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Abstract: Sockpuppet accounts, deceptive identities created by individuals on social networks, present significant 
challenges to online integrity and security. In this study, we analyse various approaches for detecting 
Sockpuppet accounts through the computation of several distinct features and the application of seven 
different classifiers. To enhance detection accuracy, we employ simple majority voting to aggregate the 
predictions from multiple classifiers, involving all seven classifiers, or only best five or three of them. This 
approach allows us to leverage the strengths of different classifiers while mitigating their individual 
weaknesses. Our experimental results show a significant improvement over previous studies, achieving an 
accuracy rate of 88% with 87% precision. Additionally, our experiments highlight the critical importance of 
feature engineering, demonstrating how carefully selected features directly influence classification 
performance. The findings also emphasize the value of human-in-the-loop involvement, where iterative 
feedback refines the models and improves their predictive capabilities. These insights offer meaningful 
contributions toward strengthening the security and integrity of online social networks by enabling more 
accurate and robust detection of Sockpuppet accounts. 

1 INTRODUCTION 

With the rise of online platform usage, there has been 
an increase in a special type of malicious account, 
Sockpuppet accounts. Sockpuppet accounts can be 
defined as the creation of multiple accounts by an 
individual or a coordinated group of people for 
malicious or deception intents, including activities 
such as spamming, fake reviewing, and the 
dissemination of fake news and misinformation 
(Baamer & Boicu, 2024). These accounts are often 
created to manipulate opinions, spread false 
information, or avoid bans on primary accounts. 
Detecting these Sockpuppet accounts is essential to 
keep online interactions and content trustworthy.  

In the next sections we discuss the impact of 
Sockpuppet accounts, formalize the research problem 
and briefly present the current state of the art for 
Sockpuppet detection, which identifies machine 
learning as a promising solution to this problem by 
detecting anomalies in user behaviour, interaction 
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networks, and account characteristics. In this paper, 
we describe an experiment that studies the efficacy of 
various machine learning classifiers in detecting 
Sockpuppet accounts. Additionally, we employ a 
simple majority voting system among these 
classifiers and study if they improve overall detection 
performance. Our analysis shows that the proposed 
method achieved an accuracy of 88% with a precision 
of 87%. Finally, this research aims to advance the 
state of the art in Sockpuppet detection while offering 
valuable methodologies and future directions to 
enhance the security and reliability of online 
communities. A key future direction involves 
integrating human-in-the-loop processes for iterative 
refinement, which we think will improve the models' 
detection accuracy and adaptability. 
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2 RESEARCH PROBLEM 

Sockpuppet accounts present a complex problem for 
online social networks. Firstly, they undermine trust 
and authenticity within online communities by 
pretending to be real users who engage in 
conversations, support ideas, or endorse causes. For 
instance, there is a correlation between highly active 
users in political hashtags and those who tweet across 
multiple political hashtags, supporting the idea that 
social media activism is driven by a small, highly 
active group of politically engaged users (Bastos et 
al., 2013). This deceptive behaviour affects user trust 
and creates an environment where users doubt the 
authenticity of the content they encounter (Bhatia et 
al., 2023). Secondly, Sockpuppet accounts are often 
used to manipulate public opinion and spread false or 
misleading information. Also, their involvement in 
online discussions can distort the perceived 
popularity of promoted views, potentially affecting 
democratic processes and policy decisions (Bhopale 
et al., 2021). Moreover, these accounts can be 
employed for cyber harassment (Boididou et al., 
2017), cyberbullying (Borkar et al., 2022), and even 
cyberattacks, posing significant risks to user safety 
and well-being (Boshmaf et al., 2015). 

