
Operations Patterns for Hybrid Quantum Applications

Martin Beisel a, Johanna Barzen b, Frank Leymann c and Benjamin Weder d

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{lastname}@iaas.uni-stuttgart.de

Keywords: Quantum Computing, Pattern Languages, Hybrid Quantum Applications, Operations.

Abstract: With the rapidly improving capabilities of today’s quantum devices, the development of high-quality quantum
applications, that can be utilized to solve practically relevant problems, becomes necessary. Quantum
software engineering is an emerging paradigm aiming to improve the quality, reusability, and maintainability
of quantum applications. However, while various concepts have been presented for developing and operating
quantum applications, there is a lack of structured documentation supporting developers and operations
personnel in applying the best practices. To facilitate the development of quantum applications, a pattern lan-
guage for the quantum computing domain has been introduced. It documents proven solutions to commonly
recurring problems during the quantum software development lifecycle in an abstract manner. However, it does
not contain patterns for the operations of hybrid quantum applications. To bridge this gap, in this work, we in-
troduce novel patterns focusing on packaging, testing, executing, and observing hybrid quantum applications.

1 INTRODUCTION

Quantum software engineering is an emerging
paradigm in research and industry (Piattini et al.,
2021; Zhao, 2020). Its goal is to improve the quality
of quantum applications and to promote principles,
such as reusability, maintainability, or separation of
concerns (Weder et al., 2022). Thereby, it comprises
concepts for the (i) development of quantum appli-
cations, as well as their (ii) operation and adaptation
based on changing requirements or user feedback.

In classical software engineering, an established
approach for documenting solutions to recurring
problems in a structured manner is patterns (Alexan-
der et al., 1977). Patterns ease the understanding of
problems and the factors that make them difficult
to solve. To overcome these problems, patterns
abstractly describe proven solutions, enabling users
to transfer them to their use case at hand. Multiple
patterns of the same domain can be combined in
a so-called pattern language (Alexander et al., 1977).

To support quantum software engineers in devel-
oping quantum applications, the quantum comput-
ing pattern language has been introduced by Ley-
mann (Leymann, 2019). It contains various patterns

a https://orcid.org/0000-0003-2617-751X
b https://orcid.org/0000-0001-8397-7973
c https://orcid.org/0000-0002-9123-259X
d https://orcid.org/0000-0002-6761-6243

tackling different problem areas, e.g., the encoding
of classical data for quantum devices (Weigold et al.,
2021a). While there are already patterns providing de-
sign concepts for the development of quantum appli-
cations, there are no patterns documenting best prac-
tices for successfully operating and managing them.

To bridge this gap, we extend the quantum com-
puting pattern language by introducing five novel pat-
terns for the operation and management of quantum
applications. These patterns cover various phases of
the operations lifecycle of quantum applications. This
includes proven solution strategies for: (i) The holis-
tic testing of quantum applications and (ii) their self-
contained packaging including all relevant software
artifacts. Furthermore, (iii) the selection of a suitable
quantum device to successfully execute a given quan-
tum circuit. Another pattern shows (iv) how to ease
the execution of quantum circuits across various het-
erogeneous quantum cloud offerings. Finally, (v) con-
cepts for monitoring and analyzing quantum applica-
tions in heterogeneous environments are documented.

The remainder of the paper is structured as fol-
lows: In Section 2, fundamentals and the pattern for-
mat used for authoring the patterns are presented. Sec-
tion 3 gives an overview of the quantum comput-
ing pattern language and then introduces our opera-
tions patterns in detail. Section 4 discusses the pre-
sented operations patterns. Finally, Section 5 presents
related work, and Section 6 concludes the paper.

26
Beisel, M., Barzen, J., Leymann, F. and Weder, B.
Operations Patterns for Hybrid Quantum Applications.
DOI: 10.5220/0013246900003950
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 26-36
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

2 FUNDAMENTALS

In this section, the fundamentals of hybrid quantum
applications as well as the utilized pattern format and
the employed pattern authoring process are discussed.

2.1 Hybrid Quantum Applications

While quantum devices promise computational ad-
vantages for various problems, e.g., in machine learn-
ing (DeBenedictis, 2018) or chemistry (Cao et al.,
2018), they are unsuitable for many traditional tasks,
e.g., visualizing data (Preskill, 2018). Thus, quantum
devices are typically used in hybrid quantum applica-
tions to solve specific problems efficiently (Leymann
and Barzen, 2020). These hybrid applications com-
prise classical programs as well as quantum circuits
that are executed on a quantum device. To execute a
quantum circuit, it must be sent to a quantum cloud
offering that provides access to quantum devices via
an API. However, due to the heterogeneity of quan-
tum cloud offerings and quantum devices, e.g., in the
supported circuit format, a quantum circuit can not be
executed on arbitrary quantum devices.

2.2 Pattern Format

Patterns are well-structured documents describing so-
lutions to commonly recurring problems (Alexander
et al., 1977). Each pattern is identified by its name and
a mnemonic icon. To clarify which problem is tackled
by a pattern, each pattern comprises a brief problem
statement. The problem statement is followed by a de-
scription of the context in which the problem occurs
and the forces that complicate solving it. The solution
section of a pattern presents a strategy for solving the
previously described problem and a corresponding so-
lution sketch. Subsequently, the results paragraph dis-
cusses the consequences of applying the solution. In
the related patterns section, connections to other pat-
terns within the same pattern language are discussed.
Finally, real-world use cases and implementations of
the pattern are showcased in the known uses section.

The patterns presented in this work were system-
atically identified using the pattern authoring method
introduced by Fehling et al. (2014a). In the pattern
identification phase, we analyzed state-of-the-art ap-
proaches in the literature and best practices promoted
by different quantum cloud providers and quantum
SDKs. All relevant information about the operation of
quantum applications is then identified by interpret-
ing the collected data. Finally, the pattern format is
defined to fit the domain, and the patterns are written
and iteratively refined in the pattern authoring phase.

