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Abstract: Stress disorders have experienced a significant increase in recent years, impacting individual health. This

study explores the feasibility of detecting this mental condition through the analysis of physiological signals
captured by wearable devices using machine learning algorithms. An exhaustive review of relevant public
databases was conducted and WESAD database was identified as the most suitable one. A detailed examina-
tion was conducted using two different configurations for building AI models: in one approach, a single model
was created using data from all participants, while in the other, personalized models were developed for each
individual participant. This approach evaluated the effectiveness of different preprocessing methods and Al
algorithms, as well as identified the physiological signals most informative about stress. Convolutional Neural
Networks (CNN) achieved the highest accuracy in stress detection, with an overall accuracy of 99.8% for the
single model configuration and 99.6% for personalized models. The analysis also highlighted electrocardio-
gram (ECG) and electrodermal activity (EDA) as the most informative signals for predicting stress.

1 INTRODUCTION

Stress can be defined as a natural physiological and
psychological response activated by situations per-
ceived as threatening or dangerous. It performs an es-
sential role in human alarm and defense mechanisms.
Despite this, when these stressful emotions become
frequent, they can have harmful effects on mental and
physical health, increasing the risk of developing var-
ious illnesses, such as cardiovascular diseases, mood
disorders, or sleep disorders (Slavich, 2020). Alarm-
ingly, it is estimated that approximately 1 in 4 adults
experience stress regularly, and some studies indi-
cate a 30% increase in reported stress levels over the
past decade, particularly among younger individuals
(American Psychological Association, 2017).

The economic burden of stress-related illnesses
on modern societies is substantial, costing healthcare
systems billions each year in treatment, lost produc-
tivity, and decreased quality of life. According to
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a report by the World Health Organization (WHO)
(Depression, 2017), it is estimated that mental dis-
orders, including stress and anxiety, can cost global
economies up to $1 trillion annually in lost produc-
tivity. Additionally, a study by Gallup (Gallup, 2017)
revealed that employees experiencing stress tend to
be less productive, which can negatively impact com-
pany profits and the economy as a whole. Work-
related stress contributes significantly to productivity
loss (Giorgi et al., 2020).

Taking this into account, the early detection of
stress becomes crucial to avoid its negative effects
(Kivimiki and Steptoe, 2018). Research has empha-
sized the importance of timely stress detection and the
development of preventive solutions to address this
growing issue (Slavich, 2020). Furthermore, it has
been pointed out that it is essential to create accessi-
ble solutions for the entire population to ensure that
no one is left without support (Patel et al., 2018). Ad-
ditionally, studies have indicated that primary care is
overwhelmed and that mental health issues continue
to rise, highlighting the urgency of implementing ef-
fective alternatives (Moise et al., 2021). Traditionally,
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stress is measured using self-reported questionnaires
or by visiting a mental health practitioner. However,
these techniques lack objectivity and are not compat-
ible with everyday situations, highlighting the need
for alternative methods to detect stress. Additionally,
psychological consultations can be very expensive,
making them inaccessible for many people. Stress can
develop into more severe mental health conditions if
it is not detected in time. Therefore, it is essential
to develop affordable, objective, and practical meth-
ods for early stress detection to prevent the progres-
sion of mental health disorders (Espeleta et al., 2018).
The WHO emphasizes that preventive solutions and
early interventions are critical components in manag-
ing stress and related disorders (World Health Orga-
nization, 2018).

In this context, the possibility of detecting stress
with wearable devices emerges (Lupton, 2020).
Wearables are able to monitor a wide variety of phys-
iological signals such as heart rate, skin temperature
and galvanic skin response in an objective, continu-
ous, and affordable way. Furthermore, the recent rise
in popularity of these devices, combined with their ca-
pacity for continuous monitoring, suggests they could
play a key role in future healthcare (Baig et al., 2019)
by offering a scalable solution to stress detection that
bridges the gap left by traditional methods.

This study aims to investigate the potential for de-
tecting stress using wearable devices, utilizing data
from the public WESAD database. A secondary ob-
jective of the study is to identify which sensors pro-
vide the most critical information for stress detection,
enabling the design of experiments ad-hoc to specific
requirements for stress prediction in the future.

