
Querying Digital Twin Models

Emilio Carrión1,2 a, Pedro Valderas2 b and Óscar Pastor2 c

1Mercadona Tech, Mercadona, Spain
2PROS – VRAIN, de València, Spain

emcaryp@gmail.com

Keywords: Digital Twin, Modelling, Query.

Abstract: Digital twins (DTs) have become increasingly complex as they integrate data from diverse heterogeneous
sources while requiring strict security controls. This heterogeneity presents challenges to effectively query and
aggregate information. The Entity-Relationship Digital Twin (ERDT) model provides a basis for represent-
ing both physical entities and their digital counterparts, however it lacks mechanisms to handle system-level
queries and ensure secure access. This work extends the ERDT model by introducing query views, high-level
abstractions that allows flexible and secure querying of DT data over multiple entities. Furthermore, we val-
idate our approach through a real-world industrial case study within Mercadona’s logistics operations where
we specifically focus on their truck fleet management system. The results demonstrate that our solution covers
data heterogeneity and security constraints while also providing enhanced query capabilities in a production
environment.

1 INTRODUCTION

Digital twins (DTs), virtual representations of real-
world entities synchronised at a specific frequency
and fidelity (Digital Twin Consortium, 2024), have
emerged as a revolutionary technology in a wide
range of fields, from manufacturing and urban infras-
tructure to logistics and healthcare (Tao et al., 2019).
These virtual counterparts of physical objects and sys-
tems enable real-time monitoring, simulation and op-
timisation, providing advanced insights into opera-
tional performance (Jones et al., 2020).

However, as the complexity and scale of DT im-
plementations increase, so does the need for software
engineering solutions to ensure quality development.
In this context, Model-Driven Development (MDD)
seems to be one of the best options (Bordeleau et al.,
2020). Currently, there are solutions that address this
problem, such as (Kirchhof et al., 2020), (Schroeder
et al., 2021) or (Jia et al., 2022), but most of them
fail to take into account an important issue for DTs:
queries.

One problem when querying DTs is the fact that
they often make use of a wide range of data formats
and sources to represent their physical counterparts.

a https://orcid.org/0000-0002-7026-0495
b https://orcid.org/0000-0002-4156-0675
c https://orcid.org/0000-0002-1320-8471

These sources include 3D models, building infor-
mation models (BIM), proprietary software systems,
physics engines and other domain-specific data for-
mats. This heterogeneity presents a major challenge
in querying and aggregating information in a unified
way. Without a standardised approach, extracting
meaningful information is problematic, as each data
source may require specialised management.

In addition, DTs are increasingly used in indus-
tries with stringent security requirements. One exam-
ple is the healthcare field where private personal data
must be protected. Ensuring secure access to this data
is key, as any unauthorised access could lead to pri-
vacy leaks.

Our approach addresses these challenges through
a model-based methodology. By abstracting and
structuring different types of data within a conceptual
modelling framework, we create a standardised query
interface that integrates these various data sources and
applies security constraints. This approach allows us
to address these challenges by defining robust and se-
cure queries in heterogeneous data environments.

In previous research (Carrión et al., 2025), we
have introduced The Entity-Relationship Digital Twin
(ERDT) model, an extension of the traditional entity-
relationship (ER) model. This is a modelling solution
that represents both physical entities and their digi-
tal counterparts. Although ERDT effectively captures

398
Carrión, E., Valderas, P. and Pastor, Ó.
Querying Digital Twin Models.
DOI: 10.5220/0013204200003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 398-405
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



the relationships and attributes of entities in a DT, it
faces challenges in handling system-level queries and
ensuring their access security, as existing ERDT mod-
els lack a flexible mechanism for defining and execut-
ing queries on multiple entities.

This paper addresses these limitations by intro-
ducing a key innovation in the ERDT model: query
views. These views provide a high-level abstraction
for querying multiple entities by combining and fil-
tering data in a secure and scalable way. These con-
tributions allow for greater flexibility in the way in-
formation is accessed and used.

