
Toward an Ontology-Based Framework for Textual System
Requirements Extraction and Analysis

Zakaria Mejdoul1,2 a, Gaëlle Lortal1 b and Myriam Lamolle2,3 c

1Thales, cortAIx Labs, France
2LIASD, Paris 8 University, IUT de Montreuil, France

3CGI, IMT Mines Albi, Albi, France
{zakaria.mejdoul, gaelle.lortal}@thalesgroup.com, myriam.lamolle@mines-albi.fr

Keywords: Ontology Modelling, Knowledge Extraction, Natural Language Processing, Model-Based System
Engineering, System Requirements.

Abstract: This paper introduces the context, objectives and expectations of an ontology-driven framework designed
to support engineers in the analysis of textual system requirements. The primary goals are twofold: (i) to
keep the System Engineering-(SE) formal processes that satisfy industrial constraints, and (ii) to provide a
semantic representation of textual requirements, enabling consistent semantic analysis through the logical
properties of ontologies. Formalization and semantic analysis of system requirements provide early evidence
of adequate specification, for reducing the validation tasks and high-cost corrective measures during later
system development phases. Integrating ontologies into the SE process enhances system engineers’ ability to
understand and manage requirements, leading to a smoother design and more accurate operation.

1 INTRODUCTION

The complexity of systems continues to increase
depending on their use-case domains (Military,
Aerospace, Avionics, etc.). This increasing complex-
ity has brought both new opportunities, and increased
challenges for organizations involved in system de-
sign and production. These challenges span the entire
lifecycle of a system and affect all levels of architec-
tural detail. The ISO/IEC/IEEE 15288:2023 (IEEE,
2023) standard, concerning Systems and software
engineering–System life cycle processes, provides a
standardized framework for processes throughout a
system’s lifecycle. The technical processes outlined
include: (i) Begin from Business or mission analy-
sis process, then (ii) Stakeholder needs and require-
ments definition process, (iii) System requirements
definition process, (iv) System architecture definition
process, until (v) Maintenance and Disposal process.
This paper specifically focuses on the Requirements
Engineering (RE) definition process within the orga-
nizational context of Thales company. Textual re-
quirements are essential for defining system func-

a https://orcid.org/0000-0003-4341-2139
b https://orcid.org/0000-0001-5374-6584
c https://orcid.org/0000-0001-9652-7891

tionality, constraints, and expectations. When spec-
ifications becomes too large or complex, manually
parsing and analysing these requirements risks miss-
ing inconsistencies, incomplete requirements, or con-
tradictions, which can result in project errors later
on. During the system Requirements Analysis-(RA)
phase (Castañeda et al., 2010), system engineers must
check that the requirements are unambiguous (clear
terminology, common interpretation), consistent (not
redundant, no conflicting requirements across system
components) and complete (missing information to
understand the requirement) (IEEE, 2023). Existing
RE tools face limitations, particularly the lack of auto-
mated semantic analysis, which is critical when deal-
ing with large-scale specification documents. Conse-
quently, system engineers encounter significant bar-
riers, including the susceptibility to human error,
the time-consuming nature of manual analysis, and
the need for collaborative efforts among team mem-
bers. Given these challenges, there is a need for en-
hanced automation in system requirements manage-
ment tools. (Dori, 2016) mentions that “systems sci-
ence and engineering are in need of a well-defined
foundational, universal, general, necessary and suf-
ficient ontology that would underpin concepts and
terms it uses in order for them to be precise and un-
ambiguous.” Therefore, it will be of significant value

136
Mejdoul, Z., Lortal, G. and Lamolle, M.
Toward an Ontology-Based Framework for Textual System Requirements Extraction and Analysis.
DOI: 10.5220/0013210500003929
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 136-143
ISBN: 978-989-758-749-8; ISSN: 2184-4992
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



to follow up the implementation of a framework able
to process and ensure a part of system requirements
analysis (consistency, completeness, correctness), in
order to avoid this tedious task for engineers, which
cost time and resources for the product owner organi-
sation.

