
A Method for Packed (and Unpacked) Malware Detection
by Means of Convolutional Neural Networks

Giovanni Ciaramella1,2 a Fabio Martinelli3 b,
Antonella Santone4 c and Francesco Mercaldo4,2 d

1IMT School for Advanced Studies Lucca, Lucca, Italy
2Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy

3Institute for High Performance Computing and Networking, National Research Council of Italy (CNR), Rende, Italy
4University of Molise, Campobasso, Italy

Keywords: Malware, Packed Malware, Obfuscation, Deep Learning, Security, Testing.

Abstract: The current signature-based mechanism implemented by free and commercial antimalware requires the pres-
ence of the signature of the malicious sample to provide protection, i.e., to detect malicious behavior. This is
why malware writers are developing techniques that can change the syntax of the code but leave the semantics
unchanged, i.e., the malware business logic. Among these techniques is the so-called packed malware, i.e.,
malware with binary code modified by packers, software aimed to pack software, compress it, and package
it with a stub. It is a program capable of decompressing and executing it in memory. In this way, malware
detected by antimalware is not even detected in the packed version. In this paper, we propose a technique to
detect packed malware by exploiting convolutional neural networks. In a nutshell, the proposed method per-
forms static analysis, i.e., it does not require running the application to detect the malicious samples: we start
from the application’s binary code exploited to generate an image that represents the input for a set of deep
learning classifiers. The classifiers aim to discern an application under analysis between trusted or (packed)
malicious. In the experimental analysis, we consider three different packers (i.e., mpress, BEP, and gzexe)
to generate packed malware, thus demonstrating the ability of the proposed method to detect packed and un-
packed malware with interesting performances.

1 INTRODUCTION

The main aim of malware, contraction for malicious
and software, is to perpetrate damages on the victim
devices (i.e., computers but also smartphones) with
particular regard to the information gathering, i.e.,
the ability to retrieve sensitive information and send
this information to the attacker. Malware writers are
constantly focused on developing new techniques to
evade the signature-based detection provided by cur-
rent free and commercial antimalware: one of the last
trends is represented by the so-called packed mal-
ware. The term packed malware refers to malicious
software that has been compressed or obfuscated us-

a https://orcid.org/0009-0002-9512-0621
b https://orcid.org/0000-0002-6721-9395
c https://orcid.org/0000-0002-2634-4456
d https://orcid.org/0000-0002-9425-1657

ing a technique known as ”packing.” This process in-
volves compressing the code of the malware into a
smaller, often encrypted format, making it harder for
antimalware programs to detect or analyze. Packing
can also involve embedding the malware inside other
legitimate software or files, disguising its true nature.
In the following, we provide several details related to
the packer’s working mechanisms:

• Compression and Encryption: The malware’s
original code is compressed or encrypted. When
the packed malware is executed, it decompresses
or decrypts itself in memory to carry out its mali-
cious actions.

• Bypassing Detection: Antivirus software often
uses signature-based detection, looking for pat-
terns in code to identify malware. Packing
changes the malware’s appearance, making it look
different from known threats.

Ciaramella, G., Martinelli, F., Santone, A. and Mercaldo, F.
A Method for Packed (and Unpacked) Malware Detection by Means of Convolutional Neural Networks.
DOI: 10.5220/0013210400003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 557-564
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

557



• Multiple Layers of Obfuscation: Malware authors
sometimes use multiple layers of packing, mak-
ing it even more challenging to analyze. Security
tools must first unpack or decrypt each layer be-
fore inspecting the malware’s actual code.

Packed malware complicates both static and dynamic
analysis static analysis (examining code without run-
ning it) is more complex because the code is not in
its original form, while dynamic analysis (running the
malware in a sandbox environment to observe its be-
havior) can also be thwarted, as some packed malware
checks for signs of being in a virtual environment and
behaves differently to avoid detection (Qiang et al.,
2022).

Starting from these considerations, we propose a
method to detect packed and unpacked malware in
this paper. The proposed method relies on a Con-
volutional Neural Network (CNN) (He et al., 2024).
We propose a representation of an application as an
image, and we consider training a set of CNN to
understand the best performance for classifying (un-
packed) malware and trusted samples. In the evalu-
ation, we consider a set of packed malware to com-
prehend whether the trained model can detect packed
malware (not exploited in the training phase).