3 OPERATIONS PATTERNS

In the following, we first give an overview of the
quantum computing pattern language initiated by
Leymann (2019). Subsequently, we document five
novel patterns covering different aspects of the opera-
tion and management of hybrid quantum applications.

3.1 Quantum Computing Pattern
Language Overview

Figure 1 provides an overview of the quantum com-
puting pattern language. It comprises the existing pat-
terns for designing and implementing hybrid quantum
applications, as well as the newly introduced patterns
for quantum application operation and management.

The patterns are categorized based on the as-
pects of the quantum application lifecycle they ad-
dress (Weder et al., 2022): The program flow pat-
terns (Weigold et al., 2021b) show how computa-
tions can be split between quantum and classical hard-
ware. To improve the performance of quantum al-
gorithms, the warm-starting category (Truger et al.,
2024) comprises patterns describing different tech-
niques for, e.g., approximating an initial solution
or pre-computing parameters for optimization prob-
lems. The data encodings patterns (Weigold et al.,
2021a) summarize various state preparation routines
to encode classical data into a quantum circuit. The
limited capabilities of today’s quantum devices hin-
der the successful execution of large quantum cir-
cuits (Preskill, 2018). To reduce the size of quan-
tum circuits, circuit cutting can be applied, and dif-
ferent techniques are described in the eponymous cat-
egory (Bechtold et al., 2023). The quantum states pat-
terns (Leymann, 2019) document how to create fun-
damental quantum states, utilized as a basis for vari-
ous quantum algorithms. Another approach to reduce
noise on today’s quantum devices is error handling,
e.g., by mitigating results based on the approximated
error model of the used quantum device (Beisel et al.,
2022). Quantum circuits can be executed in different
ways, e.g., using queues or prioritized access, and the
corresponding concepts are summarized by the pat-
terns in the execution category (Georg et al., 2023).
The unitary transformation patterns document typ-
ical subroutines that are used in different quantum
algorithms. Complementary to the patterns for op-
erating quantum applications introduced in this pa-
per, the development patterns (Bühler et al., 2023)
describe best practices for developing high-quality
quantum applications. Finally, the measurement pat-
terns (Weigold et al., 2021a) summarize approaches
for extracting classical data from quantum devices.

Operations Patterns for Hybrid Quantum Applications

27

Biased
Initial
State

N
ew

Error
Correction

Gate Error
Mitigation

Readout
Error
Mitigation

Ex
is

ti
n

g
P

at
te

rn
s

Circuit
Cutting

Gate
Cut

Variational
Parameter
Transfer

Pre-Trained
Feature
Extractor

...

Measurement

Post-selective
Measurement

Warm -Starting

Uniform
Superposition

Creating
Entanglement

Amplitude
Amplification

...

Unitary Transformations

QRAM
Encoding

QRAM

Schmidt
Decom-
position

...

...Quantum-
Classic Split

CC QAOA

CCQuantum
Module
Template

Hybrid
Module

Quantum
Module

Development
Classical-
Quantum
Interface

Orchestrated
Execution

Pre-
deployed
Execution

Prioritized
Execution ...

Execution
Quantum
Circuit
Translator

Error Handling

Circuit Cutting

Wire
Cut

Quantum States

Data Encodings

Program Flow

Operations
Quantum
Application
Archive

?

Quantum
Hardware
Selection

Quantum
Application
Testing

Unified
Observability

Unified
Execution

Figure 1: Overview of the quantum computing pattern language with some existing (light gray) and new patterns (dark gray).

In this work, we introduce patterns documenting
abstract solutions for operating and managing hybrid
quantum applications. The newly added Operations
category in Figure 1 comprises five novel patterns:
The QUANTUM APPLICATION ARCHIVE pattern fo-
cuses on the self-contained packaging of hybrid quan-
tum applications including all required artifacts, such
as quantum circuits and classical programs. To cope
with the plethora of heterogeneous quantum devices,
the QUANTUM HARDWARE SELECTION pattern
shows how to select a suitable quantum device for the
execution of a given quantum circuit. Thereby, char-
acteristics of the quantum circuit, as well as the quan-
tum devices and the corresponding quantum cloud of-
ferings are taken into account. The execution across
various heterogeneous quantum cloud offerings is
covered by the UNIFIED EXECUTION pattern, which
automatically translates required input and output for-
mats. Thus, users can utilize their preferred program-
ming language or SDK to implement quantum circuits
and still use any desired quantum cloud offering with-
out additional effort. To verify the correct function-
ality of hybrid quantum applications, the QUANTUM
APPLICATION TESTING pattern describes a holistic
testing strategy including all relevant artifacts. Fi-
nally, the UNIFIED OBSERVABILITY pattern focuses
on the monitoring and analysis of hybrid quantum
applications. It describes concepts for ensuring re-
producibility and understandability while abstracting
from the heterogeneity of quantum cloud offerings.

3.2 Quantum Application Archive

Problem: How to store, version, and
distribute the various heterogeneous ar-
tifacts of a hybrid quantum application?

Context: Hybrid quantum applications comprise a
wide variety of artifacts, e.g., classical programs,
quantum circuits, deployment models, and specifica-
tions of the control and data flow (Weder et al., 2022).
The execution of hybrid quantum applications in a tar-
get environment requires the availability of these ar-
tifacts. For a stable execution in production environ-
ments, the application must be versioned and all de-
pendencies must be fixed (Altmanninger et al., 2009).
Forces: Software in the quantum computing domain
is frequently updated (Vietz et al., 2021; Weder et al.,
2021b). This often leads to incompatibility when up-
grading different parts of the application. Further,
identifying all required artifacts and transferring them
into a target environment is time-consuming, com-
plex, and error-prone. Distributing and selling hybrid
quantum applications, e.g., via a marketplace, typi-
cally requires them to be available as a single entity.
Solution: To enable the storage, versioning, and dis-
tribution of hybrid quantum applications, package all
required artifacts in a self-contained quantum appli-
cation archive as shown in Figure 2. Thereby, ensure
that all artifacts have a fixed version to prevent incom-
patibilities through future updates. The quantum ap-