Currently, semantic technologies, mainly repre-
sented by Knowledge Bases-(KB) and Automatic
Reasoning (Glimm and Kazakov, 2019), promise new
industrial processes development and operation. By
exploiting KBs and reasoning tools, it is possible to
create semantic applications supported by ontologies
and logical reasoners (Fahad et al., 2008). Ontologies
are being introduced into SE (Sarder and Ferreira,
2007) to provide a shared understanding among indi-
viduals, organizations, and systems, thereby address-
ing gaps in SE tools, methodologies, and processes.
They offer a standardized vocabulary to avoid ambi-
guity and ensure consistency, serving as a common
agreement within a user community (Rousseau et al.,
2016; Roussey et al., 2011; Sillitto, 2011). Addition-
ally, ontologies facilitate semantic interoperability be-
tween systems, and also between humans and com-
puters (Bittner et al., 2005).

Our SE scenario focuses on supporting engineers
in analyzing textual system requirements during the
design phase of the intended system. Our framework
aims to ensure completeness, consistency, and cor-
rectness. When done manually, analyzing require-
ments, especially in large documents (exceeding 1500
pages for example), can be error-prone and time-
consuming, making ensuring optimality quite chal-
lenging. This paper intended to answer the follow-
ing research questions: (RQ1.) What approach or
technique is needed to automatically extract textual
requirements (ID, statement, metadata) from a spec-
ification document? (RQ2.) How can ontologies be
used to federate our specification document knowl-
edge and requirements? (RQ3.) How can the re-
sulted ontology be used to perform system require-
ments analysis: avoid ambiguities, redundancies, or
any inconsistencies? The solution must help engi-
neers ensure there are no contradictory, redundant
or incomplete elements in the system requirements
model. If such issues arise, the engineer (main user)
will need to identify and rectify the errors, emphasiz-
ing the importance of the model’s explainability.

The paper is organized as follows: Section 2 re-
views previous work on SE and the use of ontologies
for system requirements, Section 3 presents the pro-
posed framework, Section 4 describes an experimen-
tal use-case and its outputs, Section 5 discusses the
cited research questions, and Section 6 concludes and
proposes potential avenues for future research.

2 RELATED WORK

This section summarizes some research contributions
and industrial tools related to ontology-driven sys-
tems engineering and system requirements analysis.
For our research, We consider the general definition:
An ontology is a formal, explicit specification of a
shared conceptualization, in a particular domain of
knowledge (Studer et al., 1998). (Yang et al., 2019)
reveals the state of the art of the Ontology-Based
Systems Engineering (OBSE) and provides a detailed
analysis of key SE knowledge areas supported by on-
tologies. It outlines a clear roadmap of how ontolo-
gies support SE and assesses the extent of their ap-
plication within this domain. The results show that
ontologies are applied across various SE knowledge
areas, and their benefits to SE are well-recognized.
However, despite the low adoption rate of formal
ontology engineering techniques in SE, it is gradu-
ally increasing. It argues that progressing SE into a
model-based discipline will promote further research
on the use of ontologies in SE. The frequency of con-
ference papers suggests that the topic is still in its
early stages, with researchers who are eager for peer-
to-peer discussion.

2.1 System Requirements Analysis

Requirements Engineering (RE) processes need ef-
ficient management of the substantial volume of in-
formation and knowledge used during RA activ-
ity (Castañeda et al., 2010). Ambiguous require-
ments, for example, must be minimized since they
lead to wasted time and repeated work, especially
when different stakeholders have different interpre-
tations for the same requirement. Similarly, efforts
must be made to minimize redundant, inconsistent,
and incomplete requirements. There are other crite-
ria that are not addressed in our research scope, such
as feasibility, measurability, etc. The ISO/IEC/IEEE
29148:2018 (IEEE, 2018) Systems and software engi-
neering — Life cycle processes — Requirements en-
gineering standard, provides additional guidance for
the application of requirements engineering and man-
agement processes for requirements-related activities.
(Stachtiari et al., 2018) have addressed RA challenge,
within the context of a correctness-by-construction
design approach, which identifies behavioral (not se-
mantic) inconsistencies in requirements. However,
formal reasoning is possible only if a well-defined
interpretation semantics exists for the requirements
specification (Glimm and Kazakov, 2019).

