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Abstract: Agricultural sector is increasingly adopting advanced technologies to enhance crop productivity and sustain-
ability. Precision agriculture leverages IoT devices, sensors, and data analytics to monitor and manage various
environmental parameters, addressing challenges such as global food demand, climate change, and resource
optimization. Previous research has demonstrated the efficacy of wireless sensor networks (WSNs) and remote
sensing technologies in improving irrigation efficiency and early disease detection. However, these systems
often assume that all components continue to operate, thereby offering an incomplete view. This study presents
an advanced agricultural monitoring system referred to as Agri-Guard that integrates a wide array of sensors
to measure temperature, humidity, soil moisture, and gases like CO2, methane and ammonia. By utilizing an
ESP8266 microcontroller and IoT connectivity, the system ensures seamless data transmission and real-time
processing. Additionally, a centralized hub, equipped with a Raspberry Pi 5 and a thermal camera, enhances
the detection of crop anomalies, and an inoperative sensor hub. The sensor hub in the form of a cone is
optimally designed to detect environmental parameters besides being rainproof. The proposed Agri-Gaurd
setup clearly demonstrated the lack of manure and water from the sensors’ data, whereas thermal imaging
showcased the classification of 92.7% between a dead and alive plant. The anomaly between an operating and
non-operating Agri-cone was found to be in complete agreement (100%). The proposed system represents a
significant improvement over existing solutions, empowering farmers with precise data and faulty hub detec-
tion, leading to quick recovery and more sustainable farming practices.

1 INTRODUCTION

The agricultural sector has undergone a significant
transformation in recent years, driven by the advent
of precision agriculture and the integration of ad-
vanced technologies (Condran et al., 2022), (Patil
et al., 2023), (Liakos et al., 2018), (Taghizadeh-
Mehrjardi et al., 2020), (Sharma et al., 2021). Preci-
sion agriculture involves the use of IoT devices, sen-
sors, and data analytics to monitor and manage criti-
cal agricultural parameters, aiming to optimize crop
yields and resource use while minimizing environ-
mental impact (Vitali et al., 2021), (Villa-Henriksen
et al., 2020), (Talavera et al., 2017), (Farooq et al.,
2019), (Naseer et al., 2024), (AlZubi and Galyna,
2023). This technological evolution has been cru-
cial in addressing the challenges posed by increasing
global food demand, climate change, and the need
for sustainable farming practices (Wu et al., 2010),
(Roux et al., 2018), (Nóbrega et al., 2019), (Bru-
insma, 2009). Previous research has highlighted the
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Figure 1: Schematic showing the overview of Agri-Guard
and flow of data.

potential of IoT-based solutions in enhancing agricul-
tural productivity. Wireless sensor networks (WSNs)
have been extensively utilized to monitor soil mois-
ture and temperature, providing real-time data that
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helps farmers optimize irrigation schedules, thereby
conserving water and improving crop health (Patil
et al., 2023), (Marwa et al., 2020). Additionally, re-
mote sensing technologies, including thermal imag-
ing and multispectral cameras, have been employed
to detect early signs of crop diseases and stress (Pal-
lagani et al., 2019), (Barjaktarovic et al., 2024), (Wil-
son et al., 2023), (Cui et al., 2021), (Hassan et al.,
2021), (Fevgas et al., 2023), (Toscano et al., 2024),
(Zhu et al., 2023). These technologies allow for
timely interventions, reducing crop loss, maintain-
ing soil moisture, and improving overall yield (Bai
et al., 2019). However, these systems often op-
erate in isolation, focusing on specific parameters
without providing a holistic view of the agricul-
tural environment. Several related works have at-
tempted to bridge this gap by integrating multiple sen-
sors and data sources into a unified monitoring sys-
tem. For example, systems combining soil sensors
with weather stations have been developed to offer
comprehensive environmental monitoring, aiding in
more accurate decision-making (Marwa et al., 2020),
(Hashmi et al., 2024), (Shaikh et al., 2022a), (Ahmed
et al., 2024), (Lin et al., 2023), (Ibraiwish et al.,
2024), (Caruso et al., 2021a), (Jani and Chaubey,
2022). Another notable advancement is the use
of drone technology equipped with various sensors
to survey large agricultural fields, providing high-
resolution data on crop conditions and facilitating
precision farming (Caruso et al., 2021b), (Panjaitan
et al., 2022), (Mohyuddin et al., 2024), (Shaikh et al.,
2022b), (Reddy Maddikunta et al., 2021), (Mukhame-
diev et al., 2023), (Verma et al., 2020), (Jasim et al.,
2023). Despite these advancements, most of these
works do not cater to the on-field problems where few
of the sensors are at fault leading to an incomprehen-
sive view. Hence besides on-field sensory informa-
tion, the operative status of installed components is
equally important.