Our study aims to address several key research 
questions in the domain of Sockpuppet accounts 
detection specifically within the context of 
Wikipedia. Firstly, we seek to determine which 
machine learning classifiers perform best in 
identifying Sockpuppet accounts. By evaluating and 
comparing various classifiers using Wikipedia 
accounts and editing data, we aim to identify the most 
effective algorithms for this specific application. 
Secondly, we investigate whether aggregating the 
results of individual classifiers using a voting system 
improves overall classification accuracy on 
Wikipedia. This involves examining hard and soft 
voting techniques to see if combining multiple 
classifiers leads to better performance in the 
Wikipedia environment. Finally, we explore the 
common characteristics of Wikipedia accounts that 
are consistently misclassified by all classifiers. 
Understanding these characteristics can provide 
insights into the limitations of current detection 
methods and highlight areas for improvement. 

3 RELATED WORKS 

We performed an extensive literature review for 
Sockpuppet accounts (Baamer & Boicu, 2024) in 

which we identified 125 published papers and 13 
other recent survey papers. Only ten papers out of 125 
papers specifically addressed Sockpuppet accounts 
on Wikipedia, highlighting a significant gap in the 
literature that our study aims to fill.  

Machine learning-based detection techniques are 
used most to identify Sockpuppet accounts (81 out of 
125 papers). They extracted attributes and 
incorporated supervised, semi-supervised, and 
unsupervised models. About 25 studies used one 
machine learning classification method, while others 
applied and compared several machine learning 
classifiers (56 papers). However, only two studies 
aggregated the results of the different classifiers by 
using a voting system.  

One of the first studies to detect Sockpuppet 
accounts was conducted by Solorio, Hasan, and 
Mizan in 2013 for Wikipedia. This study used a 
Support Vector Machine classifier based on 24 
features (Solorio et al., 2013). On the other hand, 
most other studies on Wikipedia run more than one 
classifier and compare their results. For example, 
(Sakib et al., 2022) considered different classifiers, 
which are Logistic Regression, Gaussian Naive 
Bayes, Decision Tree, Multilayer Perceptron, 
Random Forest, ExtraTree, and a Long Short-Term 
Memory network. Similarly, (Yamak et al., 2016) 
also considered six classifiers: Support Vector 
Machine, Random Forest, Naive Bayes, k-Nearest 
Neighbors, Bayesian network, and AdaBoost. 
Despite this common platform (Wikipedia), the 
previous three studies employed different categories 
of features: (Sakib et al., 2022) and (Yamak et al., 
2016) both used account-based, user activity and 
interaction-based, and temporal-based features in 
their analyses. In contrast, both (Yamak et al., 2016) 
and (Solorio et al., 2013) used content-based features. 
A comparison with Solorio et al. and Sakib et al. 
studies on Wikipedia is performed in the analysis 
section.  

The remaining six papers focused on Wikipedia 
used similar methods to the previously discussed 
papers. For instance, one of these papers was 
conducted by the same authors of (Solorio et al., 
2013), and they achieved similar results with their 
previous work (Solorio et al., 2014). Other studies, 
such as (Tsikerdekis et al., 2014) and (Yu et al., 
2021), computed several features like verbal and non-
verbal features and applied various classifiers, 
including Support Vector Machine, Random Forest, 
and AdaBoost. Tsikerdekis et al. computed several 
non-verbal features, such as time-independent and 
time-dependent features. Then, the authors applied 
the machine learning classifiers on different binary 
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models that consist of different combinations of 
variables to identify the differences in accuracy as 
time progress. On the other hand, Yu et al. extracted 
verbal and non-verbal features. Then, they applied 
multi-source feature fusion adaptive selection 
technique to combine the extracted features. Lastly, 
they applied the machine learning classifiers (SVM, 
RF, and AdaBoost) on these adaptive multi-source 
features. The results of Solorio et al., Tsikerdekis et 
al. and Yu et al. are shown in Table 1. Additionally, 
some studies employed alternative detection 
techniques, such as graph-based techniques 
(Kuruvilla et al., 2015; Yamak et al., 2018; and Liu et 
al., 2023) or statistical-based techniques like (He et 
al., 2021). These approaches do not significantly 
differ in outcomes or methodologies from the 
previously discussed studies.  