Through this study, we aim not only to advance
the technical performance of stress detection models
but also to contribute to the broader goal of develop-
ing practical, scalable solutions for early stress detec-
tion, with the potential to mitigate the growing burden
of stress-related disorders on global health.

The structure of the paper is organized as follows.
In Section 2 reviews the related work on physiological
signals and notable studies in stress detection. Section
3 describes the WESAD dataset utilized and the pre-
processing steps taken. Section 4 outlines the method-
ology, including the subject-dependent models and
preprocessing strategies. Section 5 presents the ex-
periments and results, comparing the performance of
various machine learning algorithms. Section 7 dis-
cusses the explainability of the models, highlighting
the importance of feature relevance. Finally, Section
8 concludes the study by summarizing the key find-
ings and suggesting future research directions.
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2 RELATED WORK

2.1 Physiological Signals for Stress
Detection

The detection of stress through physiological sig-
nals has been extensively studied, leveraging various
types of data to assess stress levels accurately. One
of the primary physiological indicators of stress is
heart rate (HR). Stress typically triggers an increase
in HR due to heightened sympathetic nervous system
activity. This response is commonly monitored us-
ing electrocardiograms (ECG) and photoplethysmo-
grams (PPG). HR measurements are useful in iden-
tifying stress, but they need to be complemented by
additional metrics for a more comprehensive analysis
(Dinh et al., 2020).

Another critical parameter is heart rate variabil-
ity (HRV), which measures the variation in time be-
tween successive heartbeats. HRV is an essential indi-
cator of the autonomic nervous system’s responsive-
ness and adaptability. A reduction in HRV is gener-
ally associated with higher stress levels. This measure
is derived from the analysis of RR intervals in ECG
signals, offering valuable insights into an individual’s
stress state (Dinh et al., 2020).

Galvanic skin response (GSR), also known as
electrodermal activity (EDA), is another widely used
physiological signal for stress detection. Stress in-
duces sweating, which changes the skin’s electrical
conductance. Monitoring GSR can provide signifi-
cant information about stress levels, especially when
used in conjunction with ECG data. However, GSR
measurement can be influenced by various factors,
including ambient temperature and humidity, which
may affect its accuracy (Affanni, 2020) (Eren and
Navruz, 2022).

Blood pressure (BP) is also a relevant physiologi-
cal signal in stress research. Elevated BP can indicate
stress, although it may also be influenced by physical
exertion and other health conditions. Continuous BP
monitoring presents challenges, often requiring indi-
rect measurement techniques such as infrared photo-
plethysmography (Dinh et al., 2020). While BP data
can be informative, it does not always provide a clear
distinction between stress-induced and other types of
hypertension.

Pupil diameter (PD) has emerged as a promis-
ing measure of stress, as stress can cause rapid
fluctuations in pupil size. Techniques like video-
pupillography are used to measure these changes, but
they are often costly and time-consuming, limiting
their practical application in real-time stress monitor-
ing (Dinh et al., 2020).
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Respiration variability (RESP) is another physi-
ological parameter that reflects stress levels. Stress
can alter both the rate and depth of breathing, mak-
ing RESP measurements valuable for stress assess-
ment. Sensors that track thoracic expansion are used
to capture this variability, providing additional data
for stress detection (Dinh et al., 2020).

Accelerometers are commonly integrated into
wearable devices to monitor involuntary movements
such as tremors, which can correlate with stress lev-
els. These devices offer a practical approach to de-
tecting stress-related physical responses and are often
used in combination with other physiological mea-
sures to enhance detection accuracy (Dinh et al.,
2020).

2.2 Notable Studies

Several studies have made substantial contributions
to the field. For instance, a study published by
IEEE in 2012 achieved an 81% accuracy rate in dis-
tinguishing between stressed and non-stressed states
using a wearable device that measured ECG, GSR,
electromyography (EMG), and respiratory frequency
(Can et al., 2020). This research focused on detecting
acute stress rather than chronic stress, inducing stress
in participants through psychophysiological tasks de-
signed to elicit specific mental states. The study in-
volved a relatively small sample of 20 participants,
including both men and women, monitored continu-
ously for over 13 hours. The logistic regression model
used for classification demonstrated the potential of
wearable devices for continuous stress detection, al-
though the accuracy suggests a need for more sophis-
ticated models to enhance the precision.

