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Abstract: Accurate measurement of task effort in software projects is essential for effective management and project
success in software engineering. Conventional methods often face limitations in both accuracy and their ability
to adapt to the complexities of contemporary projects. This systematic analysis examines the use of ensemble
learning methods and other artificial intelligence strategies for estimating task effort in software projects.
The review focuses on methods that employ machine learning, neural networks, large language models, and
natural language processing to improve the accuracy of effort estimation. The use of expert opinion is also
discussed, along with the metrics utilized in task effort estimation. A total of 826 empirical and theoretical
studies were analyzed using a comprehensive search across the ACM Digital Library, IEEE Digital Library,
ScienceDirect, and Scopus databases, with 66 studies selected for further analysis. The results highlight
the effectiveness, current trends, and benefits of these techniques, suggesting that adopting AI could lead to
substantial improvements in effort estimation accuracy and more efficient software project management.

1 INTRODUCTION

Accurate task effort estimation is vital for success-
ful software project management, as it directly in-
fluences scheduling, resource allocation, and project
outcomes. Unlike general project effort estimation,
which evaluates the total effort for an entire project,
task effort estimation predicts the effort for individual
tasks or subtasks. This detailed approach is crucial in
agile and iterative environments where tasks are fre-
quently reassigned and reprioritized (Ali and Gravino,
2019).

Traditional methods like COCOMO-II (Boehm
et al., 2000), Use Case Points (UCP) (Karner, 1993),
and Function Point Analysis (FPA) (Albrecht and
Gaffney, 1983) often lack accuracy and adaptability
at the task level, leading to delays and cost overruns.
These approaches aggregate effort estimates broadly,
overlooking the nuances and variability specific to in-
dividual task estimations.

Advancements in AI have introduced ensemble
learning, which combines multiple machine learn-
ing models to enhance prediction robustness (Rahman
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et al., 2024). Techniques such as artificial neural net-
works (ANNs) and hybrid models integrating differ-
ent algorithms have proven effective in improving the
accuracy of task-level estimations (Bilgaiyan et al.,
2019; Kumar and Srinivas, 2023). Additionally, deep
learning models like LSTM and GRU have been ex-
plored for their ability to model sequential data and
human factors in tasks, capturing the complexities of
task effort estimation (Iordan, 2024).

This systematic review synthesizes recent liter-
ature on AI techniques specifically applied to task
effort estimation in software projects. Our review
stands out by exploring not only the techniques used
to predict effort in software project tasks but also the
role of expert opinion in this process. In addition,
we provide a detailed analysis of the metrics used
to evaluate model accuracy to provide a comprehen-
sive overview of current practices and their efficacy in
task-level estimation.

Our study provides an up-to-date overview of ef-
fort estimation practices, emphasizing task-focused
approaches. Examining the strengths and limitations
of AI-based techniques offers valuable insights to ad-
vance research and support adopting more accurate
methods in software engineering.

The paper is organized as follows. Section 2 re-
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views related work, Section 3 describes our method-
ology, Section 4 discusses the results, and Section 5
concludes the article with future directions.

2 RELATED WORKS

Several systematic reviews, such as Cabral et al.
(2023), have explored Ensemble Effort Estimation
(EEE), focusing on dynamic ensemble selection tech-
niques. Our study specifically addresses the use of
ensemble methods for task effort estimation, differ-
ing from broader reviews like Ali and Gravino (2019),
which analyze ML techniques, including artificial
neural networks (ANN) and support vector machines
(SVM), across various contexts. Unlike Brar and
Nandal (2022), who focus on ML techniques for gen-
eral effort estimation, we concentrate on task-level es-
timations, emphasizing the unique challenges and ad-
vantages of ensemble models.

Usman et al. (2014) focus on effort estimation in
agile development, using expert judgment, Planning
Poker, and AI-based methods. Their focus on ag-
ile environments contrasts with our broader approach,
which encompasses diverse software project contexts.