To demonstrate the practical application of these
concepts, we also present a case study of a DT of
truck fleet management. This real industrial sce-
nario is located within the logistics operations of Mer-
cadona, one of Spain’s largest supermarket chains.
With more than 1,600 stores and a complex logis-
tics network, Mercadona serves millions of customers
daily by ensuring the correct flow of goods from dis-
tribution centres to retail locations. The complexity
of managing large-scale logistics operations, partic-
ularly in the area of truck fleet management, pro-
vides an ideal environment to apply and evaluate
the effectiveness of DT technologies. By compar-
ing our ERDT-based solution with an existing produc-
tion environment, we demonstrate its ability to handle
data heterogeneity and security constraints in a high-
impact, real-world use case.

In summary, this work contributes to improving
the state-of-the-art in DT development by:

• Proving a modelling solution based on ERDT
views to support flexible query mechanisms that
combine data from multiple entities while respect-
ing security constraints.

• Demonstrate the practical application of these in-
novations through a real industrial case study of a
truck fleet management system.

• By improving the query and security capabilities
of ERDT models, this work aims to provide a
more robust framework for managing the complex
data generated by DTs in various domains.

The paper is structured as follows. Section 2 in-
troduces the related work. Section 3 briefly sum-
marises the ERDT model and its limitations in terms
of querying and security and presents the real-world
case study of a truck fleet management system. Sec-
tion 4 introduces the core contributions of this work:
the use of views on the ERDT model to define queries
to DTs and data access policies. Section 5 applies the
contribution of this work to a real case study, demon-
strating the practical application of views within an
ERDT model. Section 6 discusses over the work con-

tributions. Finally, Section 7 provides conclusions
and discusses potential future research directions.

2 RELATED WORK

Querying complex models is a well-established con-
cern in the Model-Driven Engineering (MDE) com-
munity (Kolovos et al., 2013). Thus, over time, differ-
ent approaches to address this problem have emerged,
in particular in the context of UML and OCL (Object
Constraint Language).

Early work (Gogolla and Richters, 1998) used
OCL as a query language. These works highlighted
the similarity between OCL syntax and traditional
database query languages. They also compared OCL
and ER model query languages showing that OCL had
potential to be used as an expressive query mecha-
nism in object-oriented systems. However, they noted
several problems in the definition of OCL that need to
be addressed.

Building on this foundation, the work of (Ake-
hurst and Bordbar, 2001) showed that the combina-
tion of UML and OCL could achieve the expressive-
ness of relational algebra, making it ideal for complex
query tasks. However, they concluded that specific
extensions to OCL were needed for it to be used in
practice as a query language, especially when work-
ing with UML.

With the emergence of more advanced modelling
needs, further advances and improvements in query
models have been made. (Stein et al., 2004) proposed
a novel modelling notation to represent queries using
UML. His proposal introduced dedicated symbols for
common selection tasks with OCL semantics. He also
stressed the importance of making queries more ac-
cessible by visual modelling in a language-agnostic
manner.

More recently, models have grown in size and
complexity, shifting the focus to making persistence
and queries scalable. Morsa, a model repository that
uses No-SQL databases to efficiently store models
(Espinazo Pagán and García Molina, 2014), is an ex-
ample of this trend. It shows the need for new ap-
proaches to managing large-scale models.

If we talk about DTs, we find even more varied
problems. (Bordeleau et al., 2020) highlights that
DTs face three major challenges: managing hetero-
geneous models from different disciplines, maintain-
ing bidirectional synchronization between DTs and
physical systems, and supporting collaborative devel-
opment throughout the entire lifecycle. These chal-
lenges directly influence the approach to queries in
DT environments.

Querying Digital Twin Models

399



More recent advances in DT modelling, discussed
by (Tao et al., 2022), show the importance of data-
driven and model-driven approaches to enable impor-
tant DT functionalities such as monitoring, simula-
tion, and prediction. Their analysis of the state-of-the-
art in DT modelling demonstrates the need for com-
prehensive modelling solutions that can cover diverse
fields and functionalities.

Our work builds on these foundations, but ad-
dresses the main challenges posed by DTs. Previous
work focused on querying static data, however DTs
need real-time access to dynamic data from multi-
ple heterogeneous sources. Our view-based approach
extends traditional model query concepts to fit DT-
specific needs such as real-time synchronization.