Another notable study conducted by Bogazici
University and the University of Milan in 2020
achieved a 94.52% accuracy rate in classifying stress
levels using a hybrid artificial intelligence approach
(Can et al., 2020). This study also targeted acute
stress but included a wider range of stress levels, dif-
ferentiating between low, moderate, and high stress.
Stress was induced during a structured event compris-
ing baseline, lecture, exam, and recovery sessions,
allowing researchers to analyze how stress manage-
ment techniques, specifically guided mindfulness, af-
fected stress levels. The sample consisted of 32 par-
ticipants, with demographic details not extensively
discussed. The dataset was collected across various
sessions, enhancing the practical applicability of the
findings. The use of everyday wearable devices such
as smartwatches allowed for unobtrusive and continu-
ous monitoring, improving accuracy through person-
alized stress clustering and decision-level smoothing

techniques to correct misclassifications.

Additionally, research from the University of Vigo
investigated wearable devices for stress and sleep
monitoring, achieving a 90% accuracy rate with vari-
ous machine learning models (Dalmeida and Masala,
2021). This study focused on acute stress experi-
enced by 27 young, healthy participants while driv-
ing. The dataset included physiological signals mea-
sured during different driving conditions—rest, high-
way, and city driving—utilizing physiological sig-
nals to develop predictive models. Multiple machine
learning algorithms, including K-Nearest Neighbor
(KNN) and Support Vector Machines (SVM), were
tested, with SVM achieving the highest performance
at 83.33% accuracy. While this study provided in-
sights into real-world stress detection in driving sce-
narios, it faced challenges typical of real-life appli-
cations, such as variations in accuracy compared to
laboratory settings.

Despite these advancements, several challenges
remain in the field of stress detection using physio-
logical signals (Dalmeida and Masala, 2021). One
significant limitation is the precision and sensitivity
of wearable devices, which can vary widely and be in-
fluenced by factors unrelated to stress. Additionally,
the cost of high-quality wearables can be prohibitive,
limiting their accessibility compared to clinical de-
vices. Finally, the specificity of different devices and
measurement techniques can lead to inconsistencies
in stress detection results, highlighting the need for
standardized approaches.

This review underscores the significant progress
made in physiological signal analysis and machine
learning for stress detection. While advancements
continue to enhance the accuracy and practicality
of stress monitoring, ongoing research is needed to
address current limitations, such as generalizabil-
ity across different populations and the integration
of multi-modal physiological signals. Additionally,
while accuracy is an important metric, it should not
be the sole focus; other performance indicators like
recall and precision are essential for evaluating model
robustness in real-world applications.

3 DESCRIPTION OF THE
DATASET

The dataset chosen for this study is the publicly avail-
able WESAD (Wearable Affect and Stress Detection)
dataset, designed for the analysis of acute stress re-
sponses rather than chronic stress. This dataset was
selected for its rich physiological data, making it suit-
able for studying short-term stress detection through
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wearable devices.

The dataset includes data from 17 volunteers who
underwent stress induction procedures in a controlled
laboratory. After excluding 2 subjects due to data in-
terference, the final dataset contains 15 participants:
12 men and 3 women, with an average age of 27.4
years.

It records physiological signals across three emo-
tional states: baseline, stress, and amusement. The
baseline phase lasted 20 minutes, followed by a 10-
minute Trier Social Stress Test (TSST) to induce
stress, and finally, 6 minutes of comical videos to
elicit amusement. Although amusement data is avail-
able, it is not used in this study, which focuses solely
on stress detection.

Each participant has approximately 36 minutes of
data. Data was collected using the RespiBAN Pro-
fessional chest band and the Empatica E4 smartband.
The RespiBAN captures higher-quality data with a
700 Hz sampling rate for respiratory rate, accelerom-
eter, ECG, EDA, EMG, and temperature. The Em-
patica E4, with lower sampling rates, recorded blood
pressure, EDA, temperature, and accelerometer data.
Due to numerous missing values in the Empatica E4
signals, only data from the RespiBAN is included in
this study.

