
Sockpuppet Detection in Wikipedia Using Machine Learning and
Voting Classifiers

Rafeef Baamer a and Mihai Boicu b
Department of Information Sciences and Technology, George Mason University, University Dr, Fairfax, VA, U.S.A.

Keywords: Sockpuppet, Machine Learning, Classifier, Random Forest, Naive Bayes, Support Vector Machine, K-Nearest
Neighbour, AdaBoost, XGBoost, Logistic Regression, Voting Classifier, Soft Voting, Hard Voting.

Abstract: Sockpuppet accounts, deceptive identities created by individuals on social networks, present significant
challenges to online integrity and security. In this study, we analyse various approaches for detecting
Sockpuppet accounts through the computation of several distinct features and the application of seven
different classifiers. To enhance detection accuracy, we employ simple majority voting to aggregate the
predictions from multiple classifiers, involving all seven classifiers, or only best five or three of them. This
approach allows us to leverage the strengths of different classifiers while mitigating their individual
weaknesses. Our experimental results show a significant improvement over previous studies, achieving an
accuracy rate of 88% with 87% precision. Additionally, our experiments highlight the critical importance of
feature engineering, demonstrating how carefully selected features directly influence classification
performance. The findings also emphasize the value of human-in-the-loop involvement, where iterative
feedback refines the models and improves their predictive capabilities. These insights offer meaningful
contributions toward strengthening the security and integrity of online social networks by enabling more
accurate and robust detection of Sockpuppet accounts.

1 INTRODUCTION

With the rise of online platform usage, there has been
an increase in a special type of malicious account,
Sockpuppet accounts. Sockpuppet accounts can be
defined as the creation of multiple accounts by an
individual or a coordinated group of people for
malicious or deception intents, including activities
such as spamming, fake reviewing, and the
dissemination of fake news and misinformation
(Baamer & Boicu, 2024). These accounts are often
created to manipulate opinions, spread false
information, or avoid bans on primary accounts.
Detecting these Sockpuppet accounts is essential to
keep online interactions and content trustworthy.

In the next sections we discuss the impact of
Sockpuppet accounts, formalize the research problem
and briefly present the current state of the art for
Sockpuppet detection, which identifies machine
learning as a promising solution to this problem by
detecting anomalies in user behaviour, interaction

a https://orcid.org/0009-0000-6611-7381
b https://orcid.org/0000-0002-6644-059X

networks, and account characteristics. In this paper,
we describe an experiment that studies the efficacy of
various machine learning classifiers in detecting
Sockpuppet accounts. Additionally, we employ a
simple majority voting system among these
classifiers and study if they improve overall detection
performance. Our analysis shows that the proposed
method achieved an accuracy of 88% with a precision
of 87%. Finally, this research aims to advance the
state of the art in Sockpuppet detection while offering
valuable methodologies and future directions to
enhance the security and reliability of online
communities. A key future direction involves
integrating human-in-the-loop processes for iterative
refinement, which we think will improve the models'
detection accuracy and adaptability.

Baamer, R. and Boicu, M.
Sockpuppet Detection in Wikipedia Using Machine Learning and Voting Classifiers.
DOI: 10.5220/0013210100003944
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 10th International Conference on Internet of Things, Big Data and Security (IoTBDS 2025), pages 39-47
ISBN: 978-989-758-750-4; ISSN: 2184-4976
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

39

2 RESEARCH PROBLEM

Sockpuppet accounts present a complex problem for
online social networks. Firstly, they undermine trust
and authenticity within online communities by
pretending to be real users who engage in
conversations, support ideas, or endorse causes. For
instance, there is a correlation between highly active
users in political hashtags and those who tweet across
multiple political hashtags, supporting the idea that
social media activism is driven by a small, highly
active group of politically engaged users (Bastos et
al., 2013). This deceptive behaviour affects user trust
and creates an environment where users doubt the
authenticity of the content they encounter (Bhatia et
al., 2023). Secondly, Sockpuppet accounts are often
used to manipulate public opinion and spread false or
misleading information. Also, their involvement in
online discussions can distort the perceived
popularity of promoted views, potentially affecting
democratic processes and policy decisions (Bhopale
et al., 2021). Moreover, these accounts can be
employed for cyber harassment (Boididou et al.,
2017), cyberbullying (Borkar et al., 2022), and even
cyberattacks, posing significant risks to user safety
and well-being (Boshmaf et al., 2015).