Other notable studies include Dehghan et al.
(2016), who proposed a hybrid model combining tex-
tual techniques and task metadata, and Bilgaiyan et al.
(2019), who investigated neural networks in agile en-
vironments.

These studies provide a foundation for under-
standing the application of ML and AI in software
effort estimation. Our research stands out by focus-
ing on ensemble models and exploring their potential
to enhance the accuracy and efficiency of task effort
estimation.

3 RESEARCH METHOD

This systematic review followed the guidelines pro-
posed by Kitchenham (2004) and Kitchenham et al.
(2009) to ensure comprehensive and unbiased cov-
erage of the relevant literature, aiming to provide a
complete overview of the use of ensemble models and
other AI techniques for task effort estimation in soft-
ware projects.

The Parsifal tool (https://parsif.al) was used to as-
sist in the search and selection of studies, ensuring a
rigorous and replicable methodology. The research
was conducted in the ACM Digital Library, IEEE
Digital Library, ScienceDirect, and Scopus databases,
which are highly relevant sources for the field.

3.1 Planning

The PICOC technique was employed to define the
scope of this systematic review, guiding the formu-
lation of research questions and the search for rele-
vant evidence. This approach structured the review
by focusing on the population (software projects and
development teams), intervention (AI techniques like
machine learning and ensemble models), comparison
(against traditional methods such as COCOMO and
function point analysis), outcome (improvements in
estimation accuracy and efficiency), and context (soft-
ware development environments). PICOC ensured a
comprehensive and well-defined framework for ana-
lyzing the impact of AI-based techniques on task ef-
fort estimation.

3.1.1 Research Questions

The following research questions guided the data ex-
traction and analysis:

RQ1: Which AI-based techniques are most com-
monly used for task effort estimation in software
projects, and why are they chosen?

RQ2: Are experts still necessary for task effort es-
timation or for training AI models? If so, how are
they employed?

RQ3: What metrics or benchmarks are commonly
used to evaluate the performance of ensemble learn-
ing models in task effort estimation?

These questions aim to clarify the current land-
scape of AI use in effort estimation and to identify
best practices and gaps in the literature.

3.1.2 Search Strategy and Data Sources

To ensure the retrieval of relevant articles, we em-
ployed the following search string: (“software de-
velopment” OR “software project”) AND (“ensem-
ble learning” OR “artificial intelligence” OR “neu-
ral network” OR “deep learning” OR “large language
model” OR “machine learning”) AND (“effort esti-
mation”) AND year ≥ 2014.

The review used widely recognized scientific
databases to ensure the relevance and quality of the
included studies. The selected databases were ACM
Digital Library, IEEE Digital Library, ScienceDirect,
and Scopus, providing a solid foundation for the sys-
tematic review.

3.2 Conducting

Figure 1 summarizes the process of selecting the ar-
ticles, outlining the three steps taken and the number
of articles analyzed and selected at each step.
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Figure 1: Article search protocol.

After eliminating duplicates using the Parsifal
tool, 198 articles were removed, leaving 638 for de-
tailed analysis. In the second step, based on the read-
ing of the title and keywords, the inclusion and exclu-
sion criteria were applied, resulting in 328 selected
articles (see Section 3.2.1). In the final selection step,
the articles were read in full, resulting in 66 articles
being selected for analysis (see Section 3.2.2). Efforts
included using institutional subscriptions and contact-
ing authors to access publications, although four ar-
ticles were excluded due to inaccessibility, ensuring
transparency in the process.

3.2.1 Inclusion and Exclusion Criteria

The selection criteria ensured the quality and rele-
vance of the articles:
Inclusion Criteria (IC). Studies published between
2014 and 2024 applying AI techniques to effort esti-
mation in software tasks and empirical or theoretical
articles explicitly addressing AI applications in effort
estimation.
Exclusion Criteria (EC). Studies that do not address
effort estimation or software development, those that
do not use AI, publications before 2014, and inacces-
sible articles.