4 METHODOLOGY

This study verifies the possibility of predicting stress-
ful emotional states using physiological signals from
two different configurations of subject dependent
models. The objective is to learn how physiological
signals of a person can be used to detect her/his stress
level.

4.1 Subject-Dependent Models

A subject-dependent approach utilizes data from the
same individual for training, validation, and testing
phases of model creation. One advantage of this strat-
egy is that it allows the model to become more person-
alized by learning the unique characteristics of each
person. On the contrary, when trying to identify the
stress of another (different) individual they might not
generalize well.

In this study, the data was divided into a training,
validation and test subset while maintaining the tem-
poral structure of the signals data. The training subset
is composed of the first 70% of the data, the validation
subset consisted of the next 15%, and the test subset
included the final 15%.
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Figure 1: Data partitioning into subject-dependent models
with all participants.

Subject-dependent models were further divided
into two configurations:

* One Single Model for all Participants: In this
configuration, data from all participants are used
in training, validation, and testing phases. This re-
sults in a model that attempts to generalize across
multiple individuals while maintaining the tempo-
ral structure of the signals (see Figure 1).

* One Personalized Model per Participant: In
this configuration, a separate model is trained for
each individual participant. This allows for a
highly personalized approach, where the model
only learns from the specific individual’s data.
The same 70-15-15 temporal split is used for
training, validation, and testing, but exclusively
with the data from one subject at a time (see Fig-
ure 2).

The main goal of this comparison is to assess
whether using data from multiple participants en-
hances model performance by providing a wider
range of variability, or if personalized models that fo-
cus on individual patterns yield better predictive ac-
curacy due to their specificity to one subject.

4.2 Preprocessing Strategies

In addition to optimize the performance of the
subject-dependent models, this study will evaluate the
effect of three different preprocessing strategies:

*« P1: Applies Min-Max normalization, which
scales the data into the range [0, 1]. This process
help mitigate the impact of features with larger
values by scaling all variables to a common range.

e P2: Normalizes the data similarly to P1, but fol-
lowed by SMOTE (Synthetic Minority Oversam-
pling Technique) to address class imbalance by
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Figure 2: Data partitioning for personalized models.

generating synthetic examples for the minority
class.

* P3:This technique initially applies normalization
to the data, followed by the implementation of
PCA (Principal Component Analysis) to reduce
the dimensionality of the data and capture the
most important features while discarding redun-
dant information.

4.3 Evaluation Metrics

The evaluation of the models was performed using
two key metrics: accuracy and F1-score.

* Accuracy is defined as the proportion of correctly
classified cases out of the total. It is commonly
used when all classes are equally important.

* Fl1-score is the harmonic mean of precision and
recall, and is especially useful when minimizing
false negatives is critical, such as in medical ap-
plications. Precision represents the proportion of
true positive predictions out of all positive predic-
tions, while recall (or sensitivity) represents the
proportion of true positives out of the actual posi-
tive cases.

The results for each combination of model and
preprocessing technique will be presented below.

S EXPERIMENTS AND RESULTS

5.1 Algorithms Used

Machine learning includes a wide range of algo-
rithms for classifying new instances. This study aims
to compare the effectiveness of several algorithms.
Among the machine learning algorithms that will

be evaluated are Decision Trees, Random Forests,
Support Vector Machines (SVM), Adaboost, Logis-
tic Regression, XGBoost, Linear Discriminant Anal-
ysis (LDA), and K-Nearest Neighbours. In addition,
the performance of deep learning algorithms, such as
LSTM Recurrent Neural Networks and Convolutional
Neural Networks (CNN), see Table 1.

5.2 Results

The goal is to provide a comparative analysis to iden-
tify which algorithms offer the best performance in
terms of accuracy and F1-score for this dataset. Table
1 allows a better selection of the optimal algorithm to
make more accurate predictions about the stress state
of patients. It is worth noting that the study focuses
on binary classification (stress and relaxation).

The Al models trained are used for the two differ-
ent model configurations and provide the following
metrics:

* One Single Model for all Participants: The
best-performing algorithm was the Convolutional
Neural Networks (CNN). CNN achieved the high-
est performance in binary classification, with an
accuracy of 99.8% and Fl-score of 0.998. The
results compared with P1 indicate that CNN not
only provides the best option in terms of accu-
racy and F1 of the deep learning algorithms but
also highlights the best option among the machine
learning algorithms.

