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Abstract: Machine learning (ML) has become essential for securing enterprise information systems, particularly through
its integration in Network Intrusion Detection Systems (NIDS) for monitoring and detecting suspicious activ-
ities. Although ML-based NIDS models demonstrate high accuracy in detecting known and novel threats,
they remain vulnerable to adversarial attacks—small perturbations in network data that mislead the model
into classifying malicious traffic as benign, posing serious risks to enterprise security. This study evaluates
the adversarial robustness of two machine learning models—a Random Forest classifier and a Neural Net-
work—trained on the UNSW-NB15 dataset, which represents complex, enterprise-relevant network traffic.
We assessed the performance of both models on clean and adversarially perturbed test data, with adversarial
samples generated via Projected Gradient Descent (PGD) across multiple epsilon values. Although both mod-
els achieved high accuracy on clean data, even minimal adversarial perturbations led to substantial declines in
detection accuracy, with the Neural Network model showing a more pronounced degradation compared to the
Random Forest. Higher perturbations reduced both models’ performance to near-random levels, highlighting
the particular susceptibility of Neural Networks to adversarial attacks. These findings emphasize the need
for adversarial testing to ensure NIDS robustness within enterprise systems. We discuss strategies to improve
NIDS resilience, including adversarial training, feature engineering, and model interpretability techniques,
providing insights for developing robust NIDS capable of maintaining security in enterprise environments.

1 INTRODUCTION

With the exponential growth of digital networks and
the rise of interconnected enterprise systems, the so-
phistication and frequency of cyberattacks have in-
creased substantially. This makes robust network se-
curity a fundamental requirement for protecting en-
terprise information systems, which are often prime
targets due to the sensitive data they manage. Net-
work Intrusion Detection Systems (NIDS) play a cru-
cial role in enterprise security by continuously moni-
toring network traffic for malicious activities, relying
on patterns and anomalies to detect potential threats.
In recent years, machine learning (ML) has become
a transformative tool in the development of adaptive
and efficient NIDS models capable of identifying both
known and novel attack patterns (Sharafaldin et al.,
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2018; Lippmann et al., 2000; Buczak and Guven,
2016). Despite the strong performance of ML-based
NIDS in controlled conditions, these models are vul-
nerable to adversarial attacks—strategic perturbations
designed to deceive the model into misclassifying ma-
licious traffic as benign, potentially exposing enter-
prise networks to undetected breaches (Goodfellow
et al., 2015; Rigaki and Garcia, 2018).

A primary limitation of traditional NIDS eval-
uation is that it often assesses model performance
solely on clean, unperturbed data. High accuracy
on such data can create a misleading sense of reli-
ability, suggesting that the model is resilient in dy-
namic, real-world settings. However, recent research
has demonstrated that even minimal adversarial per-
turbations can severely compromise ML-based NIDS
performance, undermining their effectiveness within
live environments (Papernot et al., 2016; Kurakin
et al., 2017). This vulnerability highlights the criti-
cal need to evaluate these models not only with tradi-
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tional metrics, such as accuracy and the Area Under
the Receiver Operating Characteristic Curve (AUC),
but also for their robustness under adversarial condi-
tions to ensure secure deployment within enterprise
networks.

Adversarial attacks are particularly relevant to
the cybersecurity domain because they exploit the
model’s weaknesses in a way that mimics real-world
attack scenarios. For instance, attackers can manip-
ulate traffic features to bypass detection while main-
taining the functional integrity of their malicious ac-
tivities. This capability poses a serious threat, as the
model’s inability to detect such adversarially modi-
fied samples can result in undetected breaches. The
work of (Carlini and Wagner, 2017) demonstrated that
adversarial attacks, even with minimal perturbations,
could evade state-of-the-art NIDS, leading to signif-
icant drops in detection accuracy and, consequently,
network security.

To investigate the impact of adversarial samples
on NIDS, we selected the UNSW-NB15 dataset, a
comprehensive dataset specifically designed for eval-
uating NIDS performance on modern attack types and
diverse traffic features. This dataset contains both
normal and attack traffic generated in a controlled
environment using the IXIA PerfectStorm tool and
includes a range of modern threats and benign net-
work behaviors. Compared to older datasets, such
as KDDCUP99, UNSW-NB15 better represents cur-
rent network security challenges, making it suitable
for evaluating adversarial robustness in NIDS models
(Moustafa and Slay, 2015; Moustafa and Slay, 2016;
Moustafa et al., 2019; Moustafa et al., 2017; Sarhan
et al., 2021).