After applying these criteria, 328 articles were se-
lected for the quality assessment phase, focusing on
their title and keywords to evaluate their contributions
to effort estimation in software projects using AI and
ensemble models.

3.2.2 Quality Assessment Checklist

To ensure the quality of the included studies, we ap-
plied the following questions:
Title. Is the title related to the review theme?
Keywords. Are the keywords relevant to the theme?

Abstract. Does the abstract clearly present the
study’s objective, development, and results?
Context. Is the study set in the context of task effort
estimation using AI techniques?

Each question was scored: Yes (5 points), Par-
tially (3 points), or No (0 points). Studies scoring at
least 14 points were included in the review. After this
phase, 66 studies were selected, representing the com-
plete set used to evaluate effort estimation methods.

4 RESULTS AND DISCUSSION

Section 4.1 analyzes AI-based techniques like Ma-
chine Learning, Large Language Models, NLP, and
Neural Networks, highlighting their application and
selection for improving effort estimation (RQ1). Sec-
tion 4.2 discusses the continued role of experts in ad-
justing or validating AI predictions, particularly in
complex or data-scarce contexts (RQ2). Finally, Sec-
tion 4.3 explores metrics and benchmarks for evalu-
ating model effectiveness, emphasizing practices for
accurate predictions (RQ3).

4.1 AI-Based Techniques for Task
Effort Estimation

To address RQ1, this section explores commonly
used AI-based techniques for task effort estimation
in software projects. The studies emphasize the fre-
quent use of hybrid models combining various ma-
chine learning approaches, including neural networks
(NN) and natural language processing (NLP), lever-
aging their strengths for more accurate task effort es-
timation. These models overcome individual limita-
tions, providing robust, adaptable solutions for the
complex realities of modern software projects, where
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a single method often falls short of delivering accurate
estimations.

4.1.1 Artificial Intelligence and Machine
Learning

AI and ML are significant for effort estimation in
software projects, with distinct approaches impact-
ing estimation accuracy. AI without ML involves
techniques like rule-based systems and Bayesian net-
works, effective in modeling uncertainties and inter-
dependent variables. Dragicevic et al. (2017) show-
cased Bayesian networks’ ability to handle incom-
plete data and probabilistic inferences, making them
suitable for uncertain data scenarios.

However, AI without ML lacks dynamic learn-
ing, limiting its use in evolving data contexts, such as
modern software projects. Bayesian networks model
agile tasks effectively but struggle with new, unantic-
ipated inputs during initial modeling phases.

Conversely, ML is a widely used approach, with
62 of the 66 reviewed articles applying techniques
like SVM, KNN, and decision trees to enhance esti-
mation accuracy. Studies like Ali and Gravino (2019)
highlight the superior performance of ANN and SVM
in modeling complex nonlinear relationships and han-
dling smaller, noisier datasets.

A notable trend is combining AI and ML to lever-
age their strengths. Bilgaiyan et al. (2019) explored
hybrid models combining feedforward neural net-
works with rule-based models, achieving greater ac-
curacy in various software development stages. Tech-
niques like ensemble learning, as demonstrated by
Azzeh et al. (2018), further improve estimates by re-
ducing bias across multiple ML models.

The reviewed studies indicate that ML methods,
particularly when integrated with other techniques,
generally produce better results than purely AI-based
methods. Neural networks and SVM remain highly
effective, while hybrid models such as Bayesian net-
works and ensemble learning are emerging as promis-
ing solutions for accurate effort estimation.

These evolving approaches in effort estimation of-
fer robust solutions for handling the complexity and
variability of modern software projects. As Sarro
et al. (2022) noted, the integration of AI and ML en-
ables continuous improvement in predictions, over-
coming traditional methods’ limitations.