Our study aims to address several key research
questions in the domain of Sockpuppet accounts
detection specifically within the context of
Wikipedia. Firstly, we seek to determine which
machine learning classifiers perform best in
identifying Sockpuppet accounts. By evaluating and
comparing various classifiers using Wikipedia
accounts and editing data, we aim to identify the most
effective algorithms for this specific application.
Secondly, we investigate whether aggregating the
results of individual classifiers using a voting system
improves overall classification accuracy on
Wikipedia. This involves examining hard and soft
voting techniques to see if combining multiple
classifiers leads to better performance in the
Wikipedia environment. Finally, we explore the
common characteristics of Wikipedia accounts that
are consistently misclassified by all classifiers.
Understanding these characteristics can provide
insights into the limitations of current detection
methods and highlight areas for improvement.

3 RELATED WORKS

We performed an extensive literature review for
Sockpuppet accounts (Baamer & Boicu, 2024) in

which we identified 125 published papers and 13
other recent survey papers. Only ten papers out of 125
papers specifically addressed Sockpuppet accounts
on Wikipedia, highlighting a significant gap in the
literature that our study aims to fill.

Machine learning-based detection techniques are
used most to identify Sockpuppet accounts (81 out of
125 papers). They extracted attributes and
incorporated supervised, semi-supervised, and
unsupervised models. About 25 studies used one
machine learning classification method, while others
applied and compared several machine learning
classifiers (56 papers). However, only two studies
aggregated the results of the different classifiers by
using a voting system.

One of the first studies to detect Sockpuppet
accounts was conducted by Solorio, Hasan, and
Mizan in 2013 for Wikipedia. This study used a
Support Vector Machine classifier based on 24
features (Solorio et al., 2013). On the other hand,
most other studies on Wikipedia run more than one
classifier and compare their results. For example,
(Sakib et al., 2022) considered different classifiers,
which are Logistic Regression, Gaussian Naive
Bayes, Decision Tree, Multilayer Perceptron,
Random Forest, ExtraTree, and a Long Short-Term
Memory network. Similarly, (Yamak et al., 2016)
also considered six classifiers: Support Vector
Machine, Random Forest, Naive Bayes, k-Nearest
Neighbors, Bayesian network, and AdaBoost.
Despite this common platform (Wikipedia), the
previous three studies employed different categories
of features: (Sakib et al., 2022) and (Yamak et al.,
2016) both used account-based, user activity and
interaction-based, and temporal-based features in
their analyses. In contrast, both (Yamak et al., 2016)
and (Solorio et al., 2013) used content-based features.
A comparison with Solorio et al. and Sakib et al.
studies on Wikipedia is performed in the analysis
section.

The remaining six papers focused on Wikipedia
used similar methods to the previously discussed
papers. For instance, one of these papers was
conducted by the same authors of (Solorio et al.,
2013), and they achieved similar results with their
previous work (Solorio et al., 2014). Other studies,
such as (Tsikerdekis et al., 2014) and (Yu et al.,
2021), computed several features like verbal and non-
verbal features and applied various classifiers,
including Support Vector Machine, Random Forest,
and AdaBoost. Tsikerdekis et al. computed several
non-verbal features, such as time-independent and
time-dependent features. Then, the authors applied
the machine learning classifiers on different binary

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

40

models that consist of different combinations of
variables to identify the differences in accuracy as
time progress. On the other hand, Yu et al. extracted
verbal and non-verbal features. Then, they applied
multi-source feature fusion adaptive selection
technique to combine the extracted features. Lastly,
they applied the machine learning classifiers (SVM,
RF, and AdaBoost) on these adaptive multi-source
features. The results of Solorio et al., Tsikerdekis et
al. and Yu et al. are shown in Table 1. Additionally,
some studies employed alternative detection
techniques, such as graph-based techniques
(Kuruvilla et al., 2015; Yamak et al., 2018; and Liu et
al., 2023) or statistical-based techniques like (He et
al., 2021). These approaches do not significantly
differ in outcomes or methodologies from the
previously discussed studies.

Table 1: Previous Results Notations: accuracy (A), F1
score, precision (P) and recall (R). Dash indicates that the
results were not available. Results are provided as
A/F1/P/R.