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

28

V1.2.0

Classical
Programs

Quantum
Circuits

Control- and Dataflow
Specifications

Deployment
Models

DDD

Version
Definition

A1: V1.1.1
A2: V0.3.2
A3: V2.6.3…

Figure 2: Solution sketch for the QUANTUM APPLICATION
ARCHIVE pattern, comprising all relevant artifacts.

plication archive must comprise all artifacts required
to set up the execution environment of the application
and to subsequently execute it in this environment.
Result: By packaging quantum applications utilizing
a quantum application archive, all classical and quan-
tum artifacts required for execution can be shared as
a single entity. Since the archive does not only con-
tain the executable programs but also comprises all
the necessary data for setting up the execution envi-
ronment, it can be executed independently of the ex-
ecution environment installed by the user. Due to the
holistic versioning of the artifacts of the quantum ap-
plication archive, incompatibilities are prevented.
Related Patterns: Hybrid quantum algorithms within
a quantum application archive are commonly real-
ized by the HYBRID MODULE pattern (Bühler et al.,
2023). To deploy and execute the packaged quantum
application, the PRE-DEPLOYED EXECUTION pat-
tern (Georg et al., 2023) can be utilized. The QUAN-
TUM APPLICATION TESTING pattern should be ap-
plied when packaging a hybrid quantum application
to verify the correct behavior of all contained artifacts.
Known Uses: Weder et al. (2021b) introduce a con-
cept for the self-contained packaging of hybrid quan-
tum applications. Different development lifecycles for
hybrid quantum applications have been presented that
include the packaging of the application as an essen-
tial phase (Gheorghe-Pop et al., 2020; Weder et al.,
2022). Leymann et al. (2019) describe a platform
for distributing quantum applications, which enables
users to package and sell their quantum applications.

3.3 Unified Execution

Problem: How to execute a quantum
circuit independently of the heteroge-
neous quantum cloud offerings and their
supported quantum circuit formats?

Context: Quantum circuits should be executed using
a suitable quantum cloud offering. The circuits might
be implemented utilizing different SDKs, such as

Unification Middleware

Q1

Q2

Q3A B

A B

Translator

Translator

Figure 3: Solution sketch for the UNIFIED EXECUTION pat-
tern, automatically translating quantum circuits.

Qiskit and Braket, quantum programming languages,
such as Q#, or quantum assembler, such as Open-
QASM (Leymann et al., 2020; Vietz et al., 2021).
Forces: When an SDK is used to implement quantum
circuits, they can only be executed utilizing a quantum
cloud offering supported by the respective SDK. If, on
the other hand, a quantum programming language or
a quantum assembler is used, the quantum cloud of-
fering for the execution must support this technology.
This often leads to a vendor lock-in, which prevents
users from flexibly switching to a different quantum
cloud offering that provides, e.g., cheaper access.
Solution: Unify the execution of quantum circuits by
utilizing a middleware providing a single, unified in-
terface for accessing different quantum cloud offer-
ings. Figure 3 gives an overview of the conceptual
structure of the unification middleware. This middle-
ware uses a set of translators that automatically trans-
late the given quantum circuit for the target quan-
tum device if the format of the circuit is not natively
supported. Since accessing quantum devices requires
users to authenticate themselves, an access token is
required for each quantum cloud offering. They can
either (i) be provided with each execution request or
(ii) the middleware can store the tokens of each user.
Alternatively, (iii) the middleware provides access to
all quantum devices via a separate pricing model, fa-
cilitating the execution for users as they do not require
an access token for each quantum cloud offering.
Result: The quantum circuit can be executed via a
single interface independently of the circuit format
and quantum cloud offering. Thus, vendor lock-ins
can be avoided and circuits can be executed using dif-
ferent quantum cloud offerings without any additional
effort. However, the unification middleware does not
automatically select a suitable quantum device but
only supports the execution on the target device.
Related Patterns: The QUANTUM CIRCUIT TRANS-
LATOR pattern (Bühler et al., 2023) is utilized by
the unification middleware to translate quantum cir-
cuits that use data formats incompatible with the tar-
get quantum device. To select a suitable quantum de-

Operations Patterns for Hybrid Quantum Applications

29

Q1

Q3Q2

Quantum Device
Data Retrieval

Circuit
Analysis

Width:
Depth:
#Gates:

3
2
2

…

Available
Quantum Devices

Quantum Device
Characteristics

Quantum Circuit Quantum Circuit
Characteristics

Q2

Q3
Q1

Suitability
Ranking

Cloud Offering
Data Retrieval

Final Device
Selection

Quantum Cloud
Offerings

Quantum Cloud
Offerings Characteristics

2 31

Quantum Device
Suitability Ranking

Q1 Q3

Q2

Q2

QO1

QO2

QO3
QO3

QO1

QO2

1

2

3

4

5

Figure 4: Solution sketch for the QUANTUM HARDWARE SELECTION pattern, showing the phases to select a quantum device.

vice for the quantum circuit at hand, the QUANTUM
HARDWARE SELECTION pattern can be used in com-
bination with the UNIFIED EXECUTION pattern. The
UNIFIED OBSERVABILITY pattern enables monitor-
ing and analyzing the execution of quantum circuits
when using heterogeneous quantum cloud offerings.
Known Uses: Giortamis et al. (2024) introduce Qon-
ductor, a tool for executing quantum applications via
a hardware-agnostic API. Salm et al. (2020) present a
concept as well as a corresponding tool for automati-
cally translating circuits between different circuit for-
mats and executing them via different quantum cloud
offerings. Weder et al. (2024) introduce a unification
middleware for quantum cloud offerings, which also
enables additional features, such as circuit cutting.

3.4 Quantum Hardware Selection

?

Problem: How to automatically select
a suitable quantum device to execute a
given quantum circuit?