Table 1: Previous Results Notations: accuracy (A), F1 
score, precision (P) and recall (R). Dash indicates that the 
results were not available. Results are provided as 
A/F1/P/R. 

 Solorio et al., 
2014 

Tsikerdekis et al., 
2014 

Yu et al., 
2021

SVM -/74/-/- 69/66/70/62 -/80/85/76
RF - 71/67/75/61 -/81/80/81
AB - 71/69/73/65 -/78/72/90

Looking at a different platform (PTT), both 
(Nguyen et al., 2021) and (Wang et al., 2023) further 
expand their research by utilizing a diverse set of 
classifiers. (Nguyen et al., 2021) applied Naive 
Bayes, XGBoost, AdaBoost, k-Nearest Neighbours, 
and Random Forest classifiers, while (Wang et al., 
2023) utilized LightGBM, XGBoost, Random Forest, 
ConcNet, and Fully Connected classifiers. These two 
papers are notable for applying both hard and soft 
voting classifiers to aggregate the results of the 
individual classifiers, enhancing the robustness and 
accuracy of the Sockpuppet detection. Additionally, 
both studies computed several features of different 
categories, including content-based, sentiment-based, 
statistical-based, temporal-based, and user activity 
and interaction-based features. Also, (Nguyen et al., 
2021) used social network-based features. The results 
of these two studies are discussed in detail in the 
Analysis section below. 

4 EXPERIMENTS 

To evaluate the validity of our assumptions, we 
conducted six experiments. For each experiment, we 
applied various machine learning classifiers to assess 
the performance and accuracy of our models. The key 

distinction between the six experiments lies in the 
scope of feature engineering and the number of 
features utilized. Through these experiments, we 
aimed to answer our three research questions. 

For these experiments, we selected the dataset 
collected from Wikipedia by (Sakib et al, 2022) and 
publicly available on GitHub (Sakib, 2022).  

4.1 Feature Engineering  

We started by removing features such as 'top,' 'text 
hidden,' and 'comment hidden' because most of these 
variables contained mostly empty or null values, 
which could negatively impact the accuracy of the 
models. Additionally, these features were not useful 
in any of the computed features or analysis, so 
retaining them would not contribute meaningfully to 
the model's performance. The remaining raw features 
were user ID, username, revision ID, namespace, 
title, timestamp, comment, and class label.  

Based on these raw features, we aggregated the 
entries for the same account and computed twenty-
one features for each account: 1. Number of digits in 
the username, 2. The ratio of digits to total alphabet 
characters in a username, 3. Number of leading digits, 
4. The unique character ratio in the username, 5. 
Average comment length for each user, 6. Average 
title length, 7. Average time difference between two 
consecutive edits, 8. Average number of alphabetic in 
comments, 9. Average number of punctuation in 
comments, 10. Average number of sentences in 
comments, 11. Average number of characters in 
comments, 12. Total number of revisions, 13. 
Number of namespaces the user participates in, 14. 
Number of titles the user participates in, 15. Account 
age, 16. The ratio of namespace contribution to total 
contribution, 17. The ratio of title contribution to total 
contribution, 18. The ratio of the number of 
comments to total revision per user, 19. Average 
number of comments per article, 20. Average user 
comments per day, 21. Average number of comments 
per active day for a user. Some of these features were 
inspired by previous work, which are (Ashford et al., 
2020), (Nguyen et al., 2021), (Sakib et al., 2022), 
(Solorio et al., 2013), and (Yamak et al., 2016). 
However, we proposed four new features: 15, 16, 20, 
and 21.  