 Solorio et al.,
2014

Tsikerdekis et al.,
2014

Yu et al.,
2021

SVM -/74/-/- 69/66/70/62 -/80/85/76
RF - 71/67/75/61 -/81/80/81
AB - 71/69/73/65 -/78/72/90

Looking at a different platform (PTT), both
(Nguyen et al., 2021) and (Wang et al., 2023) further
expand their research by utilizing a diverse set of
classifiers. (Nguyen et al., 2021) applied Naive
Bayes, XGBoost, AdaBoost, k-Nearest Neighbours,
and Random Forest classifiers, while (Wang et al.,
2023) utilized LightGBM, XGBoost, Random Forest,
ConcNet, and Fully Connected classifiers. These two
papers are notable for applying both hard and soft
voting classifiers to aggregate the results of the
individual classifiers, enhancing the robustness and
accuracy of the Sockpuppet detection. Additionally,
both studies computed several features of different
categories, including content-based, sentiment-based,
statistical-based, temporal-based, and user activity
and interaction-based features. Also, (Nguyen et al.,
2021) used social network-based features. The results
of these two studies are discussed in detail in the
Analysis section below.

4 EXPERIMENTS

To evaluate the validity of our assumptions, we
conducted six experiments. For each experiment, we
applied various machine learning classifiers to assess
the performance and accuracy of our models. The key

distinction between the six experiments lies in the
scope of feature engineering and the number of
features utilized. Through these experiments, we
aimed to answer our three research questions.

For these experiments, we selected the dataset
collected from Wikipedia by (Sakib et al, 2022) and
publicly available on GitHub (Sakib, 2022).

4.1 Feature Engineering

We started by removing features such as 'top,' 'text
hidden,' and 'comment hidden' because most of these
variables contained mostly empty or null values,
which could negatively impact the accuracy of the
models. Additionally, these features were not useful
in any of the computed features or analysis, so
retaining them would not contribute meaningfully to
the model's performance. The remaining raw features
were user ID, username, revision ID, namespace,
title, timestamp, comment, and class label.

Based on these raw features, we aggregated the
entries for the same account and computed twenty-
one features for each account: 1. Number of digits in
the username, 2. The ratio of digits to total alphabet
characters in a username, 3. Number of leading digits,
4. The unique character ratio in the username, 5.
Average comment length for each user, 6. Average
title length, 7. Average time difference between two
consecutive edits, 8. Average number of alphabetic in
comments, 9. Average number of punctuation in
comments, 10. Average number of sentences in
comments, 11. Average number of characters in
comments, 12. Total number of revisions, 13.
Number of namespaces the user participates in, 14.
Number of titles the user participates in, 15. Account
age, 16. The ratio of namespace contribution to total
contribution, 17. The ratio of title contribution to total
contribution, 18. The ratio of the number of
comments to total revision per user, 19. Average
number of comments per article, 20. Average user
comments per day, 21. Average number of comments
per active day for a user. Some of these features were
inspired by previous work, which are (Ashford et al.,
2020), (Nguyen et al., 2021), (Sakib et al., 2022),
(Solorio et al., 2013), and (Yamak et al., 2016).
However, we proposed four new features: 15, 16, 20,
and 21.

In experiment 1, we used the first seven features,
while in experiment 2, we used features 1-11. For
experiment 3, we used features 1-15. Then, in
experiments 4 and 5, we used features 1-17 and 1-21,
respectively. Lastly, we ran the feature selection
method provided by the Scikit-learn library,
SelectKBest, and we selected the best 15 features for

Sockpuppet Detection in Wikipedia Using Machine Learning and Voting Classifiers

41

experiment 6, which are features 1, 3, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 19, and 20. Moreover, most of the
features were computed as aggregations (e.g.,
average, count, sum) of the raw data, providing a
global view of each account. For example, features 8-
11 were averaged to aggregate the contributions made
by a single account. This aggregation allowed us to
keep a single entry for each account.

4.2 Dataset Preparation

After aggregating the data and removing duplicates,
we have refined our dataset. Despite this cleaning
process, the dataset remains substantial, with
approximately 116,000 unique accounts.

We then randomly split the dataset using an 80/20
rule, designating 80% of the data for training and 20%
for testing. To ensure that the model is not biased, we
did not use feedback from testing to improve the
models. Additionally, the same training and testing
datasets were used for all experiments.

4.3 Classification Models

Based on the analysis of previous research, we
identified seven promising classifiers: Support
Vector Machine (SVM), Random Forest (RF), Naive
Bayes (NB), Logistic Regression (LR), k-Nearest
Neighbours (KNN), AdaBoost (AB), and XGBoost
(XGB). Most of these classifiers were implemented
using their default parameters from the Scikit-learn
library. However, for the Random Forest, KNN,
AdaBoost, and XGBoost classifiers, we observed
noticeable discrepancies between their performance
on the training and testing datasets, which indicated
the presence of overfitting. To address this, we
utilized GridSearchCV to select the optimal
parameters from a range of values, as shown in Table
2, to mitigate overfitting and improve generalization.
In contrast, the remaining classifiers demonstrated
comparable and reasonable performance on both
training and testing datasets, with no significant signs
of overfitting. Consequently, their default parameters
were retained without further tuning.