Context: Quantum circuits can either be executed
on a quantum device or a classical computer sim-
ulating the computation. However, it is impossible
to simulate larger quantum circuits using classical
hardware (Zhou et al., 2020). Therefore, a suitable
quantum device for the execution must be selected.
Forces: Quantum devices are provided by different
vendors, e.g., IBM, IonQ, and Rigetti (Leymann et al.,
2020). These quantum devices are very heteroge-
neous and differ in characteristics, such as the number
of qubits, their decoherence times, or the supported

gate set (Weder et al., 2021a). Some of the character-
istics change over time, e.g., the decoherence times
when recalibrating the quantum device (Tannu and
Qureshi, 2019). However, the successful execution of
a given quantum circuit depends on these character-
istics (Salm et al., 2020). Thus, selecting an unsuit-
able quantum device can lead to error-prone results.
Quantum cloud offerings also differ regarding their
payment models and access methods, e.g., queue-
based systems or reservations of exclusive time slots.
Solution: Figure 4 gives an overview of the phases to
select suitable quantum devices. First, the character-
istics of the quantum devices available to the user are
retrieved. This can either be done by periodically ac-
cessing an API providing data about these character-
istics, e.g., a provider API or a dedicated provenance
system, or by executing benchmarks that approxi-
mate device characteristics (IBM, 2024a; Tomesh
et al., 2022; Weder et al., 2021a). Then, analyze the
given quantum circuit so that in the next phase the
suitability of the devices can be ranked based on
the characteristics of the circuits and devices (Salm
et al., 2020). Finally, ensure that a quantum device is
selected that is available via a suitable cloud offering,
e.g., a cloud offering supporting a pay-per-use model.
Result: The quantum circuit can be executed on the
selected quantum device. Through proper hardware
selection, the impact of errors can be reduced and
other factors, such as the waiting time, can be opti-
mized. If the format of the circuit is incompatible with
the selected quantum device, it must be translated.
Related Patterns: The UNIFIED EXECUTION pat-
tern can be used to execute the quantum circuit if
the circuit format is not supported by the selected

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

30

quantum device. The PRIORITIZED EXECUTION pat-
tern (Georg et al., 2023) enables selecting a suitable
quantum device even if the respective queue is long
by providing prioritized access to the quantum device.
Since errors still occur when utilizing a suitable quan-
tum device, their impact can be reduced by apply-
ing the READOUT ERROR MITIGATION and GATE
ERROR MITIGATION patterns (Beisel et al., 2022).
Known Uses: Salm et al. (Salm et al., 2020) and
Quetschlich et al. (Quetschlich et al., 2023) intro-
duce tools to automatically select suitable quan-
tum devices based on given quantum circuits.
Suchara et al. (Suchara et al., 2013) present the QuRE
Toolbox, a framework to estimate the required re-
sources for executing quantum circuits. This informa-
tion can then be used to select a suitable quantum de-
vice. Qiskit provides functionalities to filter available
quantum devices based on different characteristics,
e.g., the minimum number of qubits or the supported
gate set (IBM, 2024b). Further, the quantum device
for the execution can be selected from the remaining
quantum devices based on their current queue size.

3.5 Quantum Application Testing

Problem: How to ensure the correctness
of all functionalities of a hybrid quan-
tum application?

Context: Hybrid quantum applications are realized
using a plethora of different artifacts, such as quan-
tum circuits, classical programs, deployment models,
and control and data flow specifications (Weder et al.,
2021b). The correctness of the functionality of all ar-
tifacts as well as their interactions must be ensured.
Forces: Quantum applications comprise heteroge-
neous programs, e.g., using different programming
languages and data formats. The execution of quan-
tum circuits is probabilistic and arbitrary unknown
quantum states can not be copied, hence, obtaining
information about a qubit without disturbing the cor-
responding quantum system state is impossible (Ali
et al., 2021; Bužek and Hillery, 1996). Further,
simulating the execution of larger quantum circuits is
impossible due to the exponential resources required
for simulating additional qubits (Zhou et al., 2020).
The changing characteristics of quantum devices may
lead to different results when executing the same
quantum circuit at different times, even when using
the same quantum devices (Tannu and Qureshi, 2019).
Solution: Utilize a holistic testing strategy compris-
ing the following steps as depicted in Figure 5:
(i) Unit tests for the classical programs. (ii) Specific
tests for the quantum circuits. This includes math-

Unit
Tests

Quantum
Circuit Tests

Deployment
Test

Integration
Test

CC
CC

D
D

D

3 4

1

2

Figure 5: Solution sketch for the QUANTUM APPLICATION
TESTING, documenting four testing phases.

ematical verification of quantum circuits (Chareton
et al., 2021; Wang et al., 2008), adding and evalu-
ating assertions to ensure certain states (Huang and
Martonosi, 2019; Liu et al., 2020), as well as white
and black box tests for quantum circuits (Miranskyy
et al., 2020). (iii) Deployment tests verifying that
the application was provisioned as intended (Wurster
et al., 2018). (iv) Integration tests validating the inter-
play of the various software artifacts (Wu et al., 2003).
Result: By testing all artifacts of a quantum appli-
cation, as well as their interplay and execution en-
vironment, the reliability of the quantum application
is significantly increased. Well-tested artifacts of hy-
brid applications promote their reuse for other appli-
cations (Weder et al., 2022; Zhao, 2020). To automate
the testing procedure it may be integrated, e.g., into
the application’s continuous integration and develop-
ment (CI/CD) pipeline (Romero-Álvarez et al., 2024).
Related Patterns: The correct functionality of hy-
brid quantum applications also depends on hardware
characteristics and the current calibration of quan-
tum devices. To select a suitable quantum device
for testing the quantum application, the QUANTUM
HARDWARE SELECTION pattern can be utilized. The
QUANTUM APPLICATION ARCHIVE pattern can in-
clude test specifications enabling integration and de-
ployment tests in the target environment. Due to
the increased complexity when integrating quantum
and classical programs, each CLASSICAL-QUANTUM
INTERFACE (Bühler et al., 2023) should be tested.
Known Uses: Different lifecycles for hybrid quan-
tum applications include a dedicated testing phase fo-
cussing on the quantum-specific as well as integra-
tion aspects (Gheorghe-Pop et al., 2020; Weder et al.,
2022; Zhao, 2020). Becker et al. (2023) introduce a
testing pipeline for hybrid quantum applications that
includes tests for classical programs as well as quan-
tum circuits. Romero-Álvarez et al. (2024) present a
concept to integrate hybrid quantum applications into
CI/CD pipelines. They enable the automated testing
and deployment of hybrid quantum applications in-
cluding the classical programs and quantum circuits.