The current work seeks to build upon these foun-
dations by developing a more sophisticated and com-
prehensive agricultural monitoring system. In ad-
dition to the array of sensors that measure temper-
ature, humidity, soil moisture, and gases such as
CO2, methane, and ammonia, this system also offers
a mechanism to detect whether the sensor hubs are
manipulated from the housed setup. In general, the
proposed two-level Physical-security-enabled sensing
provides a holistic view of the agricultural environ-
ment. Advanced microcontrollers and IoT connectiv-
ity ensure that data from these sensors is seamlessly
transmitted and processed, offering real-time insights
and alerts to farmers. The incorporation of thermal
imaging enhances the system’s capability to not only

detect crop anomalies such as pest infestations and
diseases at an early stage but also alert any faulty sen-
sory hubs installed. This work improves upon pre-
vious systems by offering a fully integrated solution
that not only monitors a wide range of environmental
parameters but also processes and analyzes the data
to provide meaningful insights. The use of a central-
ized data processing hub allows for the aggregation
and analysis of data from multiple sensors, ensuring
that farmers receive comprehensive and actionable in-
formation. Furthermore, the automation of data col-
lection and analysis reduces the need for manual in-
tervention, allowing farmers to focus on other critical
tasks. The proposed system enables more precise and
timely interventions, ultimately leading to improved
crop yields and more sustainable farming practices.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 2: 3-D CAD files showing the, (i) overall structure
of the Agri-cone, (ii),(iii) the structure of the conical body
and (iv),(v),(vi) the hemispherical top.

2 PROPOSED AGRI-GUARD
DESIGN

Agri-Guard consists of two sets of devices: The IoT-
based Agri-cones and a Centralized Camera stand as
shown in Figure 1. The Agri-cones consist of an ar-
ray of sensors including temperature, humidity, mois-
ture, CO2 and methane gas sensors. These host of
sensors provide crucial details about the plant health.
These sensors are interfaced using an ESP8266 mi-
crocontroller, which is Wi-Fi and Bluetooth enabled
to transfer these vital data to the hub of the IoT net-
work placed under the Centralized Camera stand. The
Centralized Camera stand receives data from all the
Agri-cones placed around it in its vicinity and relays
the data to the control unit, i.e. the user’s device. The
Centralized Camera stand is a height-adjustable metal
stand mounted with a thermal camera. This thermal
camera is allowed to rotate through two degrees of
freedom (DOF), allowing it a 360° view of its sur-
roundings. The base of the stand consists of an 8-in-1
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Figure 3: The Agri-cone, (i) Bottom view and (ii) Front
view.

soil parameter sensor which enables it to monitor the
soil conductivity, pH, and levels of nitrogen, phospho-
rous and sodium (NPK) among others. The base also
consists of an IoT network hub that relays data from
all the Agri-cones in its vicinity to the base station for
efficient monitoring. The thermal camera on top of
the stand serves two key purposes. First, it monitors
the health of the plants within its vicinity, detecting
whether any plants are showing signs of stress, have
died, or are under threat from parasitic attacks. This
allows the system to issue timely warnings, enabling
users to take preventive or corrective actions to main-
tain plant health.

In addition, the activity of the sensors within each
Agri-cone is continuously monitored to predict any
anomalies or malfunctions. If sensor data indicates an
issue, the thermal camera is used to confirm the prob-
lem by visually checking the operational status of the
Agri-cone. This combination ensures that both plant
health and device functionality are accurately moni-
tored, providing a more reliable and comprehensive
system for agricultural management.