Thus, the paper proceeds as follows: in the sec-
tion we review the current state of the art related to
(packed) malware detection, in Section 3 we present
the method we designed for the detection of packed
and unpacked malware; the experimental analysis is
discussed in Section 4 and, finally, in the last section
conclusion and future research lines are drawn.

2 RELATED WORK

Over the years, due to the increase in cybersecurity,
malicious users started introducing several method-
ologies to curb malware detectors. This Section pro-
vides a literature review of several methods that iden-
tify packed and unpacked malware.

Authors in (Devi and Nandi, 2012) proposed a
method to identify packed and unpacked malware
in the Windows environment. In detail, they cre-
ated two datasets of 4,075 executable applications,
where 2,954 were malicious programs and 1,121 were
benign executables. The authors applied the UPX
packer to the first dataset, while the second dataset
used unpacked malware. Moreover, using Weka, they
applied classification algorithms for both datasets.
Differently from them, we proposed a methodology
to identify packed and unpacked malware leverag-
ing Deep Learning by applying several Convolutional
Neural Networks belonging to the state of the art. To

do that, we converted all datasets created (one com-
posed of unpacked executable applications and three
using different packing methods) into images, reach-
ing accuracy values in most of the cases higher than
0.980.

Biondi et al. in (Biondi et al., 2019) proposed a
method to identify packed malware leveraging three
different classification Machine learning algorithms
such as Native Bayes, Decision Tree, and Random
Forest Extra Trees. In detail, researchers employed
a dataset of 280,000 samples on which they applied
two packing techniques (UPX and TheMida), extract-
ing many features. Moreover, they also perform clas-
sification using unpacked samples. In our proposed
method, we employed a methodology based on Deep
Learning. We applied three packing algorithms on
each malware sample, obtaining four datasets (one
composed of unpacked malware). In the following
step, all Windows executable applications were con-
verted by a script into images and submitted to ten
different Convolutional Neural Networks belonging
to the literature. Authors in (Rabadi and Teo, 2020)
proposed a method to detect malware Windows field
using Machine Learning. In detail, they composed
a dataset of benign and malicious executable appli-
cations and extracted some features to train and test
models using two different methods. In the first
method, each API call and the list of its arguments are
presented as one feature. In the second method, each
API call and each element of its arguments are con-
sidered as one feature. Consequently, they achieved
remarkable results in terms of accuracy. In our pro-
posed approach, we employed Deep Learning to train
and test models. Moreover, instead of using API calls,
we converted the entire application into an image to
create our dataset.

In (Ciaramella et al., 2024), authors proposed a
method to classify ransomware, general malware, and
trusted applications belonging to the Windows do-
main. In detail, they employed several Deep Learn-
ing architectures, obtaining the best result in terms of
accuracy using the VGG16 network. Moreover, on
the best model, they also applied the Grad-CAM al-
gorithm to identify which area of images turns out to
be crucial for a certain prediction. Unlike them, we
employed a dataset of general malware and trusted
PE files, for which we applied three different pack-
ing methods. Moreover, we also trained and tested
models using unpacked malware. Using all created
datasets, we reached good results in terms of accu-
racy.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

558



3 THE METHOD

In this section we present the proposed method for the
detection of packed and unpacked malware. Figures 1
and 2 respectively present the training and the testing
step related to the proposed method.

Figure 1 shows the workflow of the proposed mal-
ware detection method consists of the following steps:

• Malware Applications. This step involves col-
lecting applications known to be malware. These
samples serve as malicious samples during the
training process.

• Trusted Applications. This step involves gather-
ing safe or trusted applications. These samples act
as legitimate samples in training.

• Application Label. Each application is labeled as
either ”Malware” or ”Trusted” based on its nature,
which will be used as the target variable in the
training process.

• Application Images. The collected applications
are converted into images. To convert a binary
to an image, we treat the sequence of bytes rep-
resenting the binary as the bytes of a gray-scale
PNG image. Depending on the binary size, we
consider a predefined width of 256 and a variable
length. We developed a script to encode any bi-
nary file into a lossless PNG (Mercaldo and San-
tone, 2020).

• Deep Learning Network. A deep learning
network is then trained on these labeled im-
ages to learn features that distinguish malware
from trusted applications. We consider several
CNNs in this task: ALEX NET, LE NET, STAN-
DARD CNN, MobileNet, DenseNet, EfficientNet,
ResNet50, VGG16, VGG19 and Inception.