In experiment 1, we used the first seven features, 
while in experiment 2, we used features 1-11. For 
experiment 3, we used features 1-15. Then, in 
experiments 4 and 5, we used features 1-17 and 1-21, 
respectively. Lastly, we ran the feature selection 
method provided by the Scikit-learn library, 
SelectKBest, and we selected the best 15 features for 
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experiment 6, which are features 1, 3, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 19, and 20. Moreover, most of the 
features were computed as aggregations (e.g., 
average, count, sum) of the raw data, providing a 
global view of each account. For example, features 8-
11 were averaged to aggregate the contributions made 
by a single account. This aggregation allowed us to 
keep a single entry for each account. 

4.2 Dataset Preparation  

After aggregating the data and removing duplicates, 
we have refined our dataset. Despite this cleaning 
process, the dataset remains substantial, with 
approximately 116,000 unique accounts.  

We then randomly split the dataset using an 80/20 
rule, designating 80% of the data for training and 20% 
for testing. To ensure that the model is not biased, we 
did not use feedback from testing to improve the 
models. Additionally, the same training and testing 
datasets were used for all experiments.  

4.3 Classification Models  

Based on the analysis of previous research, we 
identified seven promising classifiers: Support 
Vector Machine (SVM), Random Forest (RF), Naive 
Bayes (NB), Logistic Regression (LR), k-Nearest 
Neighbours (KNN), AdaBoost (AB), and XGBoost 
(XGB). Most of these classifiers were implemented 
using their default parameters from the Scikit-learn 
library. However, for the Random Forest, KNN, 
AdaBoost, and XGBoost classifiers, we observed 
noticeable discrepancies between their performance 
on the training and testing datasets, which indicated 
the presence of overfitting. To address this, we 
utilized GridSearchCV to select the optimal 
parameters from a range of values, as shown in Table 
2, to mitigate overfitting and improve generalization. 
In contrast, the remaining classifiers demonstrated 
comparable and reasonable performance on both 
training and testing datasets, with no significant signs 
of overfitting. Consequently, their default parameters 
were retained without further tuning. 

For Random Forest, we modified the number of 
splits that each decision tree is allowed to make 
(max_depth) to 7, the number of trees (n_estimators) 
to 50, and the minimum number of samples that are 
required to split an internal node (min_samples_split) 
to 3. For KNN, we set the number of neighbours (k) 
to 9. For AdaBoost, we set the number of weak 
learner (n_estimators) to 100 and the weight applied 
to each regressor to each iteration (learning_rate) to 
be 1.0, and we used the same values of (n_estimators) 

and (learning_rate) for XGBoost classifiers. For other 
parameters used in XGBoost, we set the (max_depth) 
to 3 and (alpha) value to 15.  

We implemented simple majority voting by 
utilizing both hard and soft voting classifiers with 
these seven models. Each voting classifier, 
implemented using the Scikit-learn library, was 
executed twice—once with the hard voting parameter 
and once with the soft voting parameter. Detailed 
explanation of these two types of voting can be found 
in (Scikit-Learn, 2014).   

Table 2: Hyperparameter Tuning for RF and KNN. 

Classifier Hyperparameter Values Range Best 
Value

RF 
max_depth 2,3,5,7,9 7

n_estimators 50,100,200 50
min_samples_split 2,3,4,5 3

KNN n_neighbors 1-15 9 

AB 
n_estimators 50,100,200 100 
learning_rate 0.01, 0.02, 1.0 1.0 

XGB 

n_estimators 50,100,200 100 
max_depth 3,5,7,9 3 

learning_rate 0.01, 0.02, 1.0 1.0 
alpha 5,7,10,15 15 

After analysing the aggregation of the seven 
classifiers' results, we implemented more voting 
classifiers that aggregate the results of the best 
classifiers with different combinations. For example, 
we added voting classifiers that aggregate the results 
of different combinations of five models and other 
voting classifiers of three different classifiers. The 
added voting classifiers are hard and soft voting on ( 
RF, SVM, LR, AB, XGB), (RF, SVM, KNN, AB, 
XGB), (RF, LR, KNN, AB, XGB), (RF, LR, KNN), 
(SVM, RF, KNN), (SVM, RF, LR), (RF, LR, AB), 
(RF, KNN, AB), (RF, KNN, XGB, RF, LR, XGB), 
and (RF, AB, XGB). By the end of the experiments, 
we had 19 classifiers.  