In this study, we evaluated the adversarial robust-
ness of two machine learning models—a Random
Forest classifier and a Neural Network—trained on
the UNSW-NB15 dataset. We employed Projected
Gradient Descent (PGD), a widely-used method for
generating adversarial samples, to perturb the test
data across different magnitudes. Both models were
assessed on clean data as well as on adversarial sam-
ples generated with various levels of perturbation (ep-
silon values). While both models achieved high ac-
curacy on clean data, our findings reveal that even
small adversarial perturbations (epsilon = 0.01) sig-
nificantly reduced detection accuracy, with the Neural
Network demonstrating a more pronounced vulnera-
bility compared to the Random Forest. These results
underscore that traditional evaluation metrics alone
do not fully capture a model’s resilience to adversarial
attacks.

The remainder of this paper is structured as fol-
lows. Section 2 reviews related work on ML-based

NIDS and adversarial attacks. Section 3 presents
our methodology, detailing the dataset, preprocess-
ing steps, and adversarial sample generation. Section
4 presents the experimental results comparing both
Random Forest and Neural Network models on clean
and adversarial data, while Section 5 discusses the im-
plications of our findings and future research direc-
tions. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 Machine Learning Techniques for
NIDS

ML techniques are widely employed in Network In-
trusion Detection Systems NIDS due to their ability
to detect malicious traffic patterns in network data.
Common ML models applied in NIDS include De-
cision Trees, Random Forests, Support Vector Ma-
chines (SVMs), and Neural Networks. These mod-
els leverage features such as network flow, protocol
types, and packet counts to classify traffic as benign
or malicious.

Decision Trees. Decision Trees are popular in
NIDS for their interpretability and efficiency in cat-
egorizing network traffic. They are effective in iden-
tifying threats by analyzing distinct behaviors within
network features (Ullah et al., 2020; Khammas,
2020). However, Decision Trees are prone to over-
fitting, especially with high-dimensional data.

Random Forests. Random Forests, an ensemble
learning technique, address the limitations of Deci-
sion Trees by generating multiple trees based on dif-
ferent subsets of the data, thus reducing overfitting
and enhancing generalization. This makes Random
Forests effective in detecting network attacks and
well-suited for handling complex datasets with nu-
merous features (Ullah et al., 2020; Khammas, 2020;
Akhtar and Feng, 2022).

Support Vector Machines. Support Vector Ma-
chines (SVMs) are particularly useful for classify-
ing data in high-dimensional feature spaces, often re-
quired in network traffic analysis (Ghouti and Imam,
2020; Arunkumar and Kumar, 2023). By learning op-
timal hyperplanes, SVMs can effectively separate var-
ious types of network traffic, making them suitable for
detecting nuanced attack patterns.
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Neural Networks. Neural Networks, particularly
deep learning architectures, are powerful tools for
NIDS due to their capacity to automatically extract
relevant patterns from raw network data (Madani
et al., 2022; Arivudainambi et al., 2019). Although
they offer high performance, Neural Networks require
substantial computational resources and often lack in-
terpretability, which can limit their applicability in cy-
bersecurity settings where model transparency is es-
sential.

While these ML models perform well on clean
data, recent studies indicate that traditional met-
rics such as accuracy and AUC may overestimate a
model’s effectiveness if adversarial robustness is not
considered. Feature selection techniques, including
Principal Component Analysis (PCA) and Correlation
Analysis, are frequently employed to reduce data di-
mensionality and redundancy, potentially enhancing
model performance. PCA, for example, emphasizes
features that explain the most variance, while Corre-
lation Analysis identifies and removes highly corre-
lated features (Arivudainambi et al., 2019; Kok et al.,
2019).

2.2 Adversarial Attacks on Machine
Learning Models for NIDS

Adversarial attacks have emerged as a significant
threat to ML-based NIDS models. These attacks in-
troduce small, carefully crafted perturbations into in-
put data, leading the model to misclassify malicious
samples as benign, thereby exposing network security
vulnerabilities.

