
Mutation Operators for Mutation Testing of Angular Web Applications

Sarah Augustin, Hendrik Winkelmann a and Herbert Kuchen b

Department of Information Systems, University of Münster, Leonardo-Campus 3, Münster, Germany

Keywords: Mutation Testing, Mutation Operators, Angular, Web Applications.

Abstract: Mutation testing is an approach for assessing the quality of a test suite by using mutation operators to insert
changes into the code and then checking whether the test suite can detect the inserted changes. Due to the
growing prevalence and complexity of web applications, the importance of web testing has increased, making
mutation testing a potentially beneficial approach for web applications. Since in web applications, mostly
web-specific mistakes and not generic mistakes occur, the question arises, to whether new mutation operators
simulating such realistic, web-specific mistakes perform better than the traditional, generic mutation operators.
The work at hand addresses this question by developing new mutation operators specific to the client-side
TypeScript code of Angular web applications and evaluating how they perform in comparison to the traditional
mutation operators. The findings indicate that the new web-specific mutation operators introduce fewer, more
realistic, and harder-to-kill mutants than the traditional mutation operators, thus being a promising approach
for assessing the test suite quality of web applications.

1 INTRODUCTION

Since the 1970s, mutation testing has gained increas-
ing attention from both academia and industry, lead-
ing to, e.g., its integration into Google’s mandatory
code review process (Petrović and Ivanković, 2018;
Jia and Harman, 2011). Mutation testing can be ap-
plied to a variety of different types of applications in-
cluding web applications. Applying mutation testing
to web applications can contribute to ensuring a high
quality of web tests. Since, according to Marchetto
et al., almost three-quarters of the bugs in web appli-
cations are web-specific, the question arises whether
mutation testing can be applied to web applications
with its traditional mutation operators or whether new
mutation operators specifically targeting such web-
specific faults would perform better (Marchetto et al.,
2009).

The work at hand addresses this question by devel-
oping new mutation operators inserting web-specific
faults into the application code during mutation test-
ing. More specifically, eight new mutation opera-
tors for mutating code related to comparisons, error
handling, input default values, input validation, input
names, subscribe calls, unsubscribe calls, and RxJS
operators were introduced. Those new mutation op-
erators are compared to the traditional mutation op-
erators in order to assess whether inserting realistic,

a https://orcid.org/0000-0002-7208-7411
b https://orcid.org/0000-0002-6057-3551

web-specific faults provides benefits compared to in-
serting the traditional, generic faults. Since it can be
argued that faults depend on the web framework used,
this work specifically considers web applications built
with the Angular framework. Angular was chosen
because it is one of the most popular web frame-
works (Malcher et al., 2023). Following the finding
of Ocariza et al. that the majority of faults arise nei-
ther in the server-side code nor in the HTML code, but
instead in the client-side code, this work specifically
focuses on the client-side TypeScript code of Angular
web applications (Ocariza et al., 2013, p. 56).

This work contributes to theory by providing
proof by construction that creating mutation operators
simulating realistic mistakes is a promising approach
worthy of being researched in depth. The contribu-
tion towards practice corresponds to providing soft-
ware developers with new mutation operators for mu-
tation testing of Angular web applications. If used
instead of the traditional mutation operators, the new
mutation operators contribute to speeding up the pro-
cess of mutation testing and reducing the human effort
needed to check the output of mutation testing.

This work is organized as follows. While Section
2 describes the research method, an overview of the
theoretical background is provided in Section 3. In
turn, Section 4 the design of the new mutation opera-
tors is illustrated. The implementation and evaluation
are presented in Section 5 and Section 6. The work
finishes with a conclusion in Section 7.