The classifiers were trained on the training data 
and saved using the pickle library provided by Scikit-
Learn. These saved models were imported and used 
on testing data, which was prepared in a similar way 
of the training data.  

4.4 Classification Results  

For each classifier, we generated evaluation metrics: 
accuracy, F1 score, precision, and recall. The results 
achieved by experiment 5, which utilized all features, 
are shown in Table 3 and Table 4. The results of all 
experiments and different combination of classifiers 
are shown in Appendix Table A1 to Table A24. 
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Table 3: Experiment 5- Individual classifiers performance 
with 21 features; (Abbreviations: 1=Training data, 
2=Testing data, DS=Data set, A=Accuracy, F1=F1-score, 
P= Precision, R=Recall, H=Hard, S=Soft). 

SVM RF LR NB KNN AB XGB 

DS 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

A 87 87 88 87 87 87 22 22 88 86 88 88 89 88

F1 83 83 84 83 83 83 20 20 86 84 86 86 88 87

P 85 85 87 86 84 84 82 82 87 83 86 86 88 87

R 87 87 88 87 87 87 22 22 88 86 88 88 89 88

Table 4: Experiment 5- Voting classifiers aggregating all 
classifiers’ results with 21 features (Abbreviations: 
1=Training data, 2=Testing data, DS=Data set, 
A=Accuracy, F1=F1-score, P= Precision, R=Recall, 
H=Hard, S=Soft). 

H  S 

DS 1 2 1 2 

A 88 88 88 88 

F1 86 85 86 85 

P 87 86 87 86 

R 88 88 88 88 

5 ANALYSES 

In the analysis of our six experiments, we observed 
distinct trends in the performance of the classifiers 
based on the number of features used. The first two 
experiments that utilized 7 and 11 features produced 
lower results than the subsequent experiments. In 
experiments 3 through 6, which employed 15, 17, 20, 
and again 15 features, respectively, the performance 
of all models, except NB, showed a slight but 
consistent improvement in each successive 
experiment. However, the performance of the NB 
model decreased dramatically in experiments 4 and 5 
but then improved in experiment 6. This decrease in 
performance highlights the sensitivity of the NB 
model to the number and type of features used, 
contrasting with the more stable improvement 
observed in the other models. Additionally, it is worth 
pointing out that our experiments likely avoided 
overfitting, as we obtained similar results for both the 
training and testing for each model. 

The voting classifiers, both hard and soft, 
consistently outperformed most other classifiers, 
showcasing their robustness in aggregating 
predictions to improve overall accuracy. However, 

AdaBoost and XGBoost classifiers showed almost 
equal performance to the voting classifiers but 
slightly better. Furthermore, attempts to improve the 
voting system's performance by implementing 
several voting classifiers that aggregate the results of 
different combinations of classifiers and excluding 
the worst-performing classifiers have results in slight 
enhancements. For example, aggregating the result of 
RF, AdaBoost and XGBoost, which are the best-
performing classifiers, achieved the highest results of 
all the individual classifiers and voting classifier with 
88% accuracy, 86% F1 score, 87% precision and 88% 
recall. Tables 5 and Table 6 show the percentage of 
change in the performance of individual models and 
voting classifiers between experiment 1 and 5. As 
indicated in the tables, the improvement ranged 
between 1% and 13%, emphasizing the overall 
benefit of adding more features, except for the NB 
model. 

Table 5: Change of Performance Between Experiment 1 
and Experiment 5 for Individual Models (in %). 

