai shippai shichatta!

When I ate bean sprouts once more, I ended
up making a big mistake in a moyamoya
way! [*1]

✓(4) ✓

Base Model もう一回、モヤシを食べて、その
失敗を大いに笑って過ごそう！

Mou ikkai, moyashi o tabete, sono shippai o
ooi ni waratte sugosou!

Let’s eat bean sprouts once more and spend
our time greatly laughing at that failure!

△

SFT Model モヤシをまた食べて、もやっしい! (Moyashi) wo mata tabete, [moyashii]! I ate bean sprouts again, it’s moyaccy! [*2] ✓(7)
Ours モヤシ食べちゃった、もうやぁ失

点!
(Moyashi) tabechatta, [mou yaa shi]tten! I ate bean sprouts, oh no, a point lost! ✓(7) △

GT また、モヤシ食って、またもや、
しくった。

(Mata, moyashi ku)tte, [mata moya,
shiku]tta.

I ate bean sprouts again, and once more, I
failed.

✓(13) ✓

Input ムスカ大佐のムースは、まるで石
のように固い。

Musuka taisa no muusu wa, marude ishi no
you ni katai.

Colonel Muska’s mousse is as hard as a
stone.

N/A

GPT-4o ムスカ大佐のムースか？それはも
う、石のムースかもね！

(Musuka) taisa no muusu ka? Sore wa mou,
ishi no [muusu ka]mo ne!

Colonel Muska’s mousse? It might be a
stone mousse!

✓(6) △

Base Model ムスカ大佐のムースは、まるで石
のように堅い！

Musuka taisa no muusu wa, marude ishi no
you ni katai!

Colonel Muska’s mousse is as hard as a
stone!

✓

SFT Model ムスカ大佐のムース固め (Musuka) taisa no [muusu ka]tame Colonel Muska’s mousse hardening. ✓(6) ✓
Ours ムスカ大佐のムースか (Musuka) taisa no [muusu ka] Colonel Muska’s mousse? ✓(6) △

GT ムスカ大佐のムース硬いさ。 (Musuka taisa) no [muusu katai sa]. Colonel Muska’s mousse is hard. ✓(11) ✓
Input ネタを作る職人は、実は寝ている

職人だ。
Neta o tsukuru shokunin wa, jitsu wa nete
iru shokunin da.

A craftsman who creates ideas is, in fact, a
craftsman who sleeps.

N/A

GPT-4o ネタを作る職人は、実は「寝た」
を作る職人だ。

(Neta) o tsukuru shokunin wa, jitsu wa
[neta] o tsukuru shokunin da.

A craftsman who creates ideas is, in reality,
a craftsman who creates “sleep.”

✓(4) △

Base Model 了解！ Ryoukai! Understood!
SFT Model ネタ作りが得意な人は、寝た職人 (Neta) dukuri ga tokui na hito wa, [neta]

shokunin
Those skilled at creating ideas are sleeping
craftsmen.

✓(4) △

Ours ネタ作り屋は寝た職人や! (Neta) dukuri(ya) wa [neta] shokunin [ya]! An idea-maker is a sleeping craftsman! ✓(6) ✓
GT ネタ職人は、寝た職人です (Neta) shokunin wa, [neta] shokunin desu An idea-maker is a sleeping craftsman! ✓(4) ✓

*Note 1: In Japan, moyamoya is an onomatopoeic term for a vague feeling of unease or frustration. Note 2: moyashii is not a valid word.

seed and transformed expressions is more challenging
than with shorter ones. This example suggests that
our approach could help future language models cre-
ate more complex puns, possibly even more sophisti-
cated than humans.

8 CONCLUSION

In this study, we proposed a method for generat-
ing juxtaposed puns by applying Direct Preference
Optimization (DPO) following supervised fine-tuning
(SFT). We constructed a pun paraphrase dataset from
an existing pun database, enabling the model to
learn pun characteristics more effectively. Using this
dataset, our fine-tuned Japanese Gemma 2B model
outperformed GPT-4o in pun-ness metrics, even with-
out applying DPO. The subsequent DPO training,
which used both the SFT model’s outputs and ground
truth, enhanced pun quality. Specifically, we observed
a 2.3-point increase in the neural network-based pun-
ness score and a 7.9-point increase in the rule-based
score compared to the baseline SFT model. Evalu-

a distinct meaning. Therefore, it cannot be classified as a
seed and transformed expression in this context.

ations conducted by GPT-4o also confirmed that our
proposed method outperformed other approaches in
humor and overall pun quality.

Future research could refine the pun paraphrase
dataset and leverage multi-stage training to better bal-
ance pun-ness and semantic similarity. Methods such
as reinforcement learning, which treat pun-ness and
semantic similarity as dual objectives, have the po-
tential to enhance performance systematically. How-
ever, multi-objective optimization is a challenging
problem, including in the context of reinforcement
learning, requiring continuous and iterative efforts to
achieve a reasonable balance. Conducting compre-
hensive human evaluations is likely to validate hu-
mor quality further and reveal nuanced linguistic as-
pects. Extending this framework to diverse linguis-
tic and cultural contexts is critical for assessing its
generalizability beyond Japanese. Additionally, our
method’s simplicity suggests applicability to other
forms of wordplay, from varied humor to poetic ex-
pressions. A broader investigation into these areas
could reveal how much this approach generalizes be-
yond puns, contributing to a deeper understanding of
the creativity of LLMs.