• Deep Learning Model. After training, the deep
learning model can predict whether a new appli-
cation is malware or trusted based on the learned
features. This model can be deployed for real-
time malware detection.

Figure 2 shows the testing step of the proposed
method.

As shown from Figure 2, the testing step of pro-
posed malware detection method includes the follow-
ing steps:

• Application Packer: A tool used to create packed
versions of applications, often by compressing or
encrypting their code. This is used to generate
packed applications, which can obfuscate the be-
havior of the software and make detection more
challenging.

• Packed Application: Applications processed
through the packer. Due to their obfuscation tech-
niques, these packed applications are often harder
to analyze and detect as malware.

• Unseen Malware: This step involves testing the
detection method with new malware samples not
part of the training set, representing real-world
malware scenarios.

• Unseen Trusted Application: Similarly, new
trusted applications are used during testing to en-
sure the model’s ability to distinguish between
malware and safe software.

• Application Images: The unseen malware,
trusted applications, and packed applications are
transformed into images, which serve as inputs for
the deep learning model.

• Deep Learning Model: The trained deep learn-
ing model from the training phase analyzes the ap-
plication images and predicts their nature as either
malware or trusted.

• Malware/Trusted Prediction: The model pre-
dicts each application, determining whether it is
malware or trusted. This output helps evaluate the
model’s performance on unseen and packed sam-
ples.

4 EXPERIMENTAL ANALYSIS

To collect real-world samples to evaluate the pro-
posed method, we consider the following reposito-
ries: the first one is the Dike dataset1, a freely avail-
able collection of trusted and malicious Portable Ex-
ecutable (PE) and Object Linking and Embedding
(OLE) files. The malware belonging to this dataset
represents the unpacked malware and tries a wide
spectrum of malware categories, i.e., generic trojan,
ransomware, worm, backdoor, spyware, rootkit, en-
crypter, and downloader.

Moreover, to evaluate the robustness of the pro-
posed method concerning packed malware, we have
to generate packed variants, so we consider three dif-
ferent packers i.e., mpress, BEP and gzexe. With the
aim to cover the spectrum of different packers, we ex-
periment with three packers: we consider mpress, as
modern and efficient Windows executable compressor
with added benefits of space saving and making re-
verse engineering more difficult. From the other side
BEP is an older, less commonly used packer that com-
presses executables, but has been largely replaced by
more modern tools. We take into account also gzexe,

1https://github.com/iosifache/DikeDataset

A Method for Packed (and Unpacked) Malware Detection by Means of Convolutional Neural Networks

559



Figure 1: The training phase of the proposed method.

Figure 2: The testing phase of the proposed method.

a simple Linux-based tool that compresses executa-
bles using the gzip algorithm for space savings on
Unix-like systems.

Thus, the full dataset is composed by following
5000 applications:

• 1000 (unpacked) malware samples;

• 1000 packed malware samples obtained with the
mpress packer:

• 1000 packed malware samples obtained with the
BEP packer;

• 1000 packed malware samples obtained with the
gzexe packer;

• 1000 trusted samples.

We train the deep learning models with the (un-
packed) and trusted samples. In the evaluation step,
we consider following evaluations:

• with the unpacked malware and the trusted sam-
ples (i.e., the O dataset);

• with the packed malware (obtained with the
mpress packed) and the trusted samples (i.e., the
P1 dataset);

• with the packed malware (obtained with the BEP
packed) and the trusted samples (i.e., the P2
dataset);

• with the packed malware (obtained with the gzexe
packed) and the trusted samples (i.e., the P3
dataset).

We conduct following experiments to evaluate the
effectiveness of the proposed method for the detection
of packed and unpacked malware.

Table 1 shows the details related to the hyperpa-
rameters we exploited for the considered DL models,
in particular we consider the Image size, the learning
rate, the epochs and the batch size considered in train-
ing.

As shown from Table 1, several well-known archi-
tectures are used, including AlexNet, LeNet, Standard
CNN, MobileNet, DenseNet, EfficientNet, ResNet50,
VGG16, VGG19, and Inception.