SVM RF LR NB KNN AB XGB 

DS 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

A +1 +1 +2 +1 +1 +1 -64 -64 +1 +1 +2 +2 +3 +2

F1 +3 +3 +4 +3 +3 +3 -60 -60 +4 +4 +6 +6 +7 +7

P +11 +11 +13 +12 +9 +10 +8 +8 +4 +4 +3 +1 +4 +4

R +1 +1 +2 +1 +1 +1 -64 -64 +1 +1 +2 +2 +3 +2

Table 6: Change of Performance Between Experiment 1 
and Experiment 5 for Voting Classifiers aggregating all 
classifiers’ results (in %). 

H  S 

DS 1 2 1 2 

A +2 +2  +2  +2  

F1 +6 +5  +6 +5 

P +13 +12  +13  +12  

R +2 +2  +2  +2  

Our classification results surpass those presented 
in the works of (Sakib et al., 2022) and (Solorio et al., 
2013) across all classifiers. However, the results by 
(Yamak et al., 2016) demonstrate superior 
performance with a Random Forest classifier 
reaching 99% accuracy. Yamak et al. suggest that this 
high performance might be attributed to an overfitting 
problem. Additionally, after analysing the proposed 
models, we found that the authors did not remove 
duplicate accounts, and some similar accounts within 
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one group were assigned to both the training and 
testing data. This increases the possibility of 
overfitting, as the models were trained on similar 
accounts used for testing. Thus, we exclude the 
results of that study from our comparison table. This 
comparative analysis is summarized in Table 7, 
which compares the seven classifiers testing results of 
experiment 5 with the results of (Sakib et al., 2022) 
and (Solorio et al., 2013). 

Table 7: Comparative analysis of individual classifiers by 
accuracy (A), F1 score, precision (P) and recall (R). Dash 
indicates that the results were not available. Results are 
provided as A/F1/P/R. 

 Sakib et al., 
2022 

Solorio et al., 
2013 

Ours 

SVM - 69/72/68/75 87/83/85/87
RF -/82/-/- - 87/83/86/87
NB -/60/-/- - 25/24/82/25
LR -/75/-/- - 87/83/84/87

KNN - - 86/84/84/86
AB - - 88/86/86/88

XGB - - 88/86/86/88

Regarding voting classifiers, we compared our 
voting classifiers results, which aggregate the results 
of seven classifiers, with those of papers (Nguyen et 
al., 2021) and (Wang et al., 2023), which employed 
both hard and soft voting classifiers to aggregate the 
outcomes of five models (RF, NB, KNN, XGB, and 
AB) and (XGB, LightGBM, RF, ConvNet, FC), 
respectively. Our results exhibit higher performance 
across all evaluation metrics compared to both 
studies. The comparison between the results is shown 
in Table 8. 

Table 8: Comparative analysis of voting classifiers by 
accuracy (A), F1 score, precision (P) and recall (R). Dash 
indicates that the results were not available. Results are 
provided as A/F1/P/R. 

 Nguyen et al., 
2021 

Wang et al., 
2023 

Ours 

Hard Voting 83/83/85/80 -/49/-/- 88/85/86/88
Soft Voting 82/81/87/76 -/51/-/- 88/85/86/88

Including additional features significantly 
improved the performance of the Random Forest, 
AdaBoost and XGBoost classifiers, as demonstrated 
in Figure. 1, Figure. 2, and Figure. 3. This 
enhancement is attributed to the capacity to 
effectively handle and leverage the increased feature 
set, leading to better overall model accuracy. The bar 
charts clearly illustrate the upward trend in 
performance as more features were added. Moreover, 
in experiment 6 in which we selected the best 15 
features, the results were comparable with previous 
experiments. 

 
Figure 1: Random Forest performance. 

 
Figure 2: AdaBoost performance. 

 
Figure 3: XGBoost performance. 