2.1 Agri-Cones

The Agri-cone features a conical body topped with a
hemispherical cover (Figure 2), combining aesthetic
design with functional utility. The cone-shaped body
ensures stable and secure placement in the soil, with a
wide base that helps anchor it firmly even in varying
soil conditions. The hemispherical top cover serves
as a critical element, providing dual functionalities:
protection and gas distribution. This cover shields the
internal components from rain, dust, and other envi-
ronmental elements, thereby enhancing the durabil-
ity and longevity of the device. Additionally, its de-
sign allows gases emanating from the soil to spread
evenly to the gas sensors mounted beneath it and es-
cape from the vent present at the top, ensuring accu-
rate gas readings and continuous flow of gases (Fig-
ure 3). The entire structure of the Agri-cone is fab-
ricated from PLA Generic White material and 3D

printed using the Ultimaker 3 Extended, ensuring pre-
cision and consistency in the build. To further protect
the device, the entire structure is sealed and coated
with a water-repellent layer. This coating prevents
moisture ingress, safeguarding the internal electron-
ics from potential damage caused by water seepage.
At the heart of the Agri-cone is the ESP8266 micro-
controller, equipped with both Wi-Fi and Bluetooth
capabilities, allowing for seamless data transfer to the
IoT network hub located at the base of the Central-
ized Camera Stand. Inside the cone, the microcon-
troller is accompanied by a battery and sensors for
measuring soil moisture and temperature. These sen-
sors are housed within the conical body, providing
crucial data on the soil’s physical conditions. The
moisture sensor detects the water content in the soil,
which is vital for maintaining optimal plant hydration
levels. The temperature sensor monitors the soil tem-
perature, ensuring that it remains within a suitable
range for plant growth. Under the hood of the top
cover, the gas sensors and humidity sensors are strate-
gically placed. The gas sensors are designed to de-
tect key gases such as carbon dioxide (CO2), methane,
and ammonia, which are indicative of soil respiration,
microbial activity, and nutrient cycles. Monitoring
these gases provides insights into the biological and
chemical processes occurring within the soil. Ammo-
nia levels, in particular, can indicate the presence of
nitrogen-fixing bacteria and the decomposition of or-
ganic matter. The DHT-11 humidity sensors, on the
other hand, measure the air moisture levels around the
plants, which is crucial for preventing diseases and
ensuring healthy plant growth.

(i) (ii)

(iii) (iv)
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Figure 4: Structure of the Centralised Camera stand along
with the various components mounted on it.
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2.2 Centralised Camera Stand

The Centralised Camera Stand, an essential part of
the Agri-Guard system, is designed to integrate and
process data from multiple sources for comprehen-
sive field monitoring. It features a height-adjustable
metallic stand, ensuring stability and durability in var-
ious environmental conditions. At its base, a Rasp-
berry Pi 5 acts as the central hub, receiving data from
all neighbouring Agri-cones via the IoT network. The
Raspberry Pi processes this data, flagging any irreg-
ularities and transforming it into meaningful infor-
mation for the user. Mounted atop the stand is a
PLA Generic White structure housing the FLIR C3-
X Compact thermal camera. This camera, capable of
detecting thermal anomalies such as pest infestations
and crop diseases, interfaces with the Raspberry Pi
to send thermal images to the user’s device for de-
tailed analysis (Figure 5). To achieve a comprehen-
sive 360° field view, the thermal camera is mounted
on a motorized platform that allows it to rotate freely
along two degrees of freedom (DOF) as shown in Fig-
ure 4. Programmed to survey the field every six hours,
the camera captures 12 images per rotation, each cov-
ering a 30-degree segment, ensuring thorough mon-
itoring. Embedded in the base of the stand is a 7-
in-1 RS485 JXCT soil sensor, providing critical pa-
rameters such as pH, electrical conductivity (EC), and
NPK levels. These parameters are vital for long-term
soil health monitoring. The integration of these ad-
vanced technologies in the Centralized Camera Stand
enables efficient data management and provides farm-
ers with actionable insights, enhancing productivity
and sustainability in agricultural practices.

(i) (iii)

(ii) (iv)

Figure 5: Images obtained by the FLIR C3-X Thermal
Camera mounted on the Stand along with their original
color image.

2.3 Advantages of Wi-Fi
Communication

In this experimental setup, Wi-Fi was chosen as the
primary communication protocol for several reasons:

Higher Data Throughput: Wi-Fi provides the
bandwidth necessary for transmitting real-time sensor
data, including high-resolution thermal images from
the centralized stand, which is not feasible with low-
power, long-range alternatives like LoRa or Zigbee.

Ease of Integration: The ESP8266 Wi-Fi module
is easy to set up and integrates seamlessly with cloud
platforms for remote data access. This simplifies de-
velopment and allows for real-time data monitoring.

Sufficient Range for Small Deployments: For
the current setup, the 5-meter communication radius
is well within Wi-Fi’s range, ensuring reliable con-
nectivity between Agri-cones and the centralized hub
without requiring additional infrastructure.