From the image size point of view, most mod-
els use an input image size of 100x3 (likely repre-
senting a height and width of 100 pixels and 3 color
channels). However, certain models require larger
input sizes due to their architectural design, in fact

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

560



Table 1: Hyper-parameters setting.
Model Image size Learning rate Epochs Batch size

ALEX NET 100x3 0.0001 25 16
LE NET 100x3 0.0001 25 16

STANDARD CNN 100x3 0.0001 25 16
MobileNet 224x3 0.0001 25 16
DenseNet 224x3 0.0001 25 16

EfficientNet 224x3 0.0001 25 16
ResNet50 100x3 0.0001 25 16
VGG16 100x3 0.0001 25 16
VGG19 100x3 0.0001 25 16

Inception 299x3 0.0001 25 16

MobileNet, DenseNet, EfficientNet use images sized
224x3, while Inception requires an even larger input
size of 299x3.

Relating to the Learning Rate, a consistent learn-
ing rate of 0.0001 is used across all models. This low
learning rate suggests careful training to ensure sta-
bility and gradual convergence.

All models are trained for 25 epochs, providing a
uniform duration of training across different architec-
tures.

The batch size is fixed at 16 for all models. This
suggests that the computational resources available
may favor smaller batches, allowing gradient updates
after processing small sets of samples.

The table outlines a consistent set of hyperparam-
eters (learning rate, epochs, and batch size) across all
models, with variations in the image size depending
on the architecture’s input requirements. This setup
allows for a controlled comparison of model perfor-
mance under similar training conditions, focusing on
the impact of different network architectures.

Table 2 shows the results related to the training
and validation of the models involted in the experi-
mental analysis.

Table 2 shows the performance results related to
the training and validation performance of the model
involved in the experimental analysis. The table pro-
vides insight into each model’s ability to generalize
from the training data to the validation set.

First of all, we note that EfficientNet and
ResNet50 achieved the highest training accuracy, pre-
cision, and recall (0.994), indicating their robustness
during training. However, EfficientNet’s validation
performance drops significantly (0.498 across accu-
racy, precision, and recall), suggesting potential over-
fitting. The MobileNet, DenseNet, and Inception net-
works showed strong validation performance (accu-
racy, precision, and recall values close to or above
0.9), suggesting better generalization compared to
models like EfficientNet. ALEX NET and STAN-
DARD CNN both performed well in terms of vali-
dation metrics, with STANDARD CNN slightly out-
performing ALEX NET (0.923 vs. 0.879). LeNet,
VGG16, and VGG19 performed poorly, with valida-

tion accuracy, precision, and recall stuck around 0.5,
implying these models struggled to learn effectively
from the dataset.

• ALEX NET: Shows a moderate drop in validation
performance compared to training (validation ac-
curacy of 0.879). This could indicate some over-
fitting, though the gap is not extreme.

• LeNet: Both training and validation metrics are
around 0.5, indicating that the model failed to
learn useful features, likely due to its simpler ar-
chitecture being insufficient for the task.

• STANDARD CNN: Exhibits strong performance
in both training and validation. This model gener-
alizes well and has a low validation loss (0.295).

• MobileNet: Strong validation performance with a
high accuracy of 0.939. The model balances good
generalization with relatively low training loss.

• DenseNet: Performs very well on both training
and validation data, with validation accuracy at
0.945, indicating effective feature extraction and
generalization.

• EfficientNet: While this model performs excep-
tionally well during training, its validation metrics
(0.498) suggest significant overfitting, as it fails to
generalize.

• ResNet50: Very balanced, achieving excellent re-
sults in both training and validation, with valida-
tion accuracy at 0.926.

• VGG16 and VGG19: Both models fail to train ef-
fectively, as shown by the high training and vali-
dation loss values. Their architecture may not be
well-suited for this dataset.

• Inception: Achieves good performance across
all metrics, with particularly low validation loss
(0.197) and high accuracy (0.943), indicating
good generalization.
Models like ResNet50, DenseNet, MobileNet, and

Inception are strong candidates due to their balance of
low loss and high validation metrics, suggesting bet-
ter generalization. Simpler models like LeNet and the
VGG variants struggled to capture relevant features,
and EfficientNet overfitted despite its high complex-
ity.

Thus, from Table 2 emerges that the mod-
els obtaining a validation accuracy greater than
0.90 are STANDARD CNN, MobileNet, DenseNet,
ResNet50, and Inception: for this reason, these mod-
els are considered in the testing step.