5.1 Misclassified Accounts Analysis  

We also reported the number of misclassified 
accounts that were misclassified by all classifiers for 
each phase separately, training and testing. Thus, we 
computed for each account, its target class, and the 
classification results from each classifier to show 
whether they generated similar classifications. Also, 
we computed how many classifiers correctly 
classified each account and how many accounts were 
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correctly classified by each classifier. As shown in 
Table 9, adding more features decreased the number 
of misclassified accounts, except in the case of 
experiment 5, where the number of misclassified 
accounts increased slightly, and this might indicate 
that some of the features added in experiment 5 
affected the performance of the models. On the other 
hand, in experiment 6, the numbers also increased 
because the number of features was reduced. 
However, these numbers (4,830-1,309) are slightly 
better than the result reported by experiment 3 (4,894-
1,325) even though both experiments have the same 
number of features, 15 features. Additionally, Figure 
4 shows the percentage of misclassified accounts for 
both the training and testing datasets. As shown in the 
graph, the percentage of misclassified accounts in the 
testing dataset is lower, which indicates that our 
models are performing well and do not exhibit 
overfitting.  

Table 9: Misclassified accounts by all classifiers. 

 Training 
(~93,000) 

Training 
(%) 

Testing 
(~23,125) 

Testing 
(%)

Experiment 1 11,340 12.19% 3,025 13.08%
Experiment 2 6,631 7.13% 1,810 7.82%
Experiment 3 4,894 5.26% 1,325 5.73%
Experiment 4 629 0.68% 175 0.76%
Experiment 5 673 0.72% 207 0.90%
Experiment 6 4,830 5.19% 1,309 5.66%

 
Figure 4: Percentage of misclassified accounts by all 
classifiers. 

We analysed these misclassified accounts and 
found that all of them were genuine accounts 
mistakenly classified as Sockpuppet accounts. For 
this reason, we compared these misclassified 
accounts with Sockpuppet accounts in the detailed 
observations below. 

First, the average time difference between their 
comments ranged from 15 minutes to 24 hours, 
closely resembling the patterns observed in real 
Sockpuppet accounts, which range between 1 minute 

and 23 hours. Additionally, the total number of 
revisions for these accounts ranged between 1 and 
200, similar to Sockpuppet accounts. Thirdly, even 
though there are 28 namespaces on Wikipedia, 
contributions by namespace for these accounts ranged 
between 1 and 7, aligning with the participation in 1 
to 8 namespaces by real SP accounts, except for 48 
accounts out of 115,620 who participated in 9-16 
namespace. Similarly, the average contributions by 
title for these accounts ranged from 1 to 100, with 
some accounts editing one article multiple times. For 
example, user CD1975 made a total of 5 revisions, all 
in one article. This mirrors the behaviour of 
Sockpuppet accounts, except for one account that 
edited 14,407 titles.  

These observations indicate that the behaviour of 
genuine users and Sockpuppet accounts can be quite 
similar. However, data analysis can significantly 
improve the accuracy of distinguishing between these 
types of accounts. One notable difference is the 
account age; Sockpuppet accounts typically have a 
much shorter lifespan compared to normal accounts. 
Additionally, Sockpuppet accounts tend to write 
longer sentences. For instance, when we analysed the 
average number of sentences per contribution, we 
found that normal accounts ranged from 0 to 6 
sentences. In contrast, Sockpuppet accounts ranged 
from 0 to 50 sentences per contribution, with some 
accounts contributing as many as 147 sentences. This 
distinct behavioural pattern provides a valuable 
indicator for accurately identifying Sockpuppet 
accounts, even in the presence of misleading 
similarities with normal accounts. 

Moreover, we generated the number of accounts 
misclassified by Random Forest, AdaBoost, and 
XGBoost classifiers in each experiment. Table 10 
Table 11, and Table 12 show that the improvement in 
these classifiers’ performance, and it is evident in the 
reduction of misclassified accounts. In other words, 
adding more features to these classifiers decreased the 
number of misclassified accounts.  Figures 5, Figure 
6, and Figure 7 show the percentages of misclassified 
accounts for each classifier, which highlighting the 
improvements achieved by each classifier across the 
experiments.  