One common adversarial attack method is the Fast
Gradient Sign Method (FGSM), introduced by Good-
fellow et al. (Goodfellow et al., 2015). FGSM gen-
erates adversarial samples by calculating the gradi-
ent of the model’s loss concerning the input features
and adding perturbations along the gradient direction.
Though computationally efficient, FGSM is a single-
step attack, limiting its ability to evade more robust
defense mechanisms.

The PGD method, an iterative extension of
FGSM, has become a standard for evaluating adver-
sarial robustness (Madry et al., 2019; Chen and Hsieh,
2023). PGD recalculates the gradient in each it-
eration, incrementally adjusting the perturbations to
move towards the decision boundary. This iterative
approach allows PGD to exploit model weaknesses
more effectively than FGSM, making it a preferred
method for adversarial testing. Gressel et al. (Gres-
sel et al., 2023) demonstrated PGD’s effectiveness in
bypassing ML models by applying controlled pertur-
bations within epsilon boundaries to maintain sam-

ple plausibility. Shirazi et al. (Shirazi et al., 2019)
also showed the potential of adversarial attacks to de-
ceive phishing detection models, highlighting the im-
portance of adversarial robustness in security applica-
tions.

2.3 Contributions of this Study

Our study advances current understanding of adver-
sarial vulnerabilities in NIDS by offering a compara-
tive analysis of two models—a Random Forest and a
Neural Network—on the UNSW-NB15 dataset under
PGD attacks. Key contributions include:

• Model Comparison under Adversarial Condi-
tions: We assess how Random Forest and Neural
Network models perform under adversarial per-
turbations, providing insights into the Neural Net-
work’s heightened vulnerability.

• Realistic Perturbation Strategy with Cus-
tomized Epsilon Values: Our feature-specific
epsilon calculation method tailors perturbations
to each feature’s range, ensuring that adversarial
samples remain contextually valid.

• Future Research Directions for NIDS Robust-
ness: We propose research avenues such as ad-
versarial training, feature engineering, and inter-
pretability methods to enhance model resilience
against adversarial attacks.
By providing a focused analysis of PGD’s impact

and highlighting the Neural Network model’s vulner-
ability, this study underscores the critical need for ro-
bust adversarial defenses in ML-based NIDS applica-
tions.

3 METHODOLOGY

3.1 Dataset Description

For this study, we utilized the UNSW-NB15 dataset,
a comprehensive dataset created specifically for eval-
uating NIDS in realistic enterprise and network se-
curity environments. The UNSW-NB15 dataset was
generated using the IXIA PerfectStorm tool, which
emulates complex, real-world network traffic by gen-
erating both normal and malicious activities. This
tool enabled the capture of over 100 GB of data
across two sessions, producing a dataset that reflects
a wide range of normal and abnormal network behav-
iors commonly observed in modern infrastructures.

The dataset consists of 49 features characteriz-
ing various aspects of network traffic flows, includ-
ing protocol type, flow duration, packet size, TCP
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flags, source and destination IP addresses, and source
and destination port numbers. These features were
selected to represent both network layer and appli-
cation layer characteristics, making the dataset suit-
able for training and evaluating NIDS models across
multiple network attack scenarios. Additionally,
the dataset includes contextual features that capture
session-level information, aiding in the detection of
complex, multi-stage attacks.

Each sample in the dataset is labeled as either Nor-
mal or one of nine attack categories, encompassing a
wide spectrum of attack types commonly encountered
in enterprise and network environments. These cate-
gories include:

• Fuzzers. Tools or techniques that automate ran-
dom input generation to discover vulnerabilities.

• Backdoors. Techniques that provide attackers
with unauthorized remote access to a system.

• Denial of Service (DoS). Attacks aimed at dis-
rupting service availability by overwhelming re-
sources.

• Reconnaissance. Methods used by attackers to
gather information about a system or network.

• Shellcode. Payloads used for command execu-
tion, typically as part of an exploit.

• Worms. Self-replicating malware that spreads
across networks.

• Exploits, Analysis, and Generic Attacks. Addi-
tional attack types targeting known software vul-
nerabilities and general malicious activities.

The UNSW-NB15 dataset addresses limitations
found in older datasets like KDDCUP99 and NSL-
KDD, which often focus on outdated or simplified
attack vectors. By incorporating attack data from
the Common Vulnerabilities and Exposures (CVE)
database, UNSW-NB15 offers a more diverse and
representative set of modern attack patterns, mak-
ing it applicable to contemporary network security
challenges. Given its extensive feature set and real-
istic representation of network traffic, UNSW-NB15
serves as a robust benchmark for testing NIDS model
performance in complex, multi-faceted scenarios.