Toward an Ontology-Based Framework for Textual System Requirements Extraction and Analysis

137



Many tools (e.g., DOORS1, Polarion2, Jama3)
support system requirements management. However,
automation of the analysis process remains limited.
Requirement management tools often rely on manual
input or the functionality to import structured doc-
uments (e.g., ReqIF), rather than natural language
(textual format). In Table 1, we represent a bench-
mark table of commonly used Requirements Valida-
tion Tools. These tools vary in functionalities, such as
requirement management, traceability, validation ca-
pabilities. We find several gaps exist in both the state
of the art and existing tools.
Limited Automation for RA:
Problem. Although many tools (e.g., DOORS, Po-
larion, Jama) support the management of system re-
quirements, automation of the analysis process re-
mains limited. Most tools provide basic or advanced
support for tracking requirements but require manual
steps to analyse & validate them through testing, sim-
ulation, or formal methods.
Gap. There is a significant opportunity to develop
more automated analysis tools, particularly those
which align with MBSE viewpoints and processes, to
reduce the manual effort involved in analysis phase.
Weak Support for Natural Language Processing
(NLP):
Problem. Requirements are often written in natu-
ral language, which is prone to ambiguity, inconsis-
tency, and incompleteness. Most tools struggle to pro-
cess and analyze natural language requirements effec-
tively.
Gap. Existing tools require enhanced NLP capabil-
ities to automatically parse, represent, understand,
and analyse natural language requirements, identify-
ing ambiguities and inconsistencies early in the SE
process.

Hence, the importance of having a semantically-
common vocabulary among engineers, with shared
semantics, becomes crucial, especially when they
come from heterogeneous fields. We suggest that the
use of a formal, shared and explicit conceptualization
could fill some of these gaps. This can be achieved by
extracting and gathering textual requirements knowl-
edge from specification documents and structuring it.
Engineers and stakeholders also need to commonly
structure requirements using an ontology. An ontol-
ogy can help ensure that requirements are understood
uniformly across different stakeholders, reducing am-
biguities and inconsistencies, and thereby improving

1Engineering Requirements Management DOORS -
visited 22/10/2024

2www.polarion.plm.automation.siemens.com - visited
22/10/2024

3https://www.jamasoftware.com/ - visited 22/10/2024

the overall requirements engineering process.

2.2 Ontologies for System
Requirements Analysis

(Mokos et al., 2022) presented an ontology-driven
requirements formulation and semantic analysis ap-
proach, for system requirements. To address the
lack of natural language misinterpretation, the au-
thors employed requirement boilerplates (Pohl and
Rupp, 2015) with an ontology. The semantic mod-
eling framework facilitates the development and in-
tegration of domain-specific ontologies for specify-
ing requirements. However, automating the knowl-
edge extraction process remains necessary, as engi-
neers currently have to manually insert requirements
(quite complex when requirements are too many).
Whereas (Castañeda et al., 2010) described several
challenges faced during RE activities, such as manag-
ing the substantial volume of information, especially
when stakeholders come from diverse backgrounds.
The author designed a requirements ontology, appli-
cation domain ontology and requirements specifica-
tion document ontology. The automatic method for
retrieving knowledge and populating these ontologies
has not been specified, as the framework had not yet
been implemented. In our case, we are particularly
interested in ontology framework architecture, espe-
cially the specification document ontology, eligible to
reuse for other objectives or projects. It is also a for-
mal representation enabling requirements to be linked
to their source document (traceable), so that explana-
tions can be generated when inconsistencies occur.

3 METHODOLOGY

In the context of this research, the progression to-
wards solving the identified problem (Section 1) in-
volves methodological steps:

3.1 System Requirements Specification

Document specification used in this research is an in-
ternal system specification of COOPANS4, a system
for ATM, developed by Thales and other collabora-
tors. This document contains more than 1500 pages
(with 2902 distinct requirements) including system
requirements as follows:

4https://www.coopans.com/ATM-SYSTEM - visited
22/10/2024; the specification document is confidential, so
we cannot publish examples of COOPANS system require-
ments.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

138



Table 1: Benchmark of the common-used requirements management tools.