For Random Forest, we modified the number of
splits that each decision tree is allowed to make
(max_depth) to 7, the number of trees (n_estimators)
to 50, and the minimum number of samples that are
required to split an internal node (min_samples_split)
to 3. For KNN, we set the number of neighbours (k)
to 9. For AdaBoost, we set the number of weak
learner (n_estimators) to 100 and the weight applied
to each regressor to each iteration (learning_rate) to
be 1.0, and we used the same values of (n_estimators)

and (learning_rate) for XGBoost classifiers. For other
parameters used in XGBoost, we set the (max_depth)
to 3 and (alpha) value to 15.

We implemented simple majority voting by
utilizing both hard and soft voting classifiers with
these seven models. Each voting classifier,
implemented using the Scikit-learn library, was
executed twice—once with the hard voting parameter
and once with the soft voting parameter. Detailed
explanation of these two types of voting can be found
in (Scikit-Learn, 2014).

Table 2: Hyperparameter Tuning for RF and KNN.

Classifier Hyperparameter Values Range Best
Value

RF
max_depth 2,3,5,7,9 7

n_estimators 50,100,200 50
min_samples_split 2,3,4,5 3

KNN n_neighbors 1-15 9

AB
n_estimators 50,100,200 100
learning_rate 0.01, 0.02, 1.0 1.0

XGB

n_estimators 50,100,200 100
max_depth 3,5,7,9 3

learning_rate 0.01, 0.02, 1.0 1.0
alpha 5,7,10,15 15

After analysing the aggregation of the seven
classifiers' results, we implemented more voting
classifiers that aggregate the results of the best
classifiers with different combinations. For example,
we added voting classifiers that aggregate the results
of different combinations of five models and other
voting classifiers of three different classifiers. The
added voting classifiers are hard and soft voting on (
RF, SVM, LR, AB, XGB), (RF, SVM, KNN, AB,
XGB), (RF, LR, KNN, AB, XGB), (RF, LR, KNN),
(SVM, RF, KNN), (SVM, RF, LR), (RF, LR, AB),
(RF, KNN, AB), (RF, KNN, XGB, RF, LR, XGB),
and (RF, AB, XGB). By the end of the experiments,
we had 19 classifiers.

The classifiers were trained on the training data
and saved using the pickle library provided by Scikit-
Learn. These saved models were imported and used
on testing data, which was prepared in a similar way
of the training data.

4.4 Classification Results

For each classifier, we generated evaluation metrics:
accuracy, F1 score, precision, and recall. The results
achieved by experiment 5, which utilized all features,
are shown in Table 3 and Table 4. The results of all
experiments and different combination of classifiers
are shown in Appendix Table A1 to Table A24.

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

42

Table 3: Experiment 5- Individual classifiers performance
with 21 features; (Abbreviations: 1=Training data,
2=Testing data, DS=Data set, A=Accuracy, F1=F1-score,
P= Precision, R=Recall, H=Hard, S=Soft).

SVM RF LR NB KNN AB XGB

DS 1 2 1 2 1 2 1 2 1 2 1 2 1 2

A 87 87 88 87 87 87 22 22 88 86 88 88 89 88

F1 83 83 84 83 83 83 20 20 86 84 86 86 88 87

P 85 85 87 86 84 84 82 82 87 83 86 86 88 87

R 87 87 88 87 87 87 22 22 88 86 88 88 89 88

Table 4: Experiment 5- Voting classifiers aggregating all
classifiers’ results with 21 features (Abbreviations:
1=Training data, 2=Testing data, DS=Data set,
A=Accuracy, F1=F1-score, P= Precision, R=Recall,
H=Hard, S=Soft).

H S

DS 1 2 1 2

A 88 88 88 88

F1 86 85 86 85

P 87 86 87 86

R 88 88 88 88

5 ANALYSES

In the analysis of our six experiments, we observed
distinct trends in the performance of the classifiers
based on the number of features used. The first two
experiments that utilized 7 and 11 features produced
lower results than the subsequent experiments. In
experiments 3 through 6, which employed 15, 17, 20,
and again 15 features, respectively, the performance
of all models, except NB, showed a slight but
consistent improvement in each successive
experiment. However, the performance of the NB
model decreased dramatically in experiments 4 and 5
but then improved in experiment 6. This decrease in
performance highlights the sensitivity of the NB
model to the number and type of features used,
contrasting with the more stable improvement
observed in the other models. Additionally, it is worth
pointing out that our experiments likely avoided
overfitting, as we obtained similar results for both the
training and testing for each model.