3.2 Data Preprocessing

Before training and testing the machine learning mod-
els, we applied the following preprocessing steps:

• Categorical Features Encoding. Categorical
features such as proto, service, state, and at-
tack cat were transformed into numerical repre-
sentations using Label Encoding to ensure that

they could be effectively interpreted by the mod-
els.

• Handling Missing and Infinite Values. The
dataset was examined for missing or infinite val-
ues. Missing values were replaced with the mean
of the respective feature, while infinite values
were clipped within valid feature ranges.

• Train-Test Split. The dataset was divided into
training and testing sets with a stratified 70-30
split to ensure proportional representation of both
normal and attack samples in each set.

3.3 Adversarial Sample Generation

We employed the PGD method to generate adversar-
ial samples by perturbing the original test set. PGD is
an iterative, gradient-based attack that modifies fea-
ture values to deceive the model into making incorrect
predictions.

3.3.1 Feature-Specific Epsilon Calculation

To maintain realistic and proportional perturbations
across features, we calculated ε as a fraction of each
feature’s range. For each feature f , epsilon was set
as:

ε f = scaling factor× (max( f )−min( f ))

We experimented with scaling factors of 0.01,
0.05, 0.1, and 0.15, corresponding to perturbations
representing 1%, 5%, 10%, and 15% of the fea-
ture’s range, respectively. This approach ensured that
the adversarial samples remained plausible within the
context of network traffic data.

3.3.2 PGD Attack

The PGD attack was iterated for 150 steps, incremen-
tally modifying feature values within the calculated
epsilon boundaries. All perturbed values were clipped
within valid feature ranges to retain realistic traffic
characteristics. The adversarial samples were sub-
sequently evaluated on both the Random Forest and
Neural Network models to assess the impact of ad-
versarial perturbations.

3.4 Model Training and Evaluation

To assess adversarial robustness, we trained and eval-
uated both a Random Forest Classifier and a Neural
Network model. This comparative approach allowed
us to investigate differences in vulnerability between
the two models.
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• Initial Evaluation on Clean Data. Each model
was first evaluated on the clean test set to establish
a baseline performance. The evaluation metrics
included accuracy, precision, recall, and AUC.

• Evaluation on Adversarial Data. For both mod-
els, adversarial test sets were generated using the
different epsilon values. We then evaluated each
model’s performance on these adversarial samples
to determine their robustness against varying lev-
els of perturbation.

The results of these evaluations, including accu-
racy and AUC comparisons for each model and each
level of epsilon, are presented in Section 4. The com-
parative analysis provides insights into the differen-
tial impact of adversarial attacks on Random Forest
and Neural Network models, underscoring the criti-
cal need for robust adversarial defenses in ML-based
NIDS.

4 RESULTS

In evaluating the performance of our Random Forest
Classifier and Neural Network on both clean and ad-
versarial test data, we report several key metrics: Ac-
curacy, Precision, Recall, AUC, and Receiver Operat-
ing Characteristic (ROC) Curve.

Accuracy. measures the overall correctness of the
model, representing the proportion of correct predic-
tions among all predictions.

Precision. indicates the accuracy of positive pre-
dictions, specifically for attack samples, showing the
proportion of true positives out of all predicted posi-
tives.

Recall. (or Sensitivity) measures the model’s ability
to correctly identify attack samples, representing the
proportion of true positives among all actual positives.

AUC. represents the model’s ability to differentiate
between classes across various decision thresholds,
where higher AUC values imply better discrimination
between normal and attack samples.

ROC Curve. plots the True Positive Rate (sensi-
tivity) against the False Positive Rate, showing the
trade-off between sensitivity and specificity at differ-
ent threshold levels. A higher curve (closer to the top
left) indicates stronger classification performance.

4.1 Clean Data Results

On the clean test set, the Random Forest Classifier
and Neural Network achieved the following metrics:

• Random Forest:
– Accuracy: 0.87
– Precision: 0.86
– Recall: 0.88
– AUC: 0.99

• Neural Network:
– Accuracy: 0.79
– Precision: 0.80
– Recall: 0.75
– AUC: 0.77

These results indicate that the Random Forest
model outperformed the Neural Network model on
clean data, achieving higher accuracy, precision, re-
call, and AUC.