Tool Name Primary Features Strengths Weaknesses
IBM Engineering Re-
quirements Management
DOORS (DOORS Next)3

- Requirements capture and man-
agement
- Traceability across lifecycle
- Change management
- Collaboration

- Highly customizable
- Strong traceability
- Scalable for large projects

- Steep learning curve
- Expensive

Jama Connect3 - Requirements gathering and vali-
dation
- Traceability
- Impact analysis
- Collaboration and reviews

- User-friendly
- Strong validation and col-
laboration features

- Limited customization
- Limited support for large-
scale projects

Polarion ALM (Siemens)5 - Requirements management
- Traceability
- Versioning and audits
- Compliance management

- Strong in compliance and
traceability
- Integrated with
ALM/PLM tools

- Expensive for small teams
- User interface can be com-
plex

EU-CONTEXT-001
The system shall ensure a VHF (Very High
Frequency) voice communication between
pilots and controllers. EU-CONTEXT-005
VHF-CSCI

The term “EU-CONTEXT-001” refers to the require-
ment identifier (ID), and the term “EU-CONTEXT-
005 VHF-CSCI” refers to the requirement tags that
are often used to mark traceability, linking a require-
ment to other requirements such as EU-CONTEXT-
005, or to a system component such as VHF-CSCI
(Computer Software Configuration Item).

3.2 Framework Workflow

To address the issues of RQ1, RQ2 and RQ3 (see Sec-
tion 1), we propose a streamlined framework based on
text extraction, text analysis, and populating an ontol-
ogy representing system requirements domain. This
framework aim to provide engineers with: (i) A for-
mal, explicit and shared format of requirements rep-
resentation, allowing the structuring of COOPANS
specification document knowledge by principal con-
cepts, properties and individuals (facts) to clarify re-
quirements terms; (ii) Machine-readable representa-
tion to automate COOPANS RA support (capturing
unambiguous, redundant, inconsistent and incomplete
requirements) in a seamless (explainable) way. The
solution framework includes: automated text extrac-
tion algorithms; exploitation algorithms for analyzing
and reasoning about requirements ontology (logical
verification, inference). An overview of the textual re-
quirements extraction and analysis automation frame-
work is presented in Figure 1.

3.2.1 Text Extraction & Pre-Processing

The process begins with extraction of textual require-
ments by parsing the PDF file of the specification doc-

ument to produce raw text. This text is then cleaned
and pre-processed to eliminate unnecessary data (e.g.,
headers, footers, summaries, etc.). The user must
identify the page range of the requirements ID list,
in order to parse the IDs list and find all requirements
along with their IDs, statements, and tags (see subsec-
tion 3.1). We serialize the extracted requirements into
a Dictionary (Dict) object, ready to be processed with
NLP (see Figure 1).

Figure 1: Illustration of the expected Textual Requirements
Extraction and Analysis Framework.

3.2.2 NLP Layer: Part-Of-Speech (POS)
Tagging

The framework uses NLP techniques, such as Part-
Of-Speech (POS) tagging and requirements depen-
dency tree identification, to tag and identify parts of
requirements statements and their syntactic depen-

Toward an Ontology-Based Framework for Textual System Requirements Extraction and Analysis

139



dencies, respectively. We use Spacy5 NLP library for
POS tagging, to identify tokens (individual words)
and assign to each token a grammatical class (e.g.,
VERB, NOUN, AUX, etc.). Furthermore, Spacy al-
lows us to explicitly identify syntactic dependencies
between tokens (e.g., nsubj -nominal subject-, dobj -
direct object-, etc.). Key components in the extracted
text, such as system entities, actions, and constraints
are extracted, while metadata such as requirement IDs
and traceability tags are also captured for future use.
For example, in the sentence “The system shall allow
user to avoid obstacles.”, the POS tagger identifies
“system”, “user” and ”obstacles” as nouns, and “al-
low” and“avoid” as verbs. The identified dependen-
cies are: system is nominal subject of allow, avoid is
clausal complement of avoid and obstacles is direct
object of avoid (see Figure 2).

Figure 2: Example of POS Tagging and dependency tree.

Once this extraction is complete, the extracted
knowledge is used to structure the requirements into
a linguistic ontology (LO). This ontology serves as
a semantic representation of the requirements knowl-
edge, and includes POS tagging results, such as to-
kens and their assigned tags and dependencies. For
instance, entities such as “user” and “obstacles” are
modeled as Tokens; VERB, NOUN, AUX are modeled
as POSTagTypes; Each requirement has a TokenList
that groups all its statement tokens by has token list
relationship.

Figure 3: Linguistic ontology resulting from POS tagging.

The generated ontology architecture is detailed in
Figure 3. This ontology is populated with the knowl-
edge extracted from the textual requirements and is
ready to progress from the syntactic level related to
POS tagging to a semantic level specific to the system
requirements domain (see Figure 3).