Furthermore, unlike traditional OCL-based ap-
proaches that are primarily used as constraint lan-
guages, our query views are intended to handle the
complex nature of DT data while maintaining security
and performance, aligning with (Habela et al., 2008)
observations on the limitations of OCL in data pro-
cessing but providing a solution more tailored to the
domain of DTs.

3 ERDT MODEL OVERVIEW

The Entity-Relationship Digital Twin (ERDT) model
(Carrión et al., 2025) extends the well-known Entity-
Relationship (ER) model (Chen, 1976) to model DTs
of physical systems.

The main contributions of this model are the def-
inition of historical values (as DTs often rely on his-
torical data for operational functionalities) and the in-
troduction of interfaces and data flows, key elements
in the ERDT model that ensure real-time synchroni-
sation between the physical and virtual components
of the DT.

In order to exemplify the use of the ERDT model,
we are going to introduce a partial view of a model
presented as a case study in a previous work (Carrión
et al., 2025). This model represents the last-mile fleet
of delivery trucks that we have at Mercadona and its
logistics warehouse operations (called hives).

We will use this ERDT model through the work to
explain how the model and the proposed extensions
are defined and to showcase the relevance of the in-
troduced contributions.

Entity Sets and Relationships. Entities represent
the physical objects we are digitising in our DT (see
Truck and Driver in Figure 1). Relationships show
how entities are related between them.

Entities, as in the base ER model, have attributes.
However, our modelling approach introduces support
for features characteristic to DTs, such as attributes
that need to keep a historical record of their values.

Interfaces. Interfaces act as controlled access
points to entities and their attributes, hiding internal
complexity and facilitating interaction with the DT
(e.g. getLocationHistory() and getMaintenanceDe-
tails()). They are specially useful in systems that man-
age heterogeneous data sources, as they offer a single
access point for fetching or updating information re-
lated to an entity, abstracting away the complexity of
interacting with multiple systems.

Each entity is equipped with interfaces to handle
its queries and updates. This abstraction simplifies
interaction and shields users from the complexity of
the underlying systems, allowing seamless querying
and updates.

Value Sets. Value sets are used in ER models to de-
fine a set of values that can be assigned to the attribute
of one entity. We use them for the same purpose in the
context of ERDT.

Our model contains complex value types that rep-
resent information such as GPS coordinate readings
or maintenance records.

As we are going to use their definitions in the fol-
lowing sections, we will specify the next details:

• GPSReading[]: an historical value set of coordi-
nate readings. Has an unique() method that re-
turns a new collection with non-repeating coor-
dinate records. It also has a count() method that
returns the collection size.

• Polygon (seen in Section 5): a set of values
that represents coordinate polygons. Has a con-
tains(coordinate) method that checks if a given co-
ordinate is inside the polygon boundaries.

Data Flows. Data flows represent the bidirectional
communications between the DT and the physical
components (e.g. Truck GPS Coordinates and Driver
Assigned).

In our DT case study, the data flows keep updated
the virtual entities with real-time data. Additional in-
formation about this aspect can be found in our previ-
ous work (Carrión et al., 2025).

In short, interfaces and data flows enable secure
and structured information management in the ERDT
model. They facilitate bidirectional communication
between the DT and the physical components, en-
abling real-time synchronisation and the ability to

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

400



Figure 1: ERDT model of Mercadona’s logistics operations.

perform analysis and actions based on the collected
data.

3.1 Querying Limitations

Although interfaces in the ERDT model act as a con-
trolled access point to entity attributes and encapsu-
late internal complexity, they also have some limi-
tations. Mainly, these interfaces work at the entity
level, meaning that they are designed to ease inter-
actions with individual entities rather than enabling
more complex, system-wide operations that span mul-
tiple entities or relationships. This is not useful to de-
fine queries or operations that need to aggregate data
from different entities in the DT, limiting the flexibil-
ity of the model in more complex scenarios.

These limitations show the need for the develop-
ment of more flexible querying mechanisms, as well
as a more comprehensive security model that operates
beyond the scope of individual entities.

4 VIEWS AS QUERY
ABSTRACTIONS IN ERDT

In the context of DTs, querying data efficiently and
securely across multiple entities is essential for gain-
ing insights into complex systems. However, as DTs
grow in complexity, relying only on entity-level in-
terfaces can lead to simple, repetitive queries that re-

quire users to query each entity’s attributes and re-
lationships independently. To address this, we in-
troduce a domain-specific language (DSL) for defin-
ing views, which serves as a mechanism to simplify
querying and offer higher-level abstractions that en-
able the reuse of software artifacts (Mernik et al.,
2005) in the ERDT model.