Operations Patterns for Hybrid Quantum Applications

31

3.6 Unified Observability

Problem: How to ensure reproducibil-
ity, understandability, and quality when
executing hybrid quantum applications?

Context: Quantum applications comprise a multitude
of classical programs and quantum circuits which are
typically executed in a heterogeneous execution envi-
ronment, e.g., utilizing classical and quantum cloud
offerings (Beisel et al., 2024b; Leymann et al., 2020).
Forces: When executing hybrid quantum applications
in heterogeneous execution environments, collecting
all necessary data is difficult: The data must be gath-
ered using the different APIs or SDKs of the utilized
quantum and classical cloud offerings, which often
change, e.g., when new features are released. Further-
more, the offerings might not provide all the required
data (Weder et al., 2021a). Finally, some of the data
also changes over time, e.g., the qubit decoherence
times or the error rates (Tannu and Qureshi, 2019).

Analyzing the data is complicated by different
data formats and abstraction levels of the provided
data (Beisel et al., 2024b). Moreover, hybrid quan-
tum applications are typically developed and operated
by interdisciplinary teams with various backgrounds,
e.g., physics, mathematics, and software engineering,
requiring different information (Weder et al., 2022).
Solution: Figure 6 shows the phases required to
achieve unified observability. Data about the execu-
tion of the quantum application and the used quan-
tum and classical resources must be collected continu-
ously. Persistently store these data using a provenance
system that automatically unifies data using transfor-
mation methods. For example, quantum cloud offer-
ings use both the fidelity and error rate metrics to
describe the quality of their gate operations, where
Error Rate = 1−Fidelity. Use benchmarks to retrieve
data that is not provided by the cloud offerings but re-
quired by the user (Tomesh et al., 2022). To enable
user-group-specific monitoring and analysis provide
suitable abstractions, e.g., by aggregating data or hid-
ing unnecessary information (Beisel et al., 2024b).
Result: The provenance system stores all relevant

Data
Collection

Data
Abstraction

Data
Analysis

CC
CC

Data
Unification

3 421

Figure 6: Solution sketch for the UNIFIED OBSERVABILITY
pattern, documenting the four observability phases.

data produced by the quantum applications, enabling
their monitoring and analysis, e.g., to identify errors
and optimize the application. Data abstractions facil-
itate understanding the application and its execution
environment, particularly by visualizing crucial data.
Related Patterns: The UNIFIED EXECUTION pattern
can be combined with the UNIFIED OBSERVABIL-
ITY pattern to monitor and analyze the execution of
quantum applications using heterogeneous hardware.
The stored data about quantum devices can be used
as a basis for the QUANTUM HARDWARE SELEC-
TION, GATE ERROR MITIGATION, and READOUT
ERROR MITIGATION patterns (Beisel et al., 2022).
Known Uses: Beisel et al. (2024b) introduce a con-
cept to unify the observability of hybrid quantum ap-
plications realized using workflows within heteroge-
neous multi-cloud environments. Weder et al. (2021a)
present a provenance system for quantum com-
puting automatically gathering required provenance
data, which can be used for monitoring and analysis.

4 DISCUSSION

The validity of patterns in the software engineering
domain can be confirmed by identifying several real-
world occurences (Gamma et al., 1995; Schmidt et al.,
1996). For each documented operations pattern for
hybrid quantum applications, a set of known real-
world uses is summarized in the known uses section.

Quantum software engineering is currently still
a new discipline (Piattini et al., 2021; Zhao, 2020):
Quantum applications are often developed research-
driven and in an ad-hoc manner to realize experiments
or evaluate the suitability of quantum applications to
solve a certain problem (Ali et al., 2022). However,
with the increasing capabilities of quantum devices,
the development of high-quality hybrid quantum ap-
plications is of vital importance (Weder et al., 2022).
With the usage of hybrid quantum applications in pro-
duction environments, we expect a focus shift to the
operational aspects of quantum software engineering
and the corresponding tools provided by different re-
search institutions and companies. Hence, additional
known uses for the presented patterns can be added.

The application of the UNIFIED EXECUTION and
UNIFIED OBSERVABILITY pattern becomes increas-
ingly more difficult the more heterogeneous the data
and interfaces are. A well-established method for re-
ducing heterogeneity is the introduction of standards.
These standards are typically developed by the ma-
jor stakeholders from industry as well as experts from
academia. As quantum software engineering is still
in its infancy, there currently is a lack of standard-

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

32

ization. The first steps for developing dedicated stan-
dards for quantum software engineering are being
taken, e.g., the introduction of OpenQASM 3.0 (Cross
et al., 2022), a language for specifying quantum cir-
cuits. However, additional standards are required to
improve the portability and interoperability of quan-
tum applications and to streamline their development
and operation. For example, standards for defining
the capabilities of a quantum device and for storing
the measurement results of a quantum computation.
When operating quantum applications, often existing
standards from classical software engineering can be
used with no or only minor adaptations (Beisel et al.,
2024a): (i) BPMN (OMG, 2011) for orchestrating
the control- and dataflow of the different functional-
ities using workflow technologies, (ii) TOSCA (OA-
SIS, 2013) for automating the deployment of the re-
quired programs, (iii) PROV (W3C, 2013) for stor-
ing provenance data about quantum applications, and
(iv) OpenAPI (OpenAPI Initiative, 2024) for describ-
ing the interfaces of quantum and classical services.