5www.spacy.io/usage/linguistic-features#pos-tagging -
visited 22/10/2024

3.2.3 System Requirements Domain-Specific
Ontology

We use the ontology referenced in subsection 2.2,
which represents the system requirements boiler-
plates (Mokos et al., 2022). This allows us to spec-
ify functions, components, actions, conditions and
other elements. We define transition rules to parse
the linguistic ontology entities (Tokens) and fill the
placeholders in the requirements boilerplates within
Requirements Definition Ontology (RDO). RDO im-
poses structural constraints on assembling a require-
ment, which provides a formal syntax. Here are some
examples of RDO boilerplates that define the main
textual system requirements templates:

system/function shall [not] set
[<quantifier>] item [to stateValue]
system/function shall [not] perform function
system/function shall [not] transfer flow/item

system/function, item, stateValue and flow/item are
placeholders of the previous boilerplates. To re-
trieve these placeholders from LO and fill RDO with
them, we define tokens retrieval rules based on their
POS tags and dependencies in LO. For instance, in
Figure 2, if the token allow is tagged as a VERB
and have dependency ROOT, according to RBO boil-
erplates, the token system, which is a NOUN and
the nominal subject (nsubj) of allow, is a system
placeholder. Likewise, the phrase avoid obstacles,
which constitutes a clausal complement (ccomp) of
allow, is assigned to function placeholder. Then
we can then represent the referenced requirement as
follows: System < system > −allow → Function <
avoid obstacles >.

Through this ontology-based representation of re-
quirements, we transition from the textual format
to a well-defined semantic structure, consisting of
uniquely identified elements such as classes, relation-
ships and individuals. These elements serve to explic-
itly capture and encode knowledge, enabling logical
verification, semantic analysis, and the potential in-
ference of new knowledge within the requirements.

3.2.4 Semantic Analysis

The semantic representation of boilerplate-based re-
quirements makes it possible to detect ambigui-
ties, inconsistencies, redundancies and incomplete-
ness in specifications by reasoning and appropri-
ate SWRL (Semantic Web Rule Language) inference
rules (Bossche-Marquette et al., 2024). It is possible
to define rules specific to a given application in a lan-
guage like SWRL. In this case, the reasoner assimi-
lates these new rules and applies them to the ontology

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

140



in the same way as pre-established rules. These rules
are useful to detect:

• Ambiguity: Identifying requirements where boil-
erplate placeholders are filled with values that
could be substituted with similar instances.

• Redundancy: Identifying requirements with the
same boilerplates that contain semantically equiv-
alent placeholder values. Requirements may not
be redundant if they are used in different opera-
tional contexts.

• Inconsistency: Identifying requirements with sim-
ilar boilerplates where placeholders are filled with
conflicting instances or disjoint terms (e.g., re-
quirements with the same conditions but different
actions).

• Incompleteness: Identify requirements that are in-
complete or have missing elements (e.g., place-
holders in the boilerplate that are not filled).

These criteria are essential in the system requirements
analysis phase. The reasoner’s capability to detect
and flag these issues for engineers in a seamless way
(axioms verbalization) (Fuchs et al., 2006; Mejdoul.
and Lortal., 2022), along with explanations based on
ontological axioms, supports this phase effectively.

4 EXPERIMENTS

To enhance our design thinking, we reflect on our re-
quirements semantic analysis approach using a sim-
ple use-case: a tricolor traffic light system. In this
scenario we model a tricolor light system, where each
light (red, yellow, and green) represents different con-
ditions and actions to control traffic flow. The system
requirements are rules governing the lights and how
they manage cars at intersections. Our objective is
to ensure that these requirements do not conflict or
overlap unnecessarily. Specifically, we aim to detect:
(i) Requirements Redundancy: Two or more require-
ments that essentially describe the same thing. (ii)
Requirements Conflict: Requirements that, under the
same conditions, lead to opposing actions (e.g., one
says ”stop” while another says ”go”).

Textual system requirements in this scenario are
as follows:
(R1): The system shall allow cars to go when the light
is green.
(R2): The system shall ensure cars come to a com-
plete stop when the light is red.
(R3): The system shall require cars to slow down
when the light is yellow.
(R4): The system shall ensure cars move quickly when
the light is green.