4.1.2 Large Language Models

Alhamed and Storer (2022) explore the use of LLMs,
such as GPT, in effort estimation for software main-
tenance, demonstrating their efficiency in processing
large volumes of textual data. They propose a hybrid

framework combining LLM predictions with human
expert insights to enhance estimation accuracy.

The study highlights that while LLMs excel in au-
tomated large-scale data analysis, human experts are
crucial for interpreting contextual nuances, especially
in complex, dynamic maintenance tasks. This hybrid
approach significantly improves estimation accuracy
and adaptability, as confirmed by practical case stud-
ies across various maintenance scenarios.

The integration of LLMs with human expertise re-
duces errors in high variability contexts where tra-
ditional methods fall short. The study underscores
the evolving role of LLMs in software engineering,
emphasizing the balance between automation and hu-
man intervention for more reliable and nuanced pre-
dictions.

4.1.3 Natural Language Processing

The use of NLP techniques in task effort estimation
for software projects has become prominent, with
nine of the 66 reviewed articles employing various
NLP approaches to improve accuracy. Techniques
like topic modeling, as used by Yasmin (2024) with
Latent Dirichlet Allocation (LDA), help reduce tex-
tual complexity by focusing on relevant topics. How-
ever, LDA may struggle with capturing nuanced de-
tails of complex tasks, leading to less accurate esti-
mates in certain contexts.

Semantic embedding techniques, a subset of
machine learning approaches like SBERT and
Word2Vec, have also been widely applied. Yalçiner
et al. (2024) demonstrate SBERT’s capability to gen-
erate rich semantic representations, enhancing task
description comparisons despite its high computa-
tional demands. Conversely, Dan et al. (2024) high-
light Word2Vec’s efficiency in identifying task simi-
larities with lower computational costs, though it may
be less effective in understanding complex sentences
compared to SBERT.

Hybrid models combining NLP with other tech-
niques, as explored by Dehghan et al. (2016), inte-
grate NLP methods with ensemble learning and task
metadata to provide comprehensive task views and
robust estimates. Despite their effectiveness, these
models can increase computational complexity and
reduce result explainability. NLP’s ability to process
unstructured data, like natural language task descrip-
tions, is invaluable, but challenges like the need for
high-quality training data and the interpretability of
complex model results persist.
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4.1.4 Neural Networks

Neural networks are widely adopted in effort estima-
tion for software projects, with 44 reviewed articles
utilizing these techniques. Their strength lies in cap-
turing the complexity of project data, modeling non-
linear relationships, and identifying hidden patterns
often missed by traditional methods. However, the
high training costs in terms of time and computational
resources are notable challenges. Commonly used
techniques include Deep Neural Networks (DNNs),
Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), including Long Short-
Term Memory (LSTM) networks, and Cascade Cor-
relation Neural Networks (CCNN), each with specific
strengths and limitations.

DNNs are praised for their predictive accuracy
with extensive data, but require considerable tuning
and large volumes of training data, as shown by Ali
and Gravino (2019). Radial Basis Function Neu-
ral Networks (RBFNNs), discussed by Nassif et al.
(2016), offer faster training and are effective for well-
defined clusters, though they may not perform as well
with complex tasks. Cascade Correlation Neural Net-
works provide adaptability by adjusting their structure
during training, reducing training time, and showing
lower overfitting tendencies.

RNNs, particularly LSTM networks, are effective
in modeling sequential data and capturing long-term
dependencies, crucial for evolving projects. Iordan
(2024) demonstrated LSTM’s superior performance
when optimized with particle swarm optimization.
Despite their effectiveness, RNNs and LSTMs de-
mand significant computational power and face chal-
lenges like the vanishing gradient problem. CNNs,
though traditionally used in image processing, have
been adapted for time series and textual data, proving
useful in specific scenarios but less common in effort
estimation compared to RNNs and LSTMs.