The voting classifiers, both hard and soft,
consistently outperformed most other classifiers,
showcasing their robustness in aggregating
predictions to improve overall accuracy. However,

AdaBoost and XGBoost classifiers showed almost
equal performance to the voting classifiers but
slightly better. Furthermore, attempts to improve the
voting system's performance by implementing
several voting classifiers that aggregate the results of
different combinations of classifiers and excluding
the worst-performing classifiers have results in slight
enhancements. For example, aggregating the result of
RF, AdaBoost and XGBoost, which are the best-
performing classifiers, achieved the highest results of
all the individual classifiers and voting classifier with
88% accuracy, 86% F1 score, 87% precision and 88%
recall. Tables 5 and Table 6 show the percentage of
change in the performance of individual models and
voting classifiers between experiment 1 and 5. As
indicated in the tables, the improvement ranged
between 1% and 13%, emphasizing the overall
benefit of adding more features, except for the NB
model.

Table 5: Change of Performance Between Experiment 1
and Experiment 5 for Individual Models (in %).

SVM RF LR NB KNN AB XGB

DS 1 2 1 2 1 2 1 2 1 2 1 2 1 2

A +1 +1 +2 +1 +1 +1 -64 -64 +1 +1 +2 +2 +3 +2

F1 +3 +3 +4 +3 +3 +3 -60 -60 +4 +4 +6 +6 +7 +7

P +11 +11 +13 +12 +9 +10 +8 +8 +4 +4 +3 +1 +4 +4

R +1 +1 +2 +1 +1 +1 -64 -64 +1 +1 +2 +2 +3 +2

Table 6: Change of Performance Between Experiment 1
and Experiment 5 for Voting Classifiers aggregating all
classifiers’ results (in %).

H S

DS 1 2 1 2

A +2 +2 +2 +2

F1 +6 +5 +6 +5

P +13 +12 +13 +12

R +2 +2 +2 +2

Our classification results surpass those presented
in the works of (Sakib et al., 2022) and (Solorio et al.,
2013) across all classifiers. However, the results by
(Yamak et al., 2016) demonstrate superior
performance with a Random Forest classifier
reaching 99% accuracy. Yamak et al. suggest that this
high performance might be attributed to an overfitting
problem. Additionally, after analysing the proposed
models, we found that the authors did not remove
duplicate accounts, and some similar accounts within

Sockpuppet Detection in Wikipedia Using Machine Learning and Voting Classifiers

43

one group were assigned to both the training and
testing data. This increases the possibility of
overfitting, as the models were trained on similar
accounts used for testing. Thus, we exclude the
results of that study from our comparison table. This
comparative analysis is summarized in Table 7,
which compares the seven classifiers testing results of
experiment 5 with the results of (Sakib et al., 2022)
and (Solorio et al., 2013).

Table 7: Comparative analysis of individual classifiers by
accuracy (A), F1 score, precision (P) and recall (R). Dash
indicates that the results were not available. Results are
provided as A/F1/P/R.

 Sakib et al.,
2022

Solorio et al.,
2013

Ours

SVM - 69/72/68/75 87/83/85/87
RF -/82/-/- - 87/83/86/87
NB -/60/-/- - 25/24/82/25
LR -/75/-/- - 87/83/84/87

KNN - - 86/84/84/86
AB - - 88/86/86/88

XGB - - 88/86/86/88

Regarding voting classifiers, we compared our
voting classifiers results, which aggregate the results
of seven classifiers, with those of papers (Nguyen et
al., 2021) and (Wang et al., 2023), which employed
both hard and soft voting classifiers to aggregate the
outcomes of five models (RF, NB, KNN, XGB, and
AB) and (XGB, LightGBM, RF, ConvNet, FC),
respectively. Our results exhibit higher performance
across all evaluation metrics compared to both
studies. The comparison between the results is shown
in Table 8.

Table 8: Comparative analysis of voting classifiers by
accuracy (A), F1 score, precision (P) and recall (R). Dash
indicates that the results were not available. Results are
provided as A/F1/P/R.

 Nguyen et al.,
2021

Wang et al.,
2023

Ours

Hard Voting 83/83/85/80 -/49/-/- 88/85/86/88
Soft Voting 82/81/87/76 -/51/-/- 88/85/86/88

Including additional features significantly
improved the performance of the Random Forest,
AdaBoost and XGBoost classifiers, as demonstrated
in Figure. 1, Figure. 2, and Figure. 3. This
enhancement is attributed to the capacity to
effectively handle and leverage the increased feature
set, leading to better overall model accuracy. The bar
charts clearly illustrate the upward trend in
performance as more features were added. Moreover,
in experiment 6 in which we selected the best 15
features, the results were comparable with previous
experiments.