(R5): The system shall require cars to stop when the
light is yellow.

Analyzing requirements shows that each require-
ment specifies a condition (the state of the traffic
light) and an action (the behavior expected of cars).
Using our framework (see Section 3.2), we needs to
identify when these requirements are either redundant
and/or inconsistent.

4.1 System Requirements Ontology
Structure

After NLP processing (Subsection 3.2.2) and re-
trieving requirements tokens to populate boilerplates
placeholders in requirements ontology (RDO) (Sub-
section 3.2.3), we define the OWL ontology structure
with the following entities:
3 Main Classes: (C1) Requirement: Represents a
system requirement (e.g., R1, R2); (C2) Condition:
Represents the state of the traffic light placeholders
(e.g., green, yellow, red); (C3) Action: Represents ac-
tions placeholders, the behavior that cars should fol-
low (e.g., go, stop, slow down);
2 Main Object Properties: (OP1) hasCondition:
Associates a requirement with the condition place-
holder it depends on (e.g., R1 hasCondition ”green
light”); (OP2) hasAction: Associates a requirement
with the action placeholder it requires (e.g., R1 has-
Action ”go”);

2 Main Data Properties: (DP1) conditionType:
Describes the specific traffic light color for a require-
ment’s condition (e.g., green, yellow, red); (DP2) ac-
tionType: Describes the type of action prescribed by
the requirement (e.g., go, stop, slow down);
2 Relationships to Infer: hasSimilarFunctional-
ityAs: Indicates that two requirements have simi-
lar functionality if they apply to the same condi-
tion and suggest closely related actions (redundancy);
hasConflictingOutcomeWith: Indicates that two re-
quirements are conflicting if they apply to the same
condition but suggest opposing actions (contradic-
tion).

4.2 SWRL Rules Definition

To automatically infer redundancy and conflicts, we
use SWRL (cf. Subsection 3.2.4) rules.
Rule 1 (Inferring hasSimilarFunctionalityAs): This
rule infers that two requirements have similar func-
tionality if they share the same condition and require
similar actions:
Requirement(?r1) ˆ Requirement(?r2) ˆ
hasCondition(?r1, ?c1) ˆ hasCondition(?r2, ?c2) ˆ
conditionType(?c1, ?type) ˆ conditionType(?c2, ?type) ˆ
hasAction(?r1, ?a1) ˆ hasAction(?r2, ?a2) ˆ

Toward an Ontology-Based Framework for Textual System Requirements Extraction and Analysis

141



actionType(?a1, ?actionType1) ˆ actionType(?a2, ?actionType2)
ˆ swrlb:equal(?actionType1, ?actionType2)
-> hasSimilarFunctionalityAs(?r1, ?r2)

Example: R1 (“go on green”) and R4 (“move quickly
on green”) share the same condition (green light).
Rule 2 (Inferring hasConflictingOutcomeWith):
This rule identifies conflicts between two require-
ments that share the same condition but require op-
posing actions:
Requirement(?r1) ˆ Requirement(?r2) ˆ
hasCondition(?r1, ?c1) ˆ hasCondition(?r2, ?c2) ˆ
conditionType(?c1, ?type) ˆ conditionType(?c2, ?type) ˆ
hasAction(?r1, ?a1) ˆ hasAction(?r2, ?a2) ˆ
actionType(?a1, ?actionType1) ˆ actionType(?a2, ?actionType2)
ˆ swrlb:notEqual(?actionType1, ?actionType2)
-> hasConflictingOutcomeWith(?r1, ?r2)

Example: If R1 and R2 both applied to the same con-
dition (e.g., “yellow light”), and one required cars to
go while the other required cars to stop, the reasoner
would infer a conflict.

4.3 Inferences & Implications

The ontology reasoner performs two services: (i) it
checks the ontology consistency, (ii) it infers new
knowledge. In our scenario, it detects redundancy and
inconsistency inference such as:

R1 and R4 (Similar Functionality)

Condition : “Green light”;
Actions : Both involve allowing cars to move, but

R4 is more specific (move quickly);
Inferred Relationship : R1 and R4 are flagged as

having similar functionality (redundancy).

R1 and R4 have similar functionality, then R1 or
R4 can be deleted to eliminate redundancy.