4.2 Adversarial Data Results

Adversarial samples were generated using four dif-
ferent epsilon values (ε = 0.01, ε = 0.05, ε = 0.1,
and ε = 0.15), each representing increasing levels
of perturbation. Both models experienced perfor-
mance degradation as epsilon increased, illustrating
their vulnerability to adversarial attacks.

4.2.1 Epsilon = 0.01

• Random Forest:
– Accuracy: 0.70
– AUC: 0.77

• Neural Network:
– Accuracy: 0.50
– AUC: 0.56

At ε = 0.01, both models experienced a moder-
ate drop in accuracy and AUC, with the Random For-
est retaining more robustness compared to the Neural
Network.

4.2.2 Epsilon = 0.05

• Random Forest:
– Accuracy: 0.49
– AUC: 0.55

• Neural Network:
– Accuracy: 0.48
– AUC: 0.52
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At ε = 0.05, both models saw a significant drop in
accuracy, with Random Forest slightly outperforming
the Neural Network. The AUC values for both mod-
els indicate a weakened ability to distinguish between
normal and attack samples.

4.2.3 Epsilon = 0.10

• Random Forest:
– Accuracy: 0.47
– AUC: 0.50

• Neural Network:
– Accuracy: 0.47
– AUC: 0.50

With ε = 0.10, both models approached random
guessing levels of performance, with AUC values
near 0.50. This result indicates that the adversarial
perturbations have severely compromised the model’s
ability to discriminate between classes.

4.2.4 Epsilon = 0.15

• Random Forest:
– Accuracy: 0.46
– AUC: 0.50

• Neural Network:
– Accuracy: 0.47
– AUC: 0.50

At the highest perturbation level (ε = 0.15), both
models performed near random.

4.3 Comparative Analysis

The results demonstrate that while the Random Forest
model initially performed better on clean data, both
models exhibited significant vulnerability to adversar-
ial perturbations. The degradation in accuracy and
AUC as epsilon increased underscores the suscepti-
bility of ML-based NIDS to adversarial attacks.

These results indicate that the Random Forest
model outperformed the Neural Network model on
clean data, achieving higher accuracy, precision, re-
call, and AUC. Figure 1 presents a side-by-side com-
parison of accuracy for both models under clean and
adversarial conditions, with Subfigure 1a showing the
Random Forest model’s performance and Subfigure
1b displaying the Neural Network’s accuracy. This
comparison emphasizes the Random Forest model’s
greater resilience on clean data.

Figure 2 further visualizes the ROC curves for
each model across varying perturbation levels, captur-
ing the effects of different epsilon values on classifica-
tion robustness. Subfigure 2a presents the ROC curve
for the Random Forest model, demonstrating high
sensitivity and specificity on clean data, while Sub-
figure 2b displays the Neural Network’s ROC curve,
which highlights its lower robustness to adversarial
perturbations. At lower epsilon values, the Random
Forest model showed slightly higher resilience than
the Neural Network, yet both models ultimately failed
to maintain effectiveness under larger perturbations,
with accuracy approaching random guessing at higher
epsilon levels.

Together, Figures 1 and 2 underscore the need for
robust adversarial defenses in NIDS, as both models,
regardless of architecture, showed vulnerability to ad-
versarial attacks. This analysis highlights the impor-
tance of adversarial robustness as a core design objec-
tive for effective NIDS development.

5 DISCUSSION

The results of our study underscore a significant and
often overlooked challenge in network intrusion de-
tection: high classification accuracy on clean data
does not necessarily imply robustness against adver-
sarial attacks. Using the UNSW-NB15 dataset, both
our Random Forest classifier and Neural Network ini-
tially demonstrated strong performance on clean data,
achieving accuracy and AUC values of 87% and 0.99,
and 79% and 0.77, respectively. However, our anal-
ysis reveals that even small adversarial perturbations
(as low as ε = 0.01) led to considerable performance
degradation across both models. This finding high-
lights the susceptibility of machine learning models
to adversarial attacks and suggests that robust defense
mechanisms are essential for real-world deployment
in cybersecurity applications.