390
Augustin, S., Winkelmann, H. and Kuchen, H.
Mutation Operators for Mutation Testing of Angular Web Applications.
DOI: 10.5220/0013203900003928
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2025), pages 390-397
ISBN: 978-989-758-742-9; ISSN: 2184-4895
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



2 RESEARCH METHOD

For the design of new mutation operators simulating
realistic programming mistakes within the TypeScript
files of Angular web applications, first, those realistic
mistakes need to be identified. To identify the mis-
takes, two research methods were chosen: a system-
atic literature review and semi-structured expert inter-
views.

The systematic literature review was conducted
according to the work of vom Brocke et al. and in-
cluded searching the database Scopus with a search
string and extending the results with a forward and
backward search (vom Brocke et al., 2009). To
enrich the results of the literature review, addition-
ally, four semi-structured expert interviews were con-
ducted. All four interviewees are software developers
working full-time in the IT industry and have devel-
oped Angular web applications professionally. One
of the interviewees also gives professional training
courses on the topic of Angular web applications. The
programming mistakes identified through the system-
atic literature review and the interviews were grouped
into categories.

To narrow down the scope, some categories were
selected to be focused upon for the design of the
new mutation operators. The categories were chosen
based on the criteria that they should be applicable to
all Angular web applications, that they should have
been included in at least two sources, and that at least
one of the two sources had to be an interview. These
criteria aim at selecting categories of high relevance
by ensuring that they have occurred in several sources.
The decision to require that the category must have at
least come up in one interview was made because the
interviews, in contrast to the papers, were specific to
Angular rather than general for all web applications.
For each of the mistakes in the remaining categories,
a new mutation operator was designed that simulates
it.

3 THEORETICAL BACKGROUND
AND RELATED WORK

First, we explain mutation testing in detail in Subsec-
tion 3.1. Afterward, in Subsection 3.2, more details
about advances and research in the field of mutation
testing are presented.

3.1 Traditional Mutation Testing

Mutation testing is an approach used to assess the
quality of a test suite. When applying mutation test-

ing to a program, mutants are automatically created
for that program (Offutt and Untch, 2001). A mutant
is a version of the original program in which a small
change was made (Offutt and Untch, 2001). Those
small changes are inserted by applying transforma-
tion rules called mutation operators (Mike Papadakis
et al., 2019; Jia and Harman, 2011). The test suite can
be run on each mutant to check whether at least one
test fails. If so, the mutant is called dead or killed, oth-
erwise, it is called alive or a surviving mutant (Offutt
and Untch, 2001). Equivalent mutants which corre-
spond to functionally equivalent versions of the orig-
inal program are removed from the group of the sur-
viving mutants (Mike Papadakis et al., 2019). The
remaining surviving mutants point out inadequacies
of the test suite insofar as the inserted defect was not
detected (Offutt and Untch, 2001). The test suite can
be improved by adding new test cases killing these
mutants (Offutt and Untch, 2001).

3.2 Advances and Research in Mutation
Testing

Research in the field of mutation testing has cov-
ered various aspects. One research approach aim-
ing at inserting more realistic and complex faults is
the “higher order mutation testing” in which muta-
tion operators are applied several times to create a
mutant (Harman et al., 2010). The disadvantage of
higher-order mutation testing is the immense num-
ber of possible fault combinations, which can make
it too computationally expensive and impractical (Jia
and Harman, 2009; Harman et al., 2010). The ap-
proach of higher-order mutation testing is similar to
the approach of this work insofar as both aim at in-
serting more realistic faults. This work circumvents
the disadvantage of the search space explosion by us-
ing domain knowledge. Instead of all combinations of
first-order faults, only realistic faults are considered.