R3 and R5 (Potential Contradiction)

Condition : If both requirements applied to the
same light (e.g., “yellow light”), they conflict,
as R3 says “slow down” and R5 says “stop”.

Inferred Relationship : R3 and R5 conflict be-
cause they apply to same conditions and require
different actions.

Then, the reasoner can explain where the conflicts
come from.

In brief, the different implications are:

1. Requirement Redundancy: R1 and R4 both ap-
ply to the green light and allow cars to move
forward, though one is more specific. They are
flagged as having similar functionality (redun-
dancy).

2. Requirement Conflict: R3 and R5 conflict be-
cause they apply to same light condition (“yellow
light”). Since one instruction is to “slow down”

and the other is to “stop”, there is a conflict (i.e.
contradiction).

3. System Flexibility: The system requirements’
domain-specific ontology and rules are designed
to be flexible. As new requirements are added,
the system automatically checks for redundancy
or inconsistency using the defined SWRL rules.

4. Automatic Inference: The reasoner Pellet6 used
in this scenario can infer relationships such
as hasSimilarFunctionalityAs and hasConflictin-
gOutcomeWith. This helps system engineers
quickly identify and address potential issues in
system requirements.
For instance, explanations axioms are represented

with Manchester Syntax7 which is an ontology user-
friendly syntax for OWL ontologies description and
development.
R1 hasSimilarFunctionalityAs R4:
- hasCondition Domain Requirement

- R1 hasAction Action Go

Requirement(?r1) ˆ Requirement(?r2) ˆ

- hasCondition(?r1, ?c1) ˆ hasCondition(?r2, ?c2) ˆ

conditionType(?c1, ?type) ˆ conditionType(?c2, ?type) ˆ

hasAction(?r1, ?a1) ˆ hasAction(?r2, ?a2) ˆ

actionType(?a1, ?actionType1) ˆ actionType(?a2, ?actionType2)

ˆ swrlb:equal(?actionType1, ?actionType2)

-> hasSimilarFunctionalityAs(?r1, ?r2)

- Condition_Green conditionType "green light"

- R4 hasAction Action_Go

- Action_Go actionType "go"

- R4 hasCondition Condition_Green

- R1 hasCondition Condition_Green

R3 hasConflictingOutcomeWith R5:
- R5 Type Requirement

- Action_Stop actionType "stop"

- Action_SlowDown Type Action

- Condition_Yellow conditionType "yellow light"

- R3 Type Requirement

- Requirement(?r1) ˆ Requirement(?r2) ˆ

hasCondition(?r1, ?c1) ˆ hasCondition(?r2, ?c2) ˆ

conditionType(?c1, ?type) ˆ conditionType(?c2, ?type) ˆ

hasAction(?r1, ?a1) ˆ hasAction(?r2, ?a2) ˆ

actionType(?a1, ?actionType1) ˆ actionType(?a2, ?actionType2)

ˆ swrlb:notEqual(?actionType1, ?actionType2)

-> hasConflictingOutcomeWith(?r1, ?r2)

- R5 hasAction Action_Stop

- R5 hasCondition Condition_Yellow

- R3 hasAction Action_SlowDown

- Action_Stop Type Action

- Action_SlowDown actionType "slow down"

6www.github.com/stardog-union/pellet - visited
22/10/2024

7www.w3.org/TR/owl2-manchester-syntax/ - visited
22/10/2024

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

142



5 DISCUSSION

This research provides a logical answer to all the
research issues stated in Section 1. The first
research question on system requirements extrac-
tion approach or technique is addressed in Subsec-
tions 3.2.1 and 3.2.2, by POS tagging and syntactic
dependencies analysis (NLP Layer). The second re-
search question regarding the way of using ontologies
to federate specification document knowledge and
system requirements is answered in Subsection 3.2.3,
by defining an ontology-based framework for textual
system requirements extraction and analysis support.
For the third research question, the resulting ontol-
ogy enables logical reasoning to check the ontological
requirements model and perform inferences to detect
ambiguities, redundancies incompleteness and incon-
sistencies in requirements boilerplates, as detailed in
Subsection 3.2.4. We have applied a traffic light sys-
tem scenario to better illustrate the reasoning-based
part about the resulting ontology of system require-
ments (cf. Subsection 3.2.3). The resulting expla-
nations seems to be clear and explicitly describe the
reasons behind scenario requirements redundancy and
contradiction. Additionally, we can verbalize the log-
ical axioms produced to obtain a more seamless rep-
resentation, enabling system engineers to understand
ontological axioms and support them during the sys-
tem requirements analysis phase.