5 RELATED WORK

The patterns for operating hybrid quantum applica-
tions introduced in this paper extend the existing
quantum computing pattern language (Beisel et al.,
2022; Georg et al., 2023; Leymann, 2019; Truger
et al., 2024). In addition to the quantum computing
pattern language, there are other works presenting and
utilizing patterns within the quantum domain that do
not follow the pattern structure introduced by Alexan-
der et al. (1977). Khan et al. (2023) conduct a sys-
tematic literature review aiming to identify architec-
ture design patterns in quantum applications. Baczyk
et al. (2024) present a variety of architectural software
patterns in the quantum software engineering domain.
However, their patterns only focus on the develop-
ment and not the operations of quantum applications.
Gilliam et al. (2019) and Perdrix (2007) present vari-
ous patterns for building and improving quantum cir-
cuits. Huang and Martonosi (2019) introduce a strat-
egy for using quantum programming patterns to pre-
vent bugs in quantum circuits. Perez-Castillo et al.
(2024) analyze how different patterns from the quan-
tum computing pattern language can be utilized to
build quantum circuits using Qiskit and OpenQASM.

Some patterns presented in this work are com-
posite patterns employing patterns that were intro-
duced in other domains as part of their solutions:
The UNIFIED EXECUTION pattern utilizes the API
GATEWAY pattern (Richardson, 2018) to provide a
single interface unifying the underlying quantum de-

vices. To reduce the upper limit of required trans-
lators per language from n2 to 2n, a CANONICAL
DATA MODEL (Hohpe and Woolf, 2004) can be
used as an intermediate format for translating quan-
tum circuits. Furthermore, the LOG DEPLOYMENTS
AND CHANGES and the LOG AGGREGATION pat-
terns (Richardson, 2018) are utilized by the UNI-
FIED OBSERVABILITY pattern to keep track of the
execution environments of hybrid quantum applica-
tions. The HYBRID DEVELOPMENT ENVIRONMENT
pattern (Fehling et al., 2014b) can be employed to
use different execution environments for the develop-
ment, testing, and operations of quantum applications.

To facilitate the applications of patterns, Falken-
thal et al. (2017) propose the concept of solution lan-
guages. Solution languages associate so-called con-
crete solutions with the patterns of a pattern language.
Concrete solutions are implementations of a pattern,
e.g., a Java program or a quantum circuit. Thus, so-
lution languages enable a systematic, pattern-centric
collection of real-world implementations. Since con-
crete solutions are interconnected with the respec-
tive patterns, developers can reuse an existing im-
plementation for their use case when utilizing a pat-
tern. Thereby, the manual effort of implementing the
abstract solution described in the pattern is reduced.

6 CONCLUSION & OUTLOOK

In this work, we motivated the need for concepts to
successfully operate hybrid quantum applications and
the suitability of using patterns to formalize these
concepts concisely and easily digestibly. We cap-
tured existing concepts from the literature to operate
and manage quantum applications and documented
them as five novel patterns that extend the quantum
computing patterns language. The introduced pat-
terns are made publicly available via the Pattern At-
las (Leymann and Barzen, 2021), a graphical tool
for authoring, managing, and visualizing patterns.

The operation and management of hybrid quan-
tum applications is a highly active area that is gaining
attention from research and industry. Thus, we plan to
continue analyzing the literature and emerging tools
to identify and document novel patterns in this area.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWK
projects EniQmA (01MQ22007B) and SeQuenC
(01MQ22009B).

Operations Patterns for Hybrid Quantum Applications

33

REFERENCES

Alexander, C., Ishikawa, S., and Silverstein, M. (1977).
A Pattern Language: Towns, Buildings, Construction.
Oxford University Press.

Ali, S., Arcaini, P., Wang, X., and Yue, T. (2021). Assessing
the Effectiveness of Input and Output Coverage Crite-
ria for Testing Quantum Programs. In 2021 14th IEEE
Conference on Software Testing, Verification and Val-
idation (ICST), pages 13–23.

Ali, S., Yue, T., and Abreu, R. (2022). When Software En-
gineering Meets Quantum Computing. Communica-
tions of the ACM, 65(4):84–88.

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. International
Journal of Web Information Systems, 5(3):271–304.

Baczyk, B., Pérez-Castillo, R., and Piattini, M. (2024).
Towards a Framework of Architectural Patterns for
Quantum Software Engineering. In Proceedings of the
4th International Workshop on Quantum Software En-
gineering and Technology (Q-SET), pages 41–48.

Bechtold, M., Barzen, J., Beisel, M., Leymann, F., and
Weder, B. (2023). Patterns for Quantum Circuit Cut-
ting. In Proceedings of the 30th Conference on Pattern
Languages of Programs (PLoP), pages 1–11. HILL-
SIDE.

Becker, C. K.-U., Gheorghe-Pop, I.-D., and Tcholtchev, N.
(2023). A testing pipeline for quantum computing
applications. In Proceedings of the 2023 IEEE In-
ternational Conference on Quantum Software (QSW),
pages 54–59. IEEE.

Beisel, M., Alvarado-Valiente, J., Barzen, J., Leymann,
F., Romero-Álvarez, J., Stiliadou, L., and Weder, B.
(2024a). Utilizing a Standards-Based Toolchain to
Model and Execute Quantum Workflows. In Web En-
gineering – ICWE 2024, pages 401–405. Springer.

Beisel, M., Barzen, J., Leymann, F., Stiliadou, L., and
Weder, B. (2024b). Observability for Quantum Work-
flows in Heterogeneous Multi-cloud Environments. In
Advanced Information Systems Engineering – CAiSE
2024, pages 612–627. Springer.