Two of the key elements to define a DSL are
the abstract syntax and the concrete syntax (Kleppe,
2008). The abstract syntax defines the main concepts
of the DSL and their relationships including the rules
that define how models can be built. In MDD, this
abstract syntax is represented by a formal definition.
The concrete syntax provides a notation to represent
the abstract syntax.

4.1 Rationale

A view in an ERDT model can be thought of as a
pre-defined, system-wide query that aggregates, fil-
ters, and transforms data from multiple entities and
their relationships. Unlike traditional database views
that are static representations of data, ERDT views
interact dynamically with entity interfaces executing
specific operations across the relevant entities. These
views abstract the complexities of querying multiple
entities, presenting a coherent result to users without
requiring them to interact directly with each entity’s
interface.

Views are constructed by invoking the operations
provided by entity interfaces. Instead of accessing the

Querying Digital Twin Models

401



low-level data directly views make use of the query
operations defined in the interfaces, ensuring that any
encapsulation and security constraints present at the
entity level are being kept.

A key benefit of views is their ability to combine
data from heterogeneous sources and present them in
a unified format. This not only simplifies the query-
ing process but also facilitates more complex, system-
wide operations.

Views also inherit the security constraints defined
at the entity interface level. Because views operate
by invoking the operations defined by entity inter-
faces, they automatically enforce any role-based ac-
cess control or other security mechanisms that limit
which users can access specific data. This is key in
DTs where different users or systems may have vary-
ing levels of access to sensitive data.

4.1.1 Security Roles in ERDT Models

To improve the management of security constraints,
we propose the implementation of security roles to
enhance and simplify access control to the system. In-
stead of defining security constraints directly on each
individual interface, security roles can be specified
and used in the views. This approach provides a cen-
tralised mechanism for managing access rights and
allows roles to be applied uniformly across different
entities and views, smoothing the access control pro-
cess. Roles can cover permissions to access specific
entity operations and can be associated with multiple
views.

Role-based security in ERDT models improves
both security and maintainability, allowing access
rights to be managed uniformly and efficiently across
entities and views. This improvement makes ERDT
especially applicable to dynamic environments where
different user groups may need different levels of ac-
cess to real-time data and operations.

4.2 Abstract Syntax

A view in an ERDT model is defined as a high-level
query abstraction that interacts with multiple entities
and their relationships by invoking operations from
their respective entity interfaces. The view is a func-
tion that aggregates, filters, or transforms the data
fetched from these entities, while applying the secu-
rity constraints defined by the entity interfaces.

Let:

• E = {e1,e2, ...,en} be the set of all entities in the
ERDT model.

• I(e) = {o1,o2, ...,om} be the set of interface op-
erations defined for entity e ∈ E, where each op-

eration oi is a function o : P → A, where P is the
set of parameters, and A is the set of attributes or
results for the operation.

• S(o) is the set of security constraints for operation
oi, restricting which users u ∈U can invoke oi.

A view v ∈ V in the ERDT model is then a func-
tion that performs system-wide queries by linking the
results of multiple entity operations while applying
security and filtering conditions.

The formal definition of a view v is as follows:

v = f ({ek|ek ∈ E,oi ∈ I(ek),C(oi(p j)),u ∈ S(oi)})
(1)

where:

• ek ∈ E represents an entity involved in the view.

• oi ∈ I(ek) is an interface operation of the entity
ek, and p j ∈ P are the parameters passed to that
operation.

• C(oi(p j)) represents filtering conditions applied
to the result of the operation oi(p j), such as spe-
cific status or thresholds.

• S(oi) is the set of security restrictions and u ∈
S(oi) ensures that the user u has permission to ac-
cess the operation oi.

• f is an aggregation or transformation function that
operates on the results.

4.3 Concrete Syntax

To facilitate the creation and management of views in
the ERDT model, we propose a DSL that allows re-
searchers and practitioners to define views in a clear
and intuitive manner. This language provides a struc-
tured format, making it accessible for users to spec-
ify permissions, parameters, and query logic without
needing in-depth knowledge of the underlying entity
interfaces.