Experimental Efficiency: Wi-Fi enables rapid
prototyping and testing, ideal for laboratory research
and small-scale field trials, where quick setup and
easy access to data are more important than long-
range communication.

(i)

(ii)

Figure 6: (i) Thermal image of a dead plant alongside an
alive plant and (ii) the corresponding color image.

2.4 System Architecture and
Communication

This system is specifically designed for laboratory re-
search and experimental purposes, as well as small-
scale field deployments. The current configuration,
with two Agri-cones per square meter and a 5-meter
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communication radius from the centralized hub, al-
lows for precise environmental monitoring in smaller
areas. The setup enables researchers to validate the
system’s performance before scaling it to larger fields
or more complex deployments. The use of Wi-Fi
provides easy integration for real-time data collection
and simplifies the testing process in these controlled
settings.

Sensor Data Collection: Each Agri-cone collects
environmental data from its attached sensors. The
DHT11 measures humidity, the soil moisture sensor
detects water levels, and the MQ9 and MQ135 gas
sensors monitor CO2, methane, and ammonia levels.
The ESP8266 microcontroller processes the sensor
readings locally, performing initial filtering and ag-
gregation.

Data Transmission: Using Wi-Fi, the ESP8266
sends the pre-processed data to the Centralized Cam-
era Stand at intervals. The communication occurs
within a 5-meter radius, ensuring reliable transmis-
sion from all Agri-cones in the area. This distance is
ideal for small-scale experiments and offers sufficient
coverage for small agricultural plots or lab setups.

Centralized Processing: The Raspberry Pi 5 at
the stand collects and processes the incoming data
from all Agri-cones in the network. It aggregates sen-
sor readings, performs anomaly detection (e.g., de-
tecting abnormal gas levels), and integrates the ther-
mal camera’s data to monitor plant health. The ther-
mal camera captures infrared images, helping to de-
tect unhealthy plants or non-functional Agri-cones.

Data Visualization: The processed data is dis-
played in real-time on a custom dashboard, allowing
the user to monitor environmental conditions and re-
ceive alerts for anomalies. This system supports real-
time decision-making, vital for applications like pre-
cision farming or experimental trials.

3 DATA COLLECTION AND
RESULTS

3.1 Agri-Cones

The Agri-Guard system’s sensors provide environ-
mental data, including temperature, soil moisture, hu-
midity, and gas concentrations (CO2, CH4, & NH4).

These readings are plotted on a graph to visualize
changes over time (Figure 8). Upon adding manure
to the soil, notable changes in sensor readings are ob-
served. The gas sensor MQ9, which detects CO2 and
methane, shows a significant increase due to the or-
ganic matter decomposition in the manure. Concur-

(i)

(iii)

(ii)

Figure 7: Thermal image of the Agri-Cone when it is (i)
switched off, (ii) switched on and (iii) the corresponding
original color image.

rently, the added water raises the humidity and soil
moisture levels, which is reflected in their respective
sensor readings. Similarly, over time, as microbial de-
cay progresses, the MQ135 sensor, which measures
ammonia levels, also shows a slight increase, indicat-
ing the breakdown of organic nitrogen compounds in
the manure.These dynamic changes are plotted and
compared with those from the control setup (Figure
8), where the control lacks manure addition, unlike
the experimental setup.

3.2 Centralized Camera Stand

The Agri-Guard system employs advanced thermal
imaging technology to monitor plant health and the
functionality of Agri-cones. The thermal images cap-
tured by the FLIR C3-X Compact thermal camera
provide a detailed heatmap of the monitored area,
which is then analyzed to determine the status of
plants and Agri-cones. This section explains the pro-
cess and effectiveness of using thermal imaging in
conjunction with a classification model to achieve ac-
curate monitoring results. The thermal images ob-
tained from the camera display variations in tempera-
ture across the monitored field. Living plants exhibit
distinct thermal heatmaps characterized by larger ar-
eas of red, indicating higher temperatures due to ac-
tive biological processes such as photosynthesis and
respiration. These processes generate heat, which is
captured by the thermal camera, resulting in a promi-
nent red coloration on the heatmap (Figure 6). Con-
versely, dead plants lack these active processes, lead-
ing to a cooler temperature profile that appears in the
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Figure 8: Agri-cone sensor measurements over time showing graphs before addition of manure and water (Control), and after
adding the organic manure and water (Experimental).

lower spectrum of the heatmap, typically represented
by blue and green colors. To classify whether a plant
is dead or alive, the thermal images are fed into a
classification model. Numerous binary classification
models were evaluated for this task, including logis-
tic regression, support vector machines (SVM), and
Decision trees. However, it was found that a region-
based Convolutional Neural Network (R-CNN) pro-
vided the best performance. The R-CNN model was
particularly effective due to its ability to analyze spe-
cific regions within the thermal images, focusing on
areas of interest and providing a more accurate clas-
sification. The R-CNN model achieved an overall
accuracy of 92.7%, significantly outperforming other
models investigated. The accuracy of all the models
investigated is listed in Table 1. In addition to plant

Table 1: Accuracy of models investigated for classifying
between dead and alive plant for a thermal image.