Figure 1: Random Forest performance.

Figure 2: AdaBoost performance.

Figure 3: XGBoost performance.

5.1 Misclassified Accounts Analysis

We also reported the number of misclassified
accounts that were misclassified by all classifiers for
each phase separately, training and testing. Thus, we
computed for each account, its target class, and the
classification results from each classifier to show
whether they generated similar classifications. Also,
we computed how many classifiers correctly
classified each account and how many accounts were

84

85

86

87

88

89

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Dataset Testing Dataset

85

86

87

88

89

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Dataset Testing Dataset

84
85
86
87
88
89
90

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Dataset Testing Dataset

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

44

correctly classified by each classifier. As shown in
Table 9, adding more features decreased the number
of misclassified accounts, except in the case of
experiment 5, where the number of misclassified
accounts increased slightly, and this might indicate
that some of the features added in experiment 5
affected the performance of the models. On the other
hand, in experiment 6, the numbers also increased
because the number of features was reduced.
However, these numbers (4,830-1,309) are slightly
better than the result reported by experiment 3 (4,894-
1,325) even though both experiments have the same
number of features, 15 features. Additionally, Figure
4 shows the percentage of misclassified accounts for
both the training and testing datasets. As shown in the
graph, the percentage of misclassified accounts in the
testing dataset is lower, which indicates that our
models are performing well and do not exhibit
overfitting.

Table 9: Misclassified accounts by all classifiers.

 Training
(~93,000)

Training
(%)

Testing
(~23,125)

Testing
(%)

Experiment 1 11,340 12.19% 3,025 13.08%
Experiment 2 6,631 7.13% 1,810 7.82%
Experiment 3 4,894 5.26% 1,325 5.73%
Experiment 4 629 0.68% 175 0.76%
Experiment 5 673 0.72% 207 0.90%
Experiment 6 4,830 5.19% 1,309 5.66%

Figure 4: Percentage of misclassified accounts by all
classifiers.

We analysed these misclassified accounts and
found that all of them were genuine accounts
mistakenly classified as Sockpuppet accounts. For
this reason, we compared these misclassified
accounts with Sockpuppet accounts in the detailed
observations below.

First, the average time difference between their
comments ranged from 15 minutes to 24 hours,
closely resembling the patterns observed in real
Sockpuppet accounts, which range between 1 minute

and 23 hours. Additionally, the total number of
revisions for these accounts ranged between 1 and
200, similar to Sockpuppet accounts. Thirdly, even
though there are 28 namespaces on Wikipedia,
contributions by namespace for these accounts ranged
between 1 and 7, aligning with the participation in 1
to 8 namespaces by real SP accounts, except for 48
accounts out of 115,620 who participated in 9-16
namespace. Similarly, the average contributions by
title for these accounts ranged from 1 to 100, with
some accounts editing one article multiple times. For
example, user CD1975 made a total of 5 revisions, all
in one article. This mirrors the behaviour of
Sockpuppet accounts, except for one account that
edited 14,407 titles.

These observations indicate that the behaviour of
genuine users and Sockpuppet accounts can be quite
similar. However, data analysis can significantly
improve the accuracy of distinguishing between these
types of accounts. One notable difference is the
account age; Sockpuppet accounts typically have a
much shorter lifespan compared to normal accounts.
Additionally, Sockpuppet accounts tend to write
longer sentences. For instance, when we analysed the
average number of sentences per contribution, we
found that normal accounts ranged from 0 to 6
sentences. In contrast, Sockpuppet accounts ranged
from 0 to 50 sentences per contribution, with some
accounts contributing as many as 147 sentences. This
distinct behavioural pattern provides a valuable
indicator for accurately identifying Sockpuppet
accounts, even in the presence of misleading
similarities with normal accounts.

Moreover, we generated the number of accounts
misclassified by Random Forest, AdaBoost, and
XGBoost classifiers in each experiment. Table 10
Table 11, and Table 12 show that the improvement in
these classifiers’ performance, and it is evident in the
reduction of misclassified accounts. In other words,
adding more features to these classifiers decreased the
number of misclassified accounts. Figures 5, Figure
6, and Figure 7 show the percentages of misclassified
accounts for each classifier, which highlighting the
improvements achieved by each classifier across the
experiments.

Table 10: Misclassified accounts by Random Forest.