The definition language follows a straightforward
format that emphasises clarity. The general structure
can be described as shown in Listing 1.

view ViewName on EntitySet:
permissions: <permission conditions >
parameters: <parameter list >
query: <filtering conditions >

Listing 1: View Definition.

This DSL is defined by a main view component
that starts with the name given to the view. Then, it
specifies with a on keyword which Entity Set the view
acts on.

Following this definition, we find several at-
tributes:

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

402



• Permissions: Declares the conditions that must be
evaluated as true for the view to return results.
We can use the method canAccess with an spe-
cific Entity Set interface to check if the current
user has permissions to invoke it. In addition, the
method hasRole can be called with a specific role
to check if the current user belongs to it. These
methods can be invoked and combined using a
Boolean condition and operators like and/or.

• Parameters: Specifies the entry-point parameters
that the user can pass to the view to dynami-
cally limit the results through the following de-
fined query. These parameters must be typed with
the Value Set to which they belong and must be
separated by a comma.

• Query: Specifies the query that will be applied
over the Entity Set instances. An entity will be
returned if this query is evaluated as true for that
instance. Interfaces can be used to access entity
attributes; only interfaces existing in the Entity
Set definition specified in the view can be used.
Value Sets instances and parameters specified in
the view can also be used to be compared with
the entity attributes through comparison opera-
tors. Normal operations include equality compar-
ison and greater/lower than comparisons when the
data types allow it. Custom comparison operators
can be defined as custom methods that receive val-
ues and return a Boolean value at a higher level,
and later can be implemented in the model trans-
formation phase.

An example of a view that filters trucks by status
can be seen in Listing 2

view TruckByStatus on Truck:
permissions:

canAccess(Truck::getStatus)
parameters: Status status
query:

getStatus() = status

Listing 2: View Example.

This approach allows users to create views that
encapsulate complex querying logic while ensuring
the security policies established in the ERDT model.
This abstraction improves usability and encourages
the reuse of views in various contexts contributing to
the overall efficiency and maintainability of the DT
system. We can see more examples of view defini-
tions in section 5.

5 PROOF OF CONCEPT
VALIDATION

In this case study, previously commented in section 3,
we show part of the logistics operations of Mercadona
where a production-ready fleet management system
controls a large fleet of delivery trucks. This system
is built on a combination of data sources including
a traditional relational database management system
(RDBMS) and different proprietary third-party soft-
ware solutions. These heterogeneous data sources
make the architecture complex and depends on inter-
connected tables representing logistics entities such
as trucks, drivers, routes, and sensor data from deliv-
eries.

Mercadona’s logistics team accesses operational
data by executing SQL queries on the RDBMS, of-
ten through UI applications like Metabase (Metabase,
2024). However, they also interact with other sys-
tems that manage real-time data feeds, such as GPS
tracking and maintenance logs. This multi-source en-
vironment increases the complexity of queries since
a mix of database schemas and third-party data struc-
tures need to be integrated. Also, the user experience
is affected since operational staff at Mercadona are
not always SQL experts, creating a barrier to utiliz-
ing the system effectively. Thus, a more advanced
approach to data querying and aggregation is needed.

Mercadona’s fleet management system presents a
significant opportunity for improvement. By transi-
tioning to an ERDT-based model with query views,
the system can offer more intuitive data access, better
real-time insights, and greater alignment with oper-
ational requirements. Query views will enable non-
technical users to easily access relevant, high-level
information without the need to understand the low-
level data structure or perform complex SQL queries.

This transition will not only simplify operations
but also improve the logistics team’s ability to mon-
itor and manage the fleet efficiently ensuring faster
decision-making and improved overall performance
for Mercadona’s delivery operations.

We define the following roles for accessing the DT
entity views.

• Fleet Manager Role: A role with permissions to
access views that provide detailed truck location
and status information such as getLocation(), get-
Status(), or getLocationHistory().

• Maintenance Staff Role: A role with permissions
to access only vehicle health and diagnostic data,
assuring that sensitive location data remains re-
stricted.