Table 3 presents the results of the experimental
analysis involving four datasets (0, P1, P2, and P3)
and five models (i.e., STANDARD CNN, MobileNet,
DenseNet, ResNet50, and Inception).

A Method for Packed (and Unpacked) Malware Detection by Means of Convolutional Neural Networks

561



Table 2: Training and validation performances related to loss, accuracy, precision, recall.

Model train loss train acc train prec train rec val loss val acc val prec val rec
ALEX NET 0.040 0.985 0.985 0.985 0.506 0.879 0.879 0.879

LE NET 0.693 0.508 0.508 0.508 0.693 0.500 0.500 0.500
STANDARD CNN 0.033 0.988 0.988 , 0.988 0.295 0.923 0.923 0.923

MobileNet 0.037 0.991 0.991 0.991 0.413 0.939 0.939 0.939
DenseNet 0.062 0.984 0.984 0.984 0.237 0.945 0.945 0.945

EfficientNet 0.019 0.994 0.994 0.994 2.682 0.498 0.498 0.498
ResNet50 0.021 0.994 0.994 0.994 0.405 0.926 0.926 0.926
VGG16 0.693 0.496 0.496 0.496 0.693 0.499 0.499 0.499
VGG19 0.693 0.491 0.491 0.491 0.693 0.500 0.500 0.500

Inception 0.061 0.988 0.988 0.988 0.197 0.943 0.943 0.943

Table 3: The results of the experimental analysis.

Model Dataset Loss Accuracy Precision Recall F-Measure AUC
STANDARD CNN O 0.337 0.921 0.921 0.921 0.921 0.963

P1 0.180 0.954 0.954 0.954 0.954 0.982
P2 0.156 0.960 0.960 0.960 0.960 0.984
P3 0.174 0.956 0.956 0.956 0.956 0.983

MobileNet O 0.369 0.949 0.949 0.949 0.949 0.970
P1 0.140 0.974 0.974 0.974 0.974 0.987
P2 0.167 0.973 0.973 0.973 0.973 0.990
P3 0.151 0.974 0.974 0.974 0.974 0.988

DenseNet O 0.214 0.947 0.947 0.947 0.947 0.979
P1 0.133 0.966 0.966 0.966 0.966 0.988
P2 0.122 0.968 0.968 0.968 0.968 0.989
P3 0.120 0.968 0.968 0.968 0.968 0.989

ResNet50 O 0.442 0.920 0.920 0.920 0.920 0.960
P1 0.248 0.950 0.950 0.950 0.950 0.979
P2 0.234 0.952 0.952 0.952 0.952 0.980
P3 0.246 0.950 0.950 0.950 0.950 0.979

Inception O 0.193 0.941 0.941 0.941 0.941 0.976
P1 0.175 0.946 0.946 0.946 0.946 0.982
P2 0.157 0.952 0.952 0.952 0.952 0.987
P3 0.165 0.950 0.950 0.950 0.950 0.982

• Standard CNN

– Dataset 0: The Standard CNN model performs
well, with a high accuracy of 0.921 and an AUC
of 0.963, indicating that the model is effective
at distinguishing between malware and trusted
samples. However, the loss is relatively higher
at 0.337 compared to datasets P1, P2, and P3.

– Datasets P1, P2, P3: The performance im-
proves consistently across the datasets, with
accuracy peaking at 0.960 for P2 and slightly
dropping to 0.956 in P3. The loss also de-
creases, indicating that the model learns bet-
ter with more complex or larger datasets. The
F-measure and AUC remain consistently high,
suggesting that the model performs well across
these different datasets.

– The Standard CNN performs robustly across all
datasets, showing particularly strong general-
ization on P2 and P3, with AUC values con-
sistently above 0.98, indicating good discrimi-
nation ability.

• MobileNet

– Dataset 0: MobileNet starts with a high accu-
racy of 0.949, a lower loss of 0.369 compared
to Standard CNN, and an AUC of 0.970. The
model shows a very strong balance between
precision and recall, both at 0.949.

– Datasets P1, P2, P3: Performance improves
significantly, with accuracy reaching 0.974 for
P1 and P3, and the loss dropping to 0.140
for P1. The AUC remains consistently high,
around 0.987-0.990, and the F-measure sug-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

562



gests a high degree of consistency between pre-
cision and recall.