5.1 Implications of Adversarial
Vulnerability

The effectiveness of PGD attacks in degrading model
performance—especially as the epsilon value in-
creases—demonstrates a concerning vulnerability in
NIDS to even minimal adversarial perturbations.
With ε= 0.01 (representing a 1% perturbation relative
to each feature’s range), both models saw substantial
drops in performance. For example, the Random For-
est classifier’s accuracy dropped from 87% to 70%,
and the AUC decreased to 0.77. The Neural Net-
work experienced an even sharper drop, with accu-
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(a) Random Forest Model Accuracy (b) Neural Network Model Accuracy

Figure 1: Model Accuracy on Clean vs. Adversarial Data for Random Forest and Neural Network Models.

(a) Random Forest Model ROC Curve (b) Neural Network Model ROC Curve

Figure 2: ROC Curve Comparison for Random Forest and Neural Network Models.

racy falling to 50% and AUC to 0.56, highlighting that
slight modifications in the input data can mislead both
models. As epsilon values increased to 0.05 and be-
yond, performance deteriorated to near-random clas-
sification levels, demonstrating the models’ inability
to maintain reliable decision boundaries under adver-
sarial conditions.

This vulnerability is particularly alarming in net-
work security, where attackers could exploit these
weaknesses by crafting low-visibility adversarial
samples that evade detection while preserving the ma-
licious functionality. For instance, subtle changes in
network flow attributes like packet size or connec-
tion duration could allow attackers to bypass NIDS
without altering the attack’s objectives. This evasion
could lead to undetected breaches in enterprise envi-
ronments, where NIDS often serve as the first line of
defense.

Our findings emphasize that high initial perfor-
mance in ML-based NIDS, such as the Random For-
est and Neural Network classifiers in our study, does
not guarantee resilience under adversarial conditions.
Without adversarial testing, deploying these models
could create a false sense of security, leaving critical
infrastructures exposed to sophisticated threats. Con-
sequently, models used in security applications should

be rigorously evaluated for both clean data perfor-
mance and adversarial robustness to ensure their re-
liability in high-stakes environments.

5.2 Challenges in Ensuring Robustness

Despite the use of a comprehensive dataset like
UNSW-NB15, our research highlights that achiev-
ing adversarial robustness in NIDS remains challeng-
ing. Many machine learning algorithms, including
Random Forest and Neural Networks, are developed
primarily to optimize accuracy on clean data with-
out specific mechanisms to withstand adversarial at-
tacks. This discrepancy means that traditional evalu-
ation metrics, such as accuracy and AUC, may over-
estimate model performance in real-world threat sce-
narios where attackers may craft data to evade detec-
tion. Thus, developing models resilient to adversarial
perturbations is crucial for applications in high-stakes
settings, where attack tactics are constantly evolving.

Adversarial Training. Adversarial training, which
incorporates adversarial examples into the training
dataset, can improve robustness by helping models
recognize and correctly classify perturbed samples.
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However, this approach has significant drawbacks:
it requires extensive computational resources, which
may not be feasible for real-time NIDS applications,
and it may not generalize well to new, unseen per-
turbations, leaving models vulnerable to novel attack
strategies.

Robust Feature Engineering. Identifying and em-
phasizing features less susceptible to adversarial ma-
nipulation is another promising approach, but it is also
constrained by the need for extensive domain knowl-
edge to select robust features. Feature engineering
might inadvertently eliminate useful information, po-
tentially reducing overall model performance if es-
sential features are removed due to their sensitivity
to perturbations.

High-Dimensional and Complex Data Challenges.
NIDS models also face the challenge of handling the
high-dimensional and complex nature of network traf-
fic data in adversarial settings. The rise of stealthy,
low-footprint attacks—those with minimal, nearly
undetectable modifications—presents additional dif-
ficulties. These attacks can subtly alter features to
evade detection while retaining their functionality, re-
quiring models that can discern such subtle differ-
ences without compromising clean data performance.

Adaptive Adversaries. Lastly, adaptive attackers
who modify tactics based on observed defenses fur-
ther complicate robustness efforts. A robust NIDS
must withstand a broad range of perturbations while
adapting to continuously evolving threat vectors.
Static defense mechanisms may fall short in such sce-
narios, underscoring the need for models that dynam-
ically adapt to adversarial strategies.

Addressing these challenges is crucial for devel-
oping robust NIDS models capable of maintaining
high levels of security in adversarial environments.
Potential solutions include dynamic model adapta-
tion, ensemble methods, and enhanced feature en-
gineering, which together could mitigate these chal-
lenges and enhance robustness.