To efficiently manage the truck fleet, we define

Querying Digital Twin Models

403



several views that aggregate data from multiple en-
tities and apply security constraints. These views are
aligned with the common queries currenlty done by
fleet managers. We show 2 examples below.

TrucksInPolygon View. This view identifies
trucks that are currently located within a specified
polygonal geographic area by querying the ‘Truck‘
entity’s ‘getLocation()‘ operation and filtering based
on whether each truck’s coordinates fall within the de-
fined polygon.

view TrucksInPolygon on Truck:
permissions:

canAccess(Truck::getLocation)
parameters: Polygon polygon
query:

polygon.contains(
getLocation()

)

where:

• The query filters trucks based on whether their lo-
cation is within the specified polygon.

• The permissions ensure that the user has access
rights to view each truck’s location data.

This view allows users with appropriate permis-
sions to monitor trucks within specific geographic ar-
eas, such as delivery zones or restricted regions.

TrucksIdleMoreThan15Min View. This view
identifies trucks that have been idle (i.e., stationary
at the same location) for more than 15 minutes by
using the ‘Truck‘ entity’s ‘getLocationHistory(from,
to)‘ operation, which returns location and timestamp
pairs over a specified time range. The view analyzes
this history to detect if the truck has remained idle
throughout the period.

view TrucksIdleMoreThan15Min on Truck:
permissions:

hasRole(fleetManagerRole)
parameters: TimeStamp currentTime
query:

getLocationHistory(
currentTime - 15m,
currentTime

).unique().count() = 1

where:

• The query checks whether the truck has been in
the same location throughout the specified time
range, indicating idleness for over 15 minutes.

• The permissions ensure that only users with the
‘fleetManagerRole‘ can access this view.

This view allows fleet managers to detect trucks
that have been idle for extended periods, enabling in-
tervention to optimize fleet operations.

6 DISCUSSION

As we have shown, the ERDT model provides a solid
framework for modelling DTs, with improvements in
development and operations.

• Greater abstraction and modularity: ERDT mod-
els encapsulate complex interactions and data
through entities and interfaces. They allow de-
velopers to work with high-level concepts without
the need to manage complex details, simplifying
development and maintenance and offering a dis-
tinct advantage in environments involving com-
plex data interactions.

• Simplified query creation: Queries in ERDT are
modelled as views that represent real-world op-
erations like tracking truck locations or detect-
ing idle vehicles. These views are designed to be
reusable and to facilitate data access.

• Enhanced security and access control: ERDT
views allow for more granular control of data ac-
cess, ensuring that security policies are enforced
more effectively. This ensures a high level of
security throughout the system even in environ-
ments with sensitive data sources.

• Ease of use and operational efficiency: Pre-
defined ERDT views allow operational staff to
easily access information without the need for
technical expertise as they abstract away the tech-
nical complexities.

As an example, in our case study, current SQL-
based solutions presented challenges in managing
third-party data sources and applying security with
the necessary granularity. With ERDT, these prob-
lems were solved through views, which showed a sig-
nificant improvement in operational efficiency.

In summary, ERDT models offer a robust and se-
cure solution suitable for dynamic and complex envi-
ronments such as fleet management.

7 CONCLUSION AND FUTURE
WORK

In this article we have presented an extension of the
ERDT model by introducing views as a modelling
tool for querying DTs. We have also shown how this
solution addresses the challenges of complex DT im-
plementations by showing a real case study at Mer-
cadona. Contributions include a flexible and secure
query mechanism and a DSL that simplifies the con-
nection between complex data structures and opera-
tional needs.

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

404



Our ongoing work focuses on the development of
a model transformation framework to automate the
generation of code from ERDT models and views.
In addition, a reference architecture will be proposed
covering all layers from physical sensors to user inter-
faces with special attention to aspects such as security
and scalability.

The ERDT model represents an important step
forward in the development of DT. It provides a solid
basis for building complex and secure systems. As
DTs continue to evolve and become more widespread
in different sectors, the need for efficient query mech-
anisms will grow. This work contributes to meeting
that need and opens up new opportunities for research
and practical application.

ACKNOWLEDGEMENTS

Author Pedro Valderas was financed by Project
PID2023-146224OB-I00 founded by MICIU/AEI/
10.13039/501100011033, FEDER, and the UE.