Punish the Pun-ish: Enhancing Text-to-Pun Generation with Synthetic Data from Supervised Fine-tuned Models

1099

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant
Numbers JP22K12157, JP23K28377, JP24H00714.

This work was conducted using the comput-
ers at the Artificial Intelligence eXploration Re-
search Center (AIX) at the University of Electro-
Communications.

We acknowledge the assistance for the GPT-
4o (OpenAI, 2024c), OpenAI o1-preview (OpenAI,
2024e), OpenAI o1 (OpenAI, 2024d) and Anthropic
Claude 3.5 Sonnet (Anthropic, 2024) were used for
proofreading, which was further reviewed and revised
by the authors.

The pun database used in this work was developed
under JSPS KAKENHI Grant-in-Aid for Scientific
Research (C) Grant Number 17K00294. We would
like to express our gratitude to Professor Kenji Araki
of the Language Media Laboratory, Division of Me-
dia and Network Technologies, Faculty of Informa-
tion Science and Technology, Hokkaido University,
for providing the pun database.

REFERENCES

Anthropic (2024). Introducing claude 3.5 sonnet. https:
//www.anthropic.com/news/claude-3-5-sonnet. (Ac-
cessed on 11/07/2024).

Araki, K. (2018). Performance evaluation of pun generation
system using pun database in japanese. Proceedings
SIG-LSE-B703-8, The Japanese Society for Artificial
Intelligence, 2nd Workshops (in Japanese).

Araki, K., Sayama, K., Uchida, Y., and Yatsu, M.
(2018). Expansion and analysis of a fashionable
database. JSAI Type 2 Study Group Language Engi-
neering Study Group Material (SIG-LSE-B803-1) (in
Japanese), pages 1–15.

Araki, K., Uchida, Y., Sayama, K., and Tazu, M. (2020).
Pun database. http://arakilab.media.eng.hokudai.ac.
jp/∼araki/dajare eng.htm. (Accessed on 11/05/2024).

Chen, Y., Yang, C., Hu, T., Chen, X., Lan, M., Cai, L.,
Zhuang, X., Lin, X., Lu, X., and Zhou, A. (2024). Are
U a joke master? pun generation via multi-stage cur-
riculum learning towards a humor LLM. In Findings
of the ACL 2024.

D’Oosterlinck, K., Xu, W., Develder, C., Demeester, T.,
Singh, A., Potts, C., Kiela, D., and Mehri, S. (2024).
Anchored preference optimization and contrastive re-
visions: Addressing underspecification in alignment.
https://arxiv.org/abs/2408.06266.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial networks. Ad-
vances in Neural Information Processing Systems, 3.

Hatakeyama, K. and Tokunaga, T. (2021). Automatic gener-
ation of japanese juxtaposition puns using transformer

models. 27th Annual Meeting of the Language Pro-
cessing Society of Japan (in Japanese).

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. (2022). LoRA: Low-rank
adaptation of large language models. In ICLR.

Jentzsch, S. and Kersting, K. (2023). ChatGPT is fun, but it
is not funny! humor is still challenging large language
models. In Proceedings WASSA, pages 325–340.

Luo, F., Li, S., Yang, P., Li, L., Chang, B., Sui, Z., and Sun,
X. (2019). Pun-gan: Generative adversarial network
for pun generation. In Proceedings of the 2019 Con-
ference on EMNLP-IJCNLP, pages 3388–3393.

Minami, T., Sei, Y., Tahara, Y., and Osuga, A. (2023). An
investigation of pun generation models using para-
phrasing with deep reinforcement learning. 15th Fo-
rum on Data Engineering and Information Manage-
ment (DBSJ 21th Annual Meeting) (in Japanese).

OpenAI (2022). ChatGPT: Optimizing language models for
dialogue. https://openai.com/blog/chatgpt/. (Accessed
on 02/05/2024).

OpenAI (2024a). Embeddings - OpenAI API. https:
//platform.openai.com/docs/guides/embeddings. (Ac-
cessed on 02/04/2024).

OpenAI (2024b). GPT-4o mini: advancing cost-
efficient intelligence. https://openai.com/index/
gpt-4o-mini-advancing-cost-efficient-intelligence/.
(Accessed on 08/25/2024).

OpenAI (2024c). Hello GPT-4o. https://openai.com/index/
hello-gpt-4o/. (Accessed on 11/07/2024).

OpenAI (2024d). Introducing OpenAI o1. https://openai.
com/o1/. (Accessed on 01/04/2025).

OpenAI (2024e). Introducing OpenAI o1-preview. https:
//openai.com/index/introducing-openai-o1-preview/.
(Accessed on 11/07/2024).

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. (2024). Direct preference opti-
mization: Your language model is secretly a reward
model. https://arxiv.org/abs/2305.18290.

Ritsumeikan University Dajare Club (2020). rits-
dajare/daas: Dajare as a service（japanese pun de-
tection / evaluation engine). https://github.com/
rits-dajare/daas. (Accessed on 10/31/2024).

Yatsu, M. and Araki, K. (2018). Comparison of pun de-
tection methods using Japanese pun corpus. In Pro-
ceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018).

Zhao, W. X. et al. (2023). A survey of large language mod-
els. arXiv preprint arXiv:2303.18223.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. (2024). Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
NeurIPS.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Rad-
ford, A., Amodei, D., Christiano, P., and Irving, G.
(2020). Fine-tuning language models from human
preferences. https://arxiv.org/abs/1909.08593.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

1100