 Training
(~93,000)

Training
(%)

Testing
(~23,125)

Testing
(%)

Experiment 1 12,718 13.67% 3,240 14.01%
Experiment 2 12,718 13.67% 3,240 14.01%
Experiment 3 11,532 12.40% 2,988 12.92%
Experiment 4 11,286 12.14% 2,936 12.69%
Experiment 5 10,935 11.75% 2,857 12.35%
Experiment 6 11,198 12.04% 2,928 12.66%

0,00%

5,00%

10,00%

15,00%

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Testing

Sockpuppet Detection in Wikipedia Using Machine Learning and Voting Classifiers

45

Figure 5: Percentage of misclassified accounts by Random
Forest.

Table 11: Misclassified accounts by AdaBoost.

 Training
(~93,000)

Training
(%)

Testing
(~23,125)

Testing
(%)

Experiment 1 12,693 13.64% 3,225 13.95%
Experiment 2 12,659 13.61% 3,207 13.86%
Experiment 3 11,434 12.29% 2,894 12.52%
Experiment 4 11,396 12.25% 2,900 12.54%
Experiment 5 11,083 11.92% 2,864 12.39%
Experiment 6 11,182 12.02% 2,881 12.46%

Figure 6: Percentage of misclassified accounts by
AdaBoost.

Table 12: Misclassified accounts by XGBoost.

 Training
(~93,000)

Training
(%)

Testing
(~23,125)

Testing
(%)

Experiment 1 12,545 13.49% 3,205 13.86%
Experiment 2 12,095 13.00% 3162 13.67%
Experiment 3 10,054 10.81% 2673 11.56%
Experiment 4 10,095 10.86% 2690 11.63%
Experiment 5 9,916 10.66% 2,675 11.57%
Experiment 6 9,980 10.73% 2,680 11.59%

6 CONCLUSIONS

In this study, we performed a comprehensive analysis
of various methods for detecting Sockpuppet
accounts on Wikipedia. We analysed previous

Figure 7: Percentage of misclassified accounts by
XGBoost.

features and proposed four new ones, that improved
the performance of the classifiers. We studied seven
distinct basic classifiers (SVM, RF, LR, NB, KNN,
AB, and XGB) and two voting classifiers applied on
various combinations of the basic ones. The best
results were obtained by aggregating the result of
Random Forest, AdaBoost, and XGBoost achieving
an accuracy rate of 88% with 87% precision.

Additionally, our study highlights several
important points and findings regarding Sockpuppet
detection. First, feature engineering plays a crucial
role in enhancing the performance of all models, as
demonstrated by the significant improvements
observed when additional features were incorporated.
Also, parameter tuning, and refinement are equally
important to avoid overfitting, and this can be
achieved manually and through automated solutions
like GridSearchCV.

Despite achieving results that surpass previous
work, there is still room for improvement. One
potential enhancement is implementing a rule-based
voting system built on the analysis of training results.
Additionally, integrating cognitive assistants and
human-in-the-loop methodologies with machine
learning techniques can offer substantial benefits.
Cognitive assistants can provide contextual insights
and recognize complex patterns that automated
systems might overlook. Incorporating human
expertise is also valuable, as humans can identify
anomalies and provide feedback to the machine
learning models, leading to continuous improvement
and adaptation, particularly for accounts
misclassified by automated systems. For example,
when our analysis of misclassified normal accounts
revealed that these accounts have longer lifespans
than Sockpuppet accounts, we added the account age
feature in Experiment 3, and it improved the results
of all classifiers. This demonstrates how human
intervention can enhance detection accuracy. By

10,00%

11,00%

12,00%

13,00%

14,00%

15,00%

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Testing

10,00%

11,00%

12,00%

13,00%

14,00%

15,00%

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Testing

0,00%

5,00%

10,00%

15,00%

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Training Testing

IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

46

leveraging both automated systems and human
insights, we can refine the Sockpuppet detection
process and achieve even better results.

REFERENCES

Ashford, J. R., Turner, L. D., Whitaker, R. M., Preece, A.,
& Felmlee, D. (2020, December). Assessing temporal
and spatial features in detecting disruptive users on
Reddit. In 2020 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining
(ASONAM) (pp. 892-896). IEEE.

Baamer, R., Boicu. M. (2024). “Sockpuppet accounts
detection on Wikipedia: Research report.” Under
review

Bastos, M. T., Puschmann, C., & Travitzki, R. (2013, May).
“Tweeting across hashtags: overlapping users and the
importance of language, topics, and politics,” In
Proceedings of the 24th ACM conference on hypertext
and social media (pp. 164-168).