Model Name Accuracy
R-CNN 92.7%

Decision Tree 89.9%
SVM 82.4%

Logistic Regression 80.1%

health monitoring, the thermal images are also used to
assess the functionality of the Agri-cones. Functional
Agri-cones generate heat due to the active circuitry
inside, which is reflected in their thermal heatmap
as a higher concentration of red and green colors.
These colors indicate the heat produced by the elec-

tronic components in operation. On the other hand,
Agri-cones that are switched off or malfunctioning
show a lack of heat generation, appearing in the lower
spectrum of the thermal heatmap with cooler colors
such as blue and green (Figure 7). The classification
model used for Agri-cone functionality also lever-
ages the region-based CNN approach giving 100%
classification accuracy. This model effectively dis-
tinguishes between operational and non-operational
Agri-cones by analyzing the thermal signature of each
device. The higher concentration of warm colors in
the heatmap corresponds to active, powered-on Agri-
cones, while the absence of such colors indicates a
non-functional state.

3.3 Power Management and Battery
Life Analysis

The Agri-cone system is powered by two 3.7V,
4000mAh Li-Po batteries in series, providing a total
of 7.4V with a combined capacity of 4000mAh. The
following section provides a detailed analysis of the
power consumption and battery life based on the com-
ponents used and the operating conditions. The active
components of each Agri-cone include the Wemos D1
Mini (ESP8266), DHT11 humidity sensor, soil mois-
ture sensor, and gas sensors (MQ9, MQ135). The We-
mos D1 Mini ESP8266 is characterized for operating
current of 170 mA at 3.3V. Hence for a higher volt-
age of 7.4V, equivalent current of 75.8mA is drawn.
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The other components including DHT11 Humidity
Sensor, Soil Moisture Sensor, MQ9 Gas Sensor, and
MQ135 Gas Sensor draws current of 0.3mA, 35mA,
150mA, and 56mA respectively. The total current
consumption during active operation is estimated to
be 317.1 mA. The total power consumption in active
mode is estimated to be 2.3475 W.

With a 4000mAh battery, the device would last
approximately for Battery Life (Active) = 4000mAh

317.1mA ≈
12.61hours To extend the battery life, a duty cycle
is implemented where the device remains active for
10% of the time and in deep sleep (where power con-
sumption is minimal) for the remaining 90%, where
the current drawn in sleep state is 0.02mA. The aver-
age time weighted current drawn by the device is thus
computed as per the Equation 1.

Average Current = (0.1×317.1mA)+
(0.9×0.02mA) = 31.73mA

(1)
The corresponding power consumption with the

duty cycle is: Pavg = 31.73mA× 7.4V = 0.2348W
The battery life with deep sleep mode enabled is thus
given by: Battery Life (Sleep Mode) ≈ 4000mAh

31.73mA ≈
126hours This battery optimization allows the sys-
tem to operate for approximately 126 hours (over 5
days) between charging, making it ideal for small-
scale field experiments where continuous monitoring
is required without frequent battery changes.

4 CONCLUSION

The Agri-Guard system represents a significant leap
in precision agriculture by combining thermal imag-
ing with R-CNN classification to provide accurate,
real-time monitoring of plant health and the op-
erational status of agricultural equipment. Lever-
aging the FLIR C3-X Compact thermal camera,
Agri-Guard effectively differentiates between healthy
and distressed plants through distinct thermal signa-
tures, while identifying functional and non-functional
equipment based on heat patterns. Its modular design,
optimized power management, and Wi-Fi-enabled
data transmission to enhance adaptability for labora-
tory and field applications.

Future advancements will improve scalability, re-
fine long-term deployment strategies, and integrate
additional functionalities, enabling broader applica-
tions across diverse agricultural contexts. By ad-
dressing these areas, Agri-Guard has the potential to
drive substantial improvements in resource manage-
ment, crop yield monitoring, and sustainable agricul-
tural practices.
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