Beisel, M., Barzen, J., Leymann, F., Truger, F., Weder, B.,
and Yussupov, V. (2022). Patterns for Quantum Error
Handling. In Proceedings of the 14th International
Conference on Pervasive Patterns and Applications
(PATTERNS), pages 22–30. Xpert Publishing Services
(XPS).

Bühler, F., Barzen, J., Beisel, M., Georg, D., Leymann, F.,
and Wild, K. (2023). Patterns for Quantum Software
Development. In Proceedings of the 15th Interna-
tional Conference on Pervasive Patterns and Appli-
cations (PATTERNS), pages 30–39. Xpert Publishing
Services (XPS).

Bužek, V. and Hillery, M. (1996). Quantum copying: Be-
yond the no-cloning theorem. Physical Review A,
54(3):1844.

Cao, Y., Romero, J., and Aspuru-Guzik, A. (2018). Poten-
tial of quantum computing for drug discovery. IBM
Journal of Research and Development, 62(6):6:1–
6:20.

Chareton, C., Bardin, S., Bobot, F., Perrelle, V., and Val-
iron, B. (2021). An Automated Deductive Verification
Framework for Circuit-building Quantum Programs.
In European Symposium on Programming (ESOP),
pages 148–177. Springer.

Cross, A., Javadi-Abhari, A., Alexander, T., Beaudrap,
N. D., Bishop, L. S., Heidel, S., et al. (2022). Open-
QASM 3: A broader and deeper quantum assembly
language. ACM Transactions on Quantum Comput-
ing, 3(3):1–50.

DeBenedictis, E. P. (2018). A Future with Quantum Ma-
chine Learning. Computer, 51(2):68–71.

Falkenthal, M., Barzen, J., Breitenbücher, U., and Leymann,
F. (2017). Solution Languages: Easing Pattern Com-
position in Different Domains. International Journal
on Advances in Software, 10(3):263–274.

Fehling, C., Barzen, J., Breitenbücher, U., and Leymann,
F. (2014a). A Process for Pattern Identification, Au-
thoring, and Application. In Proceedings of the 19th

European Conference on Pattern Languages of Pro-
grams (EuroPLoP). ACM.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Ar-
bitter, P. (2014b). Cloud Computing Patterns: Funda-
mentals to Design, Build, and Manage Cloud Appli-
cations. Springer.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., and Pat-
terns, D. (1995). Elements of reusable object-oriented
software, volume 99. Addison-Wesley Reading.

Georg, D., Barzen, J., Beisel, M., Leymann, F., Obst, J., Vi-
etz, D., Weder, B., and Yussupov, V. (2023). Execution
Patterns for Quantum Applications. In Proceedings of
the 18th International Conference on Software Tech-
nologies (ICSOFT), pages 258–268. SciTePress.

Gheorghe-Pop, I.-D., Tcholtchev, N., Ritter, T., and
Hauswirth, M. (2020). Quantum DevOps: Towards
Reliable and Applicable NISQ Quantum Computing.
In IEEE Globecom Workshops, pages 1–6. IEEE.

Gilliam, A., Venci, C., Muralidharan, S., Dorum, V., May,
E., Narasimhan, R., and Gonciulea, C. (2019). Foun-
dational Patterns for Efficient Quantum Computing.
arXiv:1907.11513.

Giortamis, E., Romão, F., Tornow, N., Lugovoy, D., and
Bhatotia, P. (2024). Orchestrating Quantum Cloud En-
vironments with Qonductor.

Hohpe, G. and Woolf, B. (2004). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley.

Huang, Y. and Martonosi, M. (2019). Statistical Assertions
for Validating Patterns and Finding Bugs in Quantum
Programs. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA), pages
541–553. ACM.

IBM (2024a). IBMQ Dashboard. https://quantum.ibm.com.
IBM (2024b). Qiskit Backend Filtering. https://docs.

quantum.ibm.com/guides/get-qpu-information#
filter-backends.

Khan, A. A., Ahmad, A., Waseem, M., Liang, P., Fahmideh,
M., Mikkonen, T., and Abrahamsson, P. (2023). Soft-
ware architecture for quantum computing systems —

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

34

A systematic review. Journal of Systems and Software,
201:111682.

Leymann, F. (2019). Towards a Pattern Language for Quan-
tum Algorithms. In Proceedings of the First Interna-
tional Workshop on Quantum Technology and Opti-
mization Problems (QTOP). Springer.

Leymann, F. and Barzen, J. (2020). The bitter truth
about gate-based quantum algorithms in the NISQ era.
Quantum Science and Technology, pages 1–28.

Leymann, F. and Barzen, J. (2021). Pattern Atlas, pages
67–76. Springer.

Leymann, F., Barzen, J., and Falkenthal, M. (2019). To-
wards a Platform for Sharing Quantum Software. In
Proceedings of the 13th Advanced Summer School on
Service Oriented Computing (2019), IBM Technical
Report (RC25685), pages 70–74. IBM Research Divi-
sion.

Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder,
B., and Wild, K. (2020). Quantum in the Cloud: Ap-
plication Potentials and Research Opportunities. In
Proceedings of the 10th International Conference on
Cloud Computing and Services Science (CLOSER),
pages 9–24. SciTePress.

Liu, J., Byrd, G. T., and Zhou, H. (2020). Quantum Cir-
cuits for Dynamic Runtime Assertions in Quantum
Computation. In Proceedings of the 25th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), pages 1017–1030. ACM.

Miranskyy, A., Zhang, L., and Doliskani, J. (2020). Is
Your Quantum Program Bug-Free? In Proceedings
of the ACM/IEEE 42nd International Conference on
Software Engineering: New Ideas and Emerging Re-
sults (ICSE-NIER), page 29–32. ACM.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications (TOSCA) Version 1.0. Organi-
zation for the Advancement of Structured Information
Standards (OASIS).

OMG (2011). Business Process Model and Notation
(BPMN) Version 2.0. Object Management Group
(OMG).

OpenAPI Initiative (2024). OpenAPI Specification.
https://spec.openapis.org/oas/v3.1.1.html.