* One Personalized Model per Participant: Per-
sonalized models were built for each of the 15
subjects, and the average performance across
these models was calculated. Once again, CNN
proved to be the top performer in binary classifi-
cation, achieving an accuracy of 96.4% and an F1-
score of 0.962. These results indicate that CNN
not only stands out as the best option in terms of
accuracy and F1 for personalized models but also
reinforces its position as the leading choice among
machine learning algorithms.

In terms of overall performance, models trained
with data from all subjects (general models) tended to
outperform personalized models. This suggests that
a more diverse dataset improves the model’s ability
to generalize and classify new instances more effec-
tively. While CNN performed exceptionally well (An
accuracy of 99.8% with P1 and an F1-score of 0.998.),
the results indicate that tree-based models like Ran-
dom Forest may not yield the same level of accuracy
in this binary context. Moreover, deep learning mod-
els such as CNN appeared to benefit more from per-
sonalization and appropriate preprocessing, reinforc-
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Figure 3: Feature Importance.

ing the notion that an individualized approach can be
advantageous when tailored correctly.

6 EXPLAINABILITY

The analysis of explainability is conducted for the
general model designed using Convolutional Neu-
ral Networks (CNN). As the integration of machine
learning applications in society increases, the explain-
ability of predictive models is becoming an essential
aspect. Explainability provides transparency in model
decisions, which is crucial in the field of medicine.
In this context, explainability can help identify the
most relevant variables for predicting stress, thereby
enabling the design of more effective and personal-
ized interventions for its management and reduction.
To evaluate the explainability of the obtained model,
the importance of features and SHapley Additive ex-
Planations (SHAP) values are assessed.

Feature importance assigns a score to each fea-
ture, indicating its relevance in model construction.
Features with higher scores are considered more im-
portant. The results of the feature importance analy-
sis are presented below. Figure 3 illustrates that the
most important features are derived from electrocar-
diogram and electrodermal activity sensors. This pro-
vides insight into which variables are most affected by
stressful situations, indicating which sensors are most
useful as biomarkers.

On the other hand, SHAP values offer a method
for explaining a predictive model’s response based on
game theory. They measure how much each variable
contributes to the prediction of a given observation,
allowing for a more detailed and precise interpretation
of how individual features affect predictions. One ad-
vantage of SHAP values is that they indicate whether
each variable has a positive or negative impact on pre-
dictions based on its values. Another benefit is that
SHAP values enable local interpretability; that is, one
can arbitrarily select an instance to examine which
factors were most relevant in predicting that specific
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case.

Figure 4 displays the SHAP values for all predic-
tions from the last fold of cross-validation. A high
SHAP value indicates that the variable significantly
impacts the model’s prediction, while values close to
0 reveal that the variable has little influence on the re-
sults. Analyzing this image shows that the most influ-
ential variables are the mean and standard deviation
of heart rate, the mean of accelerometer readings, and
the mean, range, maximum, and standard deviation
of electrodermal activity (EDA). Notably, while both
methods indicate the same five main variables for pre-
diction, the feature importance analysis does not in-
clude the mean of accelerometer readings (a_mean),
which does appear in the SHAP values. This discrep-
ancy may reflect differences in how each method eval-
uates feature relevance.

Considering the results from both explainability
techniques, it can be concluded that the most relevant
sensors for stress detection are the ECG, EDA, and
accelerometer.

7 RESULTS DISCUSSION

After analyzing stress detection using the WESAD
dataset, several significant conclusions were drawn.
The initial step involved exploring the data to under-
stand its distribution and the potential relevance of
each sensor in the prediction. Subsequently, the time
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Table 1: Comparison of Classification Models.