5.3 Future Research Directions

Our findings point to several promising areas for fu-
ture research to enhance NIDS robustness against ad-
versarial attacks:

• Adversarial Training. Future work could ex-
plore adaptive adversarial training techniques tai-
lored to evolving network attack patterns, focus-

ing on dynamically generated adversarial exam-
ples across a range of epsilon values.

• Defense-Guided Feature Engineering. Future
studies could develop feature engineering tech-
niques that target sensitive features, reducing the
model’s reliance on easily manipulated inputs
while maintaining relevance to network security.

• Hybrid NIDS Models. Exploring hybrid archi-
tectures that combine machine learning with tra-
ditional rule-based detection systems may offer
resilience by adding an additional layer of filter-
ing. For instance, ensemble methods that integrate
deep learning and rule-based approaches might
reduce the impact of adversarial perturbations.

• Explainable AI and Model Interpretability.
Leveraging interpretability techniques to under-
stand model decisions under adversarial condi-
tions could provide insights into which features
are most vulnerable, guiding future defense mech-
anisms and model design strategies.

• Standardized Adversarial Testing Bench-
marks. Establishing standardized metrics and
benchmarks for adversarial testing in NIDS mod-
els would enable researchers to make meaningful
comparisons across studies, evaluating models on
multiple dimensions that balance accuracy and
robustness.

5.4 Limitations of the Study

While our research sheds light on adversarial vulner-
ability in network intrusion detection, certain limita-
tions must be acknowledged. Our study used a Ran-
dom Forest and a relatively simple Neural Network
classifier, which, while effective, may differ in robust-
ness compared to more advanced deep learning mod-
els. Additionally, the UNSW-NB15 dataset, though
comprehensive, may not fully represent the range of
adversarial strategies that could be encountered in
modern network attacks. Future studies could expand
upon our work by testing additional datasets, adver-
sarial techniques, and ML models, contributing to a
more holistic understanding of adversarial robustness
in NIDS.

6 CONCLUSION

This study investigated the robustness of machine
learning-based NIDS against adversarial attacks,
specifically examining the impact of adversarial per-
turbations on models trained on the UNSW-NB15
dataset. By generating adversarial samples using
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PGD with feature-specific epsilon calculations, we
evaluated the resilience of both Random Forest and
Neural Network classifiers. The results reveal that
even high-performing models on clean data are signif-
icantly susceptible to adversarial attacks, underscor-
ing a critical challenge for the deployment of ML-
based NIDS in real-world environments.

Key findings include:

• Vulnerability to Adversarial Attacks. Both
Random Forest and Neural Network models, de-
spite achieving high accuracy on unperturbed
data, showed notable performance degradation
when evaluated on adversarial samples. This vul-
nerability highlights a substantial risk in cyber-
security, where attackers can exploit these weak-
nesses to bypass detection systems with minimal
perturbations.

• Impact of Adversarial Perturbation Scale.
As perturbation levels (epsilon values) in-
creased, both models’ accuracy and AUC dropped
markedly, with the Neural Network showing
greater sensitivity to smaller perturbations. This
comparative analysis indicates that while model
performance may vary by architecture, neither
model proved resilient under adversarial condi-
tions, emphasizing the need for adversarial testing
and defense mechanisms.

• Limitations of Retraining Strategies. While re-
training on adversarial samples is a promising ap-
proach, it often introduces new feature dependen-
cies that could be exploited by adaptive attack-
ers. This suggests that while adversarial retraining
can improve robustness to some extent, it may not
provide comprehensive protection against evolv-
ing threats.

• Need for Continuous Adaptation and Evalua-
tion. Our study underscores the importance of on-
going evaluation and adaptation of ML models in
cybersecurity, as static models are insufficient in
the face of adaptive adversarial strategies. NIDS
models must incorporate dynamic and robust de-
fense techniques to maintain security in high-risk
environments.

In summary, while machine learning models are
essential for enhancing cybersecurity, their vulnera-
bility to adversarial attacks remains a significant chal-
lenge. Future work should explore more adaptive and
resilient approaches, including hybrid architectures,
continuous adversarial training, and interpretability
techniques, to bolster NIDS models against sophis-
ticated and evolving adversarial tactics. This study
serves as a call to action for the development of robust

and secure NIDS models that can withstand adversar-
ial manipulations while providing reliable protection
within enterprise and critical infrastructure networks.
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