Bhatia, T., Manaskasemsak, B., & Rungsawang, A. (2023,
March). “Detecting fake news sources on Twitter using
Deep Neural Network,” In 2023 11th International
Conference on Information and Education Technology
(ICIET) (pp. 508-512). IEEE.

Bhopale, J., Bhise, R., Mane, A., & Talele, K. (2021,
September). “A Review-and-Reviewer based approach
for Fake Review Detection,” In 2021 Fourth
International Conference on Electrical, Computer and
Communication Technologies (ICECCT) (pp. 1-6).
IEEE.

Boididou, C., Papadopoulos, S., Apostolidis, L., &
Kompatsiaris, Y. (2017, June). “Learning to detect
misleading content on twitter,” In Proceedings of the
2017 ACM on international conference on multimedia
retrieval (pp. 278-286).

Borkar, B. S., Patil, D. R., Markad, A. V., & Sharma, M.
(2022, November). “Real or fake identity deception of
social media accounts using Recurrent Neural
Network,” In 2022 International Conference on Fourth
Industrial Revolution Based Technology and Practices
(ICFIRTP) (pp. 80-84). IEEE.

Boshmaf, Y., Logothetis, D., Siganos, G., Lería, J.,
Lorenzo, J., Ripeanu, M., & Beznosov, K. (2015,
February). “Integro: Leveraging victim prediction for
robust fake account detection in OSNs,” In NDSS (Vol.
15, pp. 8-11).

He, B., Ahamad, M., & Kumar, S. (2021, August). Petgen:
Personalized text generation attack on deep sequence
embedding-based classification models. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (pp. 575-584).

Kuruvilla, A. M., & Varghese, S. (2015, March). A
detection system to counter identity deception in social
media applications. In 2015 International Conference
on Circuits, Power and Computing Technologies
[ICCPCT-2015] (pp. 1-5). IEEE.

Liu, Wei & Xie, Chencheng & Zong, Shijie. (2023). A
rumor source identification method based on node

embeddings and community detection in social
networks. 104-109. 10.1109/CBD63341.2023.00027.

Nguyen, N. L., Wang, M. H., & Dow, C. R. (2021).
“Learning to recognize sockpuppets in online political
discussions,” IEEE Systems Journal, 16(2), 1873-
1884.

Sakib, M., & Spezzano. F,. (2022). “Automated Detection
of Sockpuppet accounts in Wikipedia," 2022
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM),
Istanbul, Turkey, 2022, pp. 155-158, doi:
10.1109/ASONAM55673.2022.10068604.

Sakib, M. N. (2024) Wikipedia Sockpuppetry, GitHub,
Available at: https://github.com/Mostofa-Najmus-
Sakib/Wikipedia-Sockpuppetry/tree/main/data
Accessed on: April 14, 2023

Solorio, T., Hasan, R., & Mizan, M. (2013, June). “A case
study of sockpuppet detection in wikipedia,” In
Proceedings of the Workshop on Language Analysis in
Social Media (pp. 59-68).

Solorio, T., Hasan, R., & Mizan, M. (2014). Sockpuppet
detection in wikipedia: A corpus of real-world
deceptive writing for linking identities. arXiv preprint
arXiv:1310.6772.

Tsikerdekis, M., & Zeadally, S. (2014). Multiple account
identity deception detection in social media using
nonverbal behavior. IEEE Transactions on Information
Forensics and Security, 9(8), 1311-1321.

Scikit Learn (2014). Voting Classifier. API Reference.
Accessed on May 26, 2024 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
VotingClassifier.html

Wang, Ruei-Yuan & Chen, Hung-Hsuan. (2023). Detecting
Inactive Cyberwarriors from Online Forums.
10.48550/arXiv.2308.15491.

Yamak, Z., Saunier, J., & Vercouter, L. (2016). “Detection
of multiple identity manipulation in collaborative
projects,” In Proceedings of the 25th International
Conference Companion on World Wide Web (pp. 955-
960).

Yamak, Z., Saunier, J., & Vercouter, L. (2018).
SocksCatch: Automatic detection and grouping of
sockpuppets in social media. Knowledge-Based
Systems, 149, 124-142

Yu, H., Hu, F., Liu, L., Li, Z., Li, X., & Lin, Z. (2021).
Sockpuppet detection in social network based on
adaptive multi-source features. In Modern Industrial
IoT, big data and supply chain: proceedings of the
IIoTBDSC 2020 (pp. 187-194). Springer Singapore.

APPENDIX

Link: https://drive.google.com/file/d/1uDDc-eld14-Opok9
2RbYq0qyqrQ8msfG/view

Sockpuppet Detection in Wikipedia Using Machine Learning and Voting Classifiers

47