Subject-dependent models

P1 P2 P3
Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score
Decision trees 0.922 0.922 0.934 0.933 0.935 0.935
Random Forest 0.993 0.993 0.996 0.996 0.996 0.996
SVM 0.973 0.973 0.973 0.973 0.974 0.974
Adaboost 0.990 0.990 0.987 0.987 0.919 0.919
Logistic Regression 0.893 0.892 0.885 0.885 0.859 0.859
XGBoost 0.949 0.949 0.943 0.943 0.963 0.963
LDA 0.878 0.876 0.849 0.849 0.865 0.862
KNN 0.973 0.973 0.973 0.973 0.993 0.993
LSTM 0.965 0.965 0.953 0.953 0.945 0.945
CNN 0.998 0.998 0.983 0.983 0.979 0.979
Personalized models
P1 P2 P3
Accuracy Fl-score Accuracy Fl-score Accuracy Fl-score
Decision trees 0.899 0.889 0.760 0.708 0.944 0.933
Random Forest 0.985 0.985 0.978 0.978 0.906 0.958
SVM 0.979 0.980 0.959 0.957 0.962 0.962
Adaboost 0.932 0.933 0.760 0.708 0.958 0.949
Logistic Regression 0.977 0.975 0.882 0.875 0.945 0.935
XGBoost 0.912 0.898 0.971 0.971 0.916 0.903
LDA 0.978 0.979 0.959 0.959 0.956 0.954
KNN 0.965 0.962 0.956 0.956 0.963 0.960
LSTM 0.916 0.911 0.946 0.941 0.925 0.921
CNN 0.964 0.962 0.949 0.947 0.996 0.996

series data was preprocessed and transformed into a
tabular format using the sliding window technique,
which facilitated the extraction of features.

The data was then divided into subject-dependent
configurations, and various machine learning algo-
rithms were applied to determine the most effective
one. Regarding the initial hypothesis of the project, it
can be stated that it is feasible to develop a stress pre-
diction model using information collected from wear-
able devices. After analyzing several machine learn-
ing algorithms, the one offering the best results was
selected for both subject-dependent models. In the
subject-dependent models, the Convolutional Neural
Network (CNN) achieved an accuracy of 99.8% for
binary classification.

The analysis of subject-dependent configurations
revealed that a dataset with more users generally
yields better results than personalized models. This
indicates that, despite belonging to different subjects,
the inclusion of a larger volume of data provides
generalizable information, improving the accuracy of
predictions. Notably, these general models can be
likened to a laboratory setting, where diverse partici-
pants contribute to a richer dataset, similar to a foot-
ball team training together. In contrast, personalized
models—tailored for individual subjects—provide a

more precise approach, akin to customized care plans
in primary care settings. This understanding of indi-
vidual variability enhances the effectiveness of inter-
ventions.

Additionally, it was observed that the treatment
of data imbalance did not significantly influence
the results as anticipated; in many cases, the best-
performing model was the one that did not apply
SMOTE. In the subject-dependent models, the im-
portance of selecting the appropriate window size for
feature extraction was highlighted. The best results
were obtained with 4-minute windows and a step size
of 1 second, which are relatively wide for this type
of case. This allows for a more comprehensive view
of the time series, capturing the global characteristics
of each class and reducing signal noise. However, a
large window size may overlook important details in
different types of signals and can increase the compu-
tational complexity of processing. The optimization
phase also concluded that, despite having very differ-
ent characteristics, a higher number of subjects in the
study improves model performance.

Finally, the study of explainability provided in-
sights into the relevance of each variable in the model.
Two methods were employed: feature importance and
SHAP values. The results from both methods indi-
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cated that the most impactful variables for prediction
were those derived from the ECG, accelerometer, and
EDA sensors.

8 CONCLUSIONS

This study confirms the feasibility of developing an
effective stress prediction model using information
collected from wearable devices. The findings under-
score the importance of leveraging diverse datasets
to enhance predictive accuracy, as demonstrated by
the Convolutional Neural Network achieving an accu-
racy of 99.8% for a binary classification that identifies
relaxed-stressed situations using two subject depen-
dent models. By building Al models upon WESAD
dataset we learned that ECG and EDA signals provide
the most valuable information to predict stress. The
results obtained in this research work will be used in
an observational study that will build a new dataset to
predict the stress suffered by Vicomtech profession-
als.

The potential applications of these models extend
to real-world settings, where early stress detection
can lead to timely interventions and improved mental
health outcomes. Future research could focus on op-
timizing personalized models for individual subjects
and exploring the integration of additional physiolog-
ical data from commercial wearables to advance early
stress detection.
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