Table 10: Misclassified accounts by Random Forest. 

 Training 
(~93,000)

Training 
(%) 

Testing 
(~23,125) 

Testing 
(%)

Experiment 1 12,718 13.67% 3,240 14.01%
Experiment 2 12,718 13.67% 3,240 14.01%
Experiment 3 11,532 12.40% 2,988 12.92%
Experiment 4 11,286 12.14% 2,936 12.69%
Experiment 5 10,935 11.75% 2,857 12.35%
Experiment 6 11,198 12.04% 2,928 12.66%
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Figure 5: Percentage of misclassified accounts by Random 
Forest. 

Table 11: Misclassified accounts by AdaBoost. 

 Training 
(~93,000) 

Training 
(%) 

Testing 
(~23,125) 

Testing 
(%)

Experiment 1 12,693 13.64% 3,225 13.95%
Experiment 2 12,659 13.61% 3,207 13.86%
Experiment 3 11,434 12.29% 2,894 12.52%
Experiment 4 11,396 12.25% 2,900 12.54%
Experiment 5 11,083 11.92% 2,864 12.39%
Experiment 6 11,182 12.02% 2,881 12.46%

 
Figure 6: Percentage of misclassified accounts by 
AdaBoost. 

Table 12: Misclassified accounts by XGBoost. 

 Training 
(~93,000) 

Training 
(%) 

Testing 
(~23,125) 

Testing 
(%)

Experiment 1 12,545 13.49% 3,205 13.86%
Experiment 2 12,095 13.00% 3162 13.67%
Experiment 3 10,054 10.81% 2673 11.56%
Experiment 4 10,095 10.86% 2690 11.63%
Experiment 5 9,916 10.66% 2,675 11.57%
Experiment 6 9,980 10.73% 2,680 11.59%

6 CONCLUSIONS 

In this study, we performed a comprehensive analysis 
of various methods for detecting Sockpuppet 
accounts   on    Wikipedia.   We    analysed    previous  

 
Figure 7: Percentage of misclassified accounts by 
XGBoost. 

features and proposed four new ones, that improved 
the performance of the classifiers. We studied seven 
distinct basic classifiers (SVM, RF, LR, NB, KNN, 
AB, and XGB) and two voting classifiers applied on 
various combinations of the basic ones. The best 
results were obtained by aggregating the result of 
Random Forest, AdaBoost, and XGBoost achieving 
an accuracy rate of 88% with 87% precision.  

Additionally, our study highlights several 
important points and findings regarding Sockpuppet 
detection. First, feature engineering plays a crucial 
role in enhancing the performance of all models, as 
demonstrated by the significant improvements 
observed when additional features were incorporated. 
Also, parameter tuning, and refinement are equally 
important to avoid overfitting, and this can be 
achieved manually and through automated solutions 
like GridSearchCV. 

Despite achieving results that surpass previous 
work, there is still room for improvement. One 
potential enhancement is implementing a rule-based 
voting system built on the analysis of training results. 
Additionally, integrating cognitive assistants and 
human-in-the-loop methodologies with machine 
learning techniques can offer substantial benefits. 
Cognitive assistants can provide contextual insights 
and recognize complex patterns that automated 
systems might overlook. Incorporating human 
expertise is also valuable, as humans can identify 
anomalies and provide feedback to the machine 
learning models, leading to continuous improvement 
and adaptation, particularly for accounts 
misclassified by automated systems. For example, 
when our analysis of misclassified normal accounts 
revealed that these accounts have longer lifespans 
than Sockpuppet accounts, we added the account age 
feature in Experiment 3, and it improved the results 
of all classifiers. This demonstrates how human 
intervention can enhance detection accuracy. By 
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leveraging both automated systems and human 
insights, we can refine the Sockpuppet detection 
process and achieve even better results. 
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