Overall, neural networks are highly adaptable and
effective for handling large volumes of unstructured
data, capturing complex patterns in software projects
of varying scope and complexity. However, their
training is resource-intensive, and the ”black box” na-
ture of deeper networks complicates result interpreta-
tion, posing challenges for project managers who re-
quire transparency in predictive models.

4.2 Use of Expert Opinion

To address RQ2, twelve articles incorporating ex-
pert opinions were selected, highlighting their role in
hybrid systems for model validation or adjustment.
While ML algorithms excel in identifying patterns

from large datasets, they often lack the context needed
to account for human or circumstantial factors in ef-
fort estimation. Alhamed and Storer (2022) propose
a hybrid framework combining language models and
expert opinion, enhancing estimation accuracy. Sim-
ilarly, Meiliana et al. (2023) and Dan et al. (2024) il-
lustrate the integration of expert input to calibrate and
adjust automated models, ensuring predictions align
with project-specific nuances.

Despite advancements in automation, expert re-
liance remains significant, particularly in complex or
early-stage projects where historical data may be in-
sufficient for AI models. Experts provide critical con-
textual insights that automated systems often miss.
Yasmin (2024) demonstrate the importance of expert
adjustment in cases of significant project variations
or ambiguous AI model outputs. This expert inter-
vention bridges gaps in automated models, especially
when project variables deviate from historical norms.

The main advantage of expert involvement is their
ability to contextualize predictions based on emerg-
ing variables, enhancing estimation accuracy. How-
ever, it can also introduce subjectivity and potential
delays in decision-making, as discussed by Meiliana
et al. (2023). Despite ongoing advancements in AI,
expert opinion remains crucial, particularly in scenar-
ios where data scarcity or complexity challenges AI
efficacy. The trend is toward integrating expert ad-
justments with automated predictions to enhance ac-
curacy and reliability, though reliance on experts is
expected to decrease as AI models evolve.

4.3 Metrics Used to Evaluate Model
Performance

This section covers metrics commonly used to eval-
uate model performance in task effort estimation
(RQ3).
Mean Magnitude of Relative Error (MMRE).
Highlighted by Bilgaiyan et al. (2019) and Satapathy
et al. (2014), MMRE measures the difference between
predicted and actual effort.
Median Magnitude of Relative Error (MdMRE).
Used alongside MMRE, it mitigates the impact of out-
liers, as noted by Zakrani et al. (2019).
PRED(X): Evaluates the percentage of predictions
within a given error range, typically 25%, as seen in
Sarro et al. (2022).
Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE). These metrics measure the
mean absolute and squared errors, sensitive to huge
prediction errors, frequently used in Phan and Jan-
nesari (2022) for neural network performance anal-
ysis.
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Comparing traditional models with AI and ML
benchmarks, such as neural networks and ensemble
learning, is crucial for assessing improvements in esti-
mation accuracy over conventional methods like CO-
COMO II and UCP (Cabral et al., 2023).

5 CONCLUSIONS

The application of AI techniques, particularly ML,
has become a dominant approach for effort estimation
in software projects, as evidenced by the majority of
the 66 analyzed studies. ML’s versatility and effec-
tiveness in handling complex data make it a preferred
choice among researchers.

Conversely, the adoption of AI models without
ML, such as Bayesian networks, remains limited, and
LLM usage is still in its early stages. A significant
trend observed is the integration of hybrid models,
which combine various techniques to produce more
robust and accurate results.

Expert opinions remain to play a crucial role in
certain studies, particularly for calibrating and vali-
dating estimates in complex scenarios. The integra-
tion of human expertise with AI models ensures that
predictions are tailored to the specific nuances of each
project, enhancing accuracy.

Evaluation metrics such as MMRE, MdMRE, and
PRED(X) are critical for assessing model accuracy
and verifying improvements over traditional methods.
These metrics are instrumental in demonstrating the
effectiveness of AI-based models in improving effort
estimation accuracy in software projects.
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