– MobileNet performs exceptionally well, im-
proving across larger or more complex datasets.
Its ability to generalize is highlighted by its
minimal fluctuation in accuracy, precision, and
recall. The AUC remains high, confirming its
reliability for classification.

• DenseNet

– Dataset 0: DenseNet shows strong performance
with a loss of 0.214 and accuracy of 0.947, but
slightly lower than MobileNet for this dataset.
Precision, recall, and F-measure are all consis-
tent at 0.947, and the AUC is high at 0.979.

– Datasets P1, P2, P3: As the datasets change,
DenseNet consistently improves, with its loss
reducing to 0.120 for P3 and accuracy peaking
at 0.968 across P2 and P3. Precision, recall, and
F-measure remain stable at 0.968, and the AUC
remains around 0.989.

– DenseNet shows strong and stable perfor-
mance, with an especially low loss on the P2
and P3 datasets. It has excellent precision, re-
call, and AUC, making it a reliable model for
malware detection.

• ResNet50

– Dataset 0: ResNet50 starts with the highest loss
among the models (0.442) and relatively lower
accuracy (0.920). Its precision, recall, and F-
measure are all consistent at 0.920, and the
AUC is 0.960, indicating moderate discrimina-
tion ability.

– Datasets P1, P2, P3: ResNet50 improves in ac-
curacy and other metrics with P1, P2, and P3,
reaching a maximum accuracy of 0.952 for P2.
However, its loss remains relatively high com-
pared to other models (0.246 for P3). The AUC
remains stable around 0.979-0.980, indicating
that the model can still discriminate well be-
tween malware and trusted samples.

– ResNet50 performs solidly on the larger
datasets but struggles with higher loss and
slightly lower accuracy compared to DenseNet
and MobileNet. It does, however, maintain
good AUC values across all datasets.

• Inception

– Dataset 0: Inception shows competitive perfor-
mance, with an accuracy of 0.941 and loss of
0.193. Its precision, recall, and F-measure are
all consistent at 0.941, and the AUC is 0.976,
suggesting good performance.

– Datasets P1, P2, P3: As with the other mod-
els, Inception’s performance improves with the
more complex datasets, reaching an accuracy
of 0.952 for P2 and a low loss of 0.157. The
AUC peaks at 0.987 for P2, indicating strong
discriminatory power.

– Inception performs well, especially on dataset
P2, with high precision, recall, and AUC val-
ues. It strikes a balance between performance
metrics and generalization capability, though it
slightly lags behind MobileNet and DenseNet
on the larger datasets.

We note improved performance on the P1, P2,
and P3 datasets; all models show better perfor-
mance on the P1, P2, and P3 compared to dataset
0. This suggests that the complexity or size of these
datasets helps the models learn more effectively, re-
sulting in higher accuracy, precision, recall, and lower
loss. MobileNet and DenseNet Outperform: Mo-
bileNet and DenseNet consistently outperform the
other models regarding accuracy, precision, recall,
and F-measure, particularly on datasets P1 through
P3. Both models maintain low loss values and high
AUC, making them strong candidates for the task.
ResNet50, while still performing well in terms of ac-
curacy and AUC, suffers from higher loss values, in-
dicating that it struggles to fit the data as effectively
as the other models. Inception shows balanced perfor-
mance across all datasets, with competitive metrics,
though slightly behind MobileNet and DenseNet in
accuracy and loss. MobileNet and DenseNet stand out
for their ability to generalize and maintain high per-
formance across all datasets. Both models show min-
imal fluctuation in accuracy and have high AUC, in-
dicating their effectiveness in malware classification.
The performance improvements across the datasets
suggest that the models benefit from more complex
datasets (i.e., P1, P2, P3). While the ResNet50 and In-
ception models perform adequately, their higher loss
values and slightly lower accuracy suggest they may
not generalize as well as MobileNet and DenseNet,
especially in handling more complex data.

These findings indicate that MobileNet and
DenseNet would be the most reliable models for
malware detection. However, considering that the
MobileNet models obtain slightly higher accuracy if
compared with the DenseNet one, we consider the
MobileNet model the best model for the detection of
packed malware. As a matter of fact, the DenseNet
model obtains an accuracy equal to 0.949, 0.974,
0.973, and 0,974, while the DenseNet reaches the fol-
lowing accuracy, i.e., 0.947, 0.966, 0.968, and 0.968.