REFERENCES

Akehurst, D. H. and Bordbar, B. (2001). On querying
uml data models with ocl. In Gogolla, M. and Ko-
bryn, C., editors, «UML» 2001 - The - The Unified
Modeling Language. Modeling Languages, Concepts,
and Tools, page 91–103, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bordeleau, F., Combemale, B., Eramo, R., van den Brand,
M., and Wimmer, M. (2020). Towards model-driven
digital twin engineering: 1st international conference
on systems modelling and management, icsmm 2020.
Systems Modelling and Management - 1st Interna-
tional Conference, ICSMM 2020, Proceedings, page
43–54.

Carrión, E., Pastor, Ó., and Valderas, P. (2025). Concep-
tual modelling method for digital twins. In Maass, W.,
Han, H., Yasar, H., and Multari, N., editors, Concep-
tual Modeling, page 417–435, Cham. Springer Nature
Switzerland.

Chen, P. P.-S. (1976). The entity-relationship model—
toward a unified view of data. ACM Transactions on
Database Systems, 1(1):9–36.

Digital Twin Consortium (2024). Digital twin definition.
Espinazo Pagán, J. and García Molina, J. (2014). Query-

ing large models efficiently. Information and Software
Technology, 56(6):586–622.

Gogolla, M. and Richters, M. (1998). On constraints and
queries in uml. In Schader, M. and Korthaus, A., edi-
tors, The Unified Modeling Language, page 109–121,
Heidelberg. Physica-Verlag HD.

Habela, P., Kaczmarski, K., Stencel, K., and Subieta, K.
(2008). Ocl as the query language for uml model ex-

ecution. In Bubak, M., van Albada, G. D., Dongarra,
J., and Sloot, P. M. A., editors, Computational Sci-
ence – ICCS 2008, page 311–320, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Jia, W., Wang, W., and Zhang, Z. (2022). From simple digi-
tal twin to complex digital twin part i: A novel model-
ing method for multi-scale and multi-scenario digital
twin. Advanced Engineering Informatics, 53:101706.

Jones, D., Snider, C., Nassehi, A., Yon, J., and Hicks, B.
(2020). Characterising the digital twin: A systematic
literature review. CIRP journal of manufacturing sci-
ence and technology, 29:36–52.

Kirchhof, J. C., Michael, J., Rumpe, B., Varga, S., and
Wortmann, A. (2020). Model-driven digital twin
construction: synthesizing the integration of cyber-
physical systems with their information systems. In
Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems, MODELS ’20, page 90–101, New York,
NY, USA. Association for Computing Machinery.

Kleppe, A. (2008). Software Language Engineering: Cre-
ating Domain-Specific Languages Using Metamodels.
Pearson Education.

Kolovos, D. S., Rose, L. M., Matragkas, N., Paige, R. F.,
Guerra, E., Cuadrado, J. S., De Lara, J., Ráth,
I., Varró, D., Tisi, M., and Cabot, J. (2013). A
research roadmap towards achieving scalability in
model driven engineering. In Proceedings of the
Workshop on Scalability in Model Driven Engineer-
ing, BigMDE ’13, page 1–10, New York, NY, USA.
Association for Computing Machinery.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Metabase (2024). Metabase: The easy way for everyone in
your company to ask questions and learn from data.

Schroeder, G. N., Steinmetz, C., Rodrigues, R. N., Hen-
riques, R. V. B., Rettberg, A., and Pereira, C. E.
(2021). A methodology for digital twin modeling and
deployment for industry 4.0. Proceedings of the IEEE,
109(4):556–567.

Stein, D., Hanenberg, S., and Unland, R. (2004). Query
models. In Baar, T., Strohmeier, A., Moreira, A., and
Mellor, S. J., editors, «UML» 2004 — The Unified
Modeling Language. Modeling Languages and Appli-
cations, page 98–112, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Tao, F., Xiao, B., Qi, Q., Cheng, J., and Ji, P. (2022). Digital
twin modeling. Journal of Manufacturing Systems,
64:372–389.

Tao, F., Zhang, H., Liu, A., and Nee, A. Y. C. (2019). Dig-
ital twin in industry: State-of-the-art. IEEE Transac-
tions on Industrial Informatics, 15(4):2405–2415.

Querying Digital Twin Models

405