Perdrix, S. (2007). Quantum Patterns and Types for Entan-
glement and Separability. Electronic Notes in Theo-
retical Computer Science, 170:125–138.

Perez-Castillo, R., Fernández-Osuna, M., Cruz-Lemus,
J. A., and Piattini, M. (2024). A preliminary study
of the usage of design patterns in quantum software.
In Proceedings of the 5th ACM/IEEE International
Workshop on Quantum Software Engineering, pages
41–48.

Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G.,
and Hevia, J. L. (2021). Toward a Quantum Software
Engineering. IT Professional, 23(1):62–66.

Preskill, J. (2018). Quantum Computing in the NISQ era
and beyond. Quantum, 2:79.

Quetschlich, N., Burgholzer, L., and Wille, R. (2023). MQT
Predictor: Automatic Device Selection with Device-

Specific Circuit Compilation for Quantum Comput-
ing. ACM Transactions on Quantum Computing.

Richardson, C. (2018). Microservices patterns. Simon and
Schuster.

Romero-Álvarez, J., Alvarado-Valiente, J., Moguel, E.,
Garcia-Alonso, J., and Murillo, J. M. (2024). En-
abling continuous deployment techniques for quan-
tum services. Software: Practice and Experience,
54(8):1491–1515.

Salm, M., Barzen, J., Breitenbücher, U., Leymann, F.,
Weder, B., and Wild, K. (2020). The NISQ Analyzer:
Automating the Selection of Quantum Computers for
Quantum Algorithms. In Proceedings of the 14th

Symposium and Summer School on Service-Oriented
Computing (SummerSOC), pages 66–85. Springer.

Schmidt, D. C., Fayad, M., and Johnson, R. E. (1996).
Software patterns. Communications of the ACM,
39(10):37–39.

Suchara, M., Kubiatowicz, J., Faruque, A., Chong, F. T.,
Lai, C.-Y., and Paz, G. (2013). QuRE: The Quantum
Resource Estimator Toolbox. In IEEE 31st Interna-
tional Conference on Computer Design (ICCD), pages
419–426. IEEE.

Tannu, S. S. and Qureshi, M. K. (2019). Not All Qubits Are
Created Equal: A Case for Variability-Aware Policies
for NISQ-Era Quantum Computers. In Proceedings
of the 24th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), page 987–999. ACM.

Tomesh, T., Gokhale, P., Omole, V., Ravi, G. S., Smith,
K. N., Viszlai, J., et al. (2022). SupermarQ: A Scal-
able Quantum Benchmark Suite. In 2022 IEEE Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 587–603. IEEE.

Truger, F., Barzen, J., Beisel, M., Leymann, F., and Yus-
supov, V. (2024). Warm-Starting Patterns for Quan-
tum Algorithms. In Proceedings of the 16th Interna-
tional Conference on Pervasive Patterns and Appli-
cations (PATTERNS), pages 25–31. Xpert Publishing
Services (XPS).

Vietz, D., Barzen, J., Leymann, F., and Wild, K. (2021).
On Decision Support for Quantum Application Devel-
opers: Categorization, Comparison, and Analysis of
Existing Technologies. In Computational Science –
ICCS 2021, pages 127–141. Springer.

W3C (2013). PROV Model Primer. World Wide Web Con-
sortium (W3C).

Wang, S.-A., Lu, C.-Y., Tsai, I.-M., and Kuo, S.-Y. (2008).
An XQDD-Based Verification Method for Quan-
tum Circuits. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sci-
ences, 91(2):584–594.

Weder, B., Barzen, J., Beisel, M., Bühler, F., Georg, D.,
Leymann, F., and Stiliadou, L. (2024). Qunicorn: A
middleware for the unified execution across heteroge-
neous quantum cloud offerings. In Proceedings of the
6th International Workshop on Quantum Software En-
gineering (Q-SE). IEEE.

Weder, B., Barzen, J., Leymann, F., Salm, M., and Wild, K.
(2021a). QProv: A provenance system for quantum

Operations Patterns for Hybrid Quantum Applications

35

computing. IET QuantumCommunication, 2(4):171–
181.

Weder, B., Barzen, J., Leymann, F., and Vietz, D. (2022).
Quantum Software Development Lifecycle. In Quan-
tum Software Engineering, pages 61–83. Springer.

Weder, B., Barzen, J., Leymann, F., and Zimmermann, M.
(2021b). Hybrid Quantum Applications Need Two Or-
chestrations in Superposition: A Software Architec-
ture Perspective. In Proceedings of the 18th IEEE
International Conference on Web Services (ICWS),
pages 1–13. IEEE.

Weigold, M., Barzen, J., Leymann, F., and Salm, M.
(2021a). Encoding patterns for quantum algorithms.
IET QuantumCommunication, 2(4):141–152.

Weigold, M., Barzen, J., Leymann, F., and Vietz, D.
(2021b). Patterns for Hybrid Quantum Algorithms.
In Proceedings of the 15th Symposium and Sum-
mer School on Service-Oriented Computing (Summer-
SOC), pages 34–51. Springer.

Wu, Y., Chen, M.-H., and Offutt, J. (2003). UML-Based
Integration Testing for Component-Based Software.
In Proceedings of the 2nd International Conference
on COTS-Based Software Systems, pages 251–260.
Springer.

Wurster, M., Breitenbücher, U., Kopp, O., and Leymann, F.
(2018). Modeling and Automated Execution of Ap-
plication Deployment Tests. In Proceedings of the
IEEE 22nd International Enterprise Distributed Ob-
ject Computing Conference (EDOC), pages 171–180.
IEEE.

Zhao, J. (2020). Quantum Software Engineering: Land-
scapes and Horizons. arXiv:2007.07047.

Zhou, Y., Stoudenmire, E. M., and Waintal, X. (2020). What
Limits the Simulation of Quantum Computers? Phys-
ical Review X, 10(4):041038.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

36