A Method for Packed (and Unpacked) Malware Detection by Means of Convolutional Neural Networks

563



5 CONCLUSION AND FUTURE
WORK

Current signature-based mechanisms used by free and
commercial antimalware solutions rely on having a
known signature of a malicious sample to detect and
block its activity. As a result, malware authors have
developed techniques that modify the syntax of the
malware’s code while preserving its underlying be-
havior or logic. One such method involves creating
packed malware, where packers—software tools that
compress and package an application along with a de-
compression stub—alter the binary code of the mal-
ware. This stub decompresses the packed code in
memory and executes it, allowing a previously de-
tected malware to evade detection in its packed form.

In this paper, we introduce a technique that uti-
lizes convolutional neural networks (CNNs) to detect
packed malware. Our approach involves static analy-
sis, meaning it does not require the execution of the
application to identify malicious samples. Starting
with the binary code of an application, we transform
it into an image that serves as input to a series of deep
learning classifiers. These classifiers aim to determine
whether the application under analysis is trusted or
(packed) malicious.

From the experimental analysis, it emerges that
the MobileNet and the DenseNet models show min-
imal fluctuation in accuracy and have high AUC, in-
dicating their effectiveness in malware classification.

In future work, we plan to consider prediction
explainability, with the aim of understanding which
parts of the images related to malware are symptoms
of the model prediction. Moreover, we will also con-
sider the possibility of detecting ransomware with the
proposed model.

ACKNOWLEDGMENT

This work has been partially supported by EU DUCA,
EU CyberSecPro, SYNAPSE, PTR 22-24 P2.01 (Cy-
bersecurity) and SERICS (PE00000014) under the
MUR National Recovery and Resilience Plan funded
by the EU - NextGenerationEU projects, by MUR -
REASONING: foRmal mEthods for computAtional
analySis for diagnOsis and progNosis in imagING -
PRIN, e-DAI (Digital ecosystem for integrated anal-
ysis of heterogeneous health data related to high-
impact diseases: innovative model of care and re-
search), Health Operational Plan, FSC 2014-2020,
PRIN-MUR-Ministry of Health, the National Plan for
NRRP Complementary Investments D∧3 4 Health:
Digital Driven Diagnostics, prognostics and therapeu-

tics for sustainable Health care, Progetto MolisCTe,
Ministero delle Imprese e del Made in Italy, Italy,
CUP: D33B22000060001, FORESEEN: FORmal
mEthodS for attack dEtEction in autonomous driv-
iNg systems CUP N.P2022WYAEW and ALOHA: a
framework for monitoring the physical and psycho-
logical health status of the Worker through Object de-
tection and federated machine learning, Call for Col-
laborative Research BRiC -2024, INAIL.

REFERENCES

Biondi, F., Enescu, M. A., Given-Wilson, T., Legay, A.,
Noureddine, L., and Verma, V. (2019). Effective, effi-
cient, and robust packing detection and classification.
Computers & Security, 85:436–451.

Ciaramella, G., Iadarola, G., Martinelli, F., Mercaldo, F.,
and Santone, A. (2024). Explainable ransomware
detection with deep learning techniques. Jour-
nal of Computer Virology and Hacking Techniques,
20(2):317–330.

Devi, D. and Nandi, S. (2012). Detection of packed mal-
ware. In Proceedings of the First International Con-
ference on Security of Internet of Things, pages 22–26.

He, H., Yang, H., Mercaldo, F., Santone, A., and Huang, P.
(2024). Isolation forest-voting fusion-multioutput: A
stroke risk classification method based on the multidi-
mensional output of abnormal sample detection. Com-
puter Methods and Programs in Biomedicine, page
108255.

Mercaldo, F. and Santone, A. (2020). Deep learning
for image-based mobile malware detection. Jour-
nal of Computer Virology and Hacking Techniques,
16(2):157–171.

Qiang, W., Yang, L., and Jin, H. (2022). Efficient and ro-
bust malware detection based on control flow traces
using deep neural networks. Computers & Security,
122:102871.

Rabadi, D. and Teo, S. G. (2020). Advanced windows meth-
ods on malware detection and classification. In Pro-
ceedings of the 36th Annual Computer Security Appli-
cations Conference, pages 54–68.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

564