6 CONCLUSION AND
PERSPECTIVES

The proposed framework is still in implementation
phase, which is why we have not been able to re-
veal any measurable or qualitative evaluation results
by engineers that would enable us to fully evaluate it.

In future work, we aim to improve requirements
extraction using the entire COOPANS specification
and enhance the ontology consistency by reasoning.

REFERENCES

Bittner, T., Donnelly, M., and Winter, S. (2005). Ontology
and semantic interoperability. In Large-scale 3D data
integration, pages 139–160. CRC Press.

Bossche-Marquette, M. V., Guizol, L., and Brouster, R. L.
(EasyChair, 2024). Ontologies and semantic rules in
real life. EasyChair Preprint 15236.

Castañeda, V., Ballejos, L., Caliusco, M., and Galli, M.
(2010). The use of ontologies in requirements engi-
neering. Glob J Res Eng, 10.

Dori, D. (2016). Model-based systems engineering with
OPM and SysML. Springer New York, NY.

Fahad, M., Qadir, M. A., and Shah, S. A. H. (2008). Eval-
uation of ontologies and dl reasoners. In Shi, Z.,
Mercier-Laurent, E., and Leake, D., editors, Intelli-
gent Information Processing IV, pages 17–27, Boston,
MA. Springer US.

Fuchs, N. E., Kaljurand, K., and Schneider, G. (2006). At-
tempto Controlled English Meets the Challenges of
Knowledge Representation, Reasoning, Interoperabil-
ity and User Interfaces. In FLAIRS 2006.

Glimm, B. and Kazakov, Y. (2019). Classical algorithms
for reasoning and explanation in description logics. In
Reasoning Web.

IEEE (2018). Iso/iec/ieee international standard - sys-
tems and software engineering – life cycle pro-
cesses – requirements engineering. ISO/IEC/IEEE
29148:2018(E), pages 1–104.

IEEE (2023). Iso/iec/ieee international standard - systems
and software engineering–system life cycle processes.
ISO/IEC/IEEE 15288:2023(E), pages 1–128.

Mejdoul., Z. and Lortal., G. (2022). Gluon: A reasoning-
based and natural language generation-based system
to explicit ontology design choices. In Proceedings
of the 14th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowl-
edge Management (IC3K 2022) - KEOD, pages 228–
236. SciTePress.

Mokos, K., Nestoridis, T., Katsaros, P., and Bassiliades,
N. (2022). Semantic modeling and analysis of nat-
ural language system requirements. IEEE Access,
10:84094–84119.

Pohl, K. and Rupp, C. (2015). Requirements Engineering
Fundamentals. Rocky Nook Inc., San Rafael, CA, 2nd
edition.

Rousseau, D., Wilby, J., Billingham, J., and Blachfellner,
S. (2016). A typology for the systems field. Sys-
tema: connecting matter, life, culture and technology,
4(1):15–47.

Roussey, C., Pinet, F., Kang, M. A., and Corcho, O. (2011).
An Introduction to Ontologies and Ontology Engi-
neering, pages 9–38. Springer London, London.

Sarder, M. B. and Ferreira, S. (2007). Developing systems
engineering ontologies. In 2007 IEEE International
Conference on System of Systems Engineering, pages
1–6.

Sillitto, H. (2011). Sharing systems engineering knowledge
through incose: Incose as an ultra-large-scale system?
INSIGHT, 14:20–22.

Stachtiari, E., Mavridou, A., Katsaros, P., Bliudze, S.,
and Sifakis, J. (2018). Early validation of sys-
tem requirements and design through correctness-
by-construction. Journal of Systems and Software,
145:52–78.

Studer, R., Benjamins, V., and Fensel, D. (1998). Knowl-
edge engineering: Principles and methods. Data &
Knowledge Engineering, 25(1):161–197.

Yang, L., Cormican, K., and Yu, M. (2019). Ontology-based
systems engineering: A state-of-the-art review. Com-
puters in Industry, 111:148–171.

Toward an Ontology-Based Framework for Textual System Requirements Extraction and Analysis

143