Another research field is the reduction of the com-
putational cost of mutation testing as this is one of its
main problems (Jia and Harman, 2011). According
to Offutt and Untch, research on reducing those com-
putational expenses can typically be categorized into
one of the three strategies of “do fewer, do smarter,
or do faster” (Offutt and Untch, 2001, p. 37). The
idea of the “do fewer” approach is to reduce the num-
ber of mutants without an intolerable information loss
(Offutt and Untch, 2001). One approach in literature
for reducing the number of mutants is, for example,
selective mutation, with which some mutation opera-
tors are selected according to a certain criterion and
only those mutation operators are used to generate
mutants (Mike Papadakis et al., 2019; Jia and Har-

Mutation Operators for Mutation Testing of Angular Web Applications

391



man, 2011). The category of “do fewer” strategies
can also contribute to mitigating human oracle prob-
lem which corresponds to the high amount of human
effort needed to check the output of the mutation test-
ing (Jia and Harman, 2011). If, with the “do fewer”
approach, fewer mutants are generated, it can be ar-
gued that checking the output of the mutation testing
takes less effort. This work could be classified as a
“do fewer” approach if the new mutation operators
are used instead of the existing mutation operators, as
they generate fewer mutants.

Research has also addressed the development of
new mutation operators for various scenarios. Some
researchers have introduced mutation operators for in-
serting a specific type of fault into the code (Mike
Papadakis et al., 2019). To the best of the authors’
knowledge, however, no research has yet focused on
developing a set of web-specific mutation operators
for client-side TypeScript code.

4 DESIGN OF THE MUTATION
OPERATORS

Following the research method described in Sec-
tion 2, a systematic literature review and four semi-
structured expert interviews were conducted. The lit-
erature review identified 39 different programming
mistakes grouped into 15 categories, while the expert
interviews identified 20 different programming mis-
takes grouped into 11 categories. When combining
those mistakes, a total of 55 mistakes in 23 categories
was identified. The number does not correspond to
the sum since some mistakes were identified in both
the literature review and the interviews. Applying the
criteria described in Section 2, four categories were
selected to focus upon: comparisons, error handling,
forms, and RxJS. RxJS is a library for reactive pro-
gramming commonly used in Angular (Malcher et al.,
2023). Those four categories include a total of eight
mistakes. For each mistake, a new mutation opera-
tor was designed that simulates it. To the best of the
authors’ knowledge, the new mutation operators are
all novel, as no web-specific mutation operators for
client-side TypeScript code operators have been intro-
duced in literature yet. In the following subsections,
the new mutation operators are described in detail.

4.1 Comparison Mutation Operator

The first new mutation operator called “comparison
mutation operator” simulates the programming mis-
take of using a loose comparison operator instead
of a strict one or vice versa. The loose operators

“==” and “!=” perform first an automatic type con-
version if the left- and right-hand sides are of a differ-
ent data type and then compare the values for equal-
ity (Mozilla, 2023). The strict operators “===” and
“!==” in contrast do not perform a type conversion
(Mozilla, 2023). The new comparison mutation op-
erator simulates the mistake of confusing them by
switching “==” to “===”, “!=” to “!==”, “===” to
“==”, and “!==” to “!=” in the TypeScript code. Test
cases which depend on the comparisons always re-
sulting in the expected boolean values can, for exam-
ple, be used to kill such mutants.

4.2 Error Handling Mutation Operator

The second new mutation operator is called “error
handling mutation operator”. It simulates the mis-
take of not catching and handling an exception. In the
TypeScript files of Angular web applications, errors
can occur both synchronously and asynchronously.
Asynchrony in Angular is typically handled by either
the datatype Observable or the datatype Promise.
Depending on where the error occurs, error handling
can take place in four different ways:

1. catching synchronous errors in a try-catch block

2. catching asynchronous errors in a Promise

3. catching asynchronous errors in the pipe method
of an Observable

4. catching asynchronous errors in the subscribe
block of an Observable

The new error handling mutation operator deletes
the code responsible for catching and handling such
errors. The mutants generated by this mutation oper-
ator can, for example, be killed by test cases which
purposefully trigger those errors and test whether the
application handles those errors properly.

4.3 Input Default Value Mutation
Operator

The third new mutation operator is called “input de-
fault value mutation operator”. It simulates the mis-
take of setting an incorrect default value for a form
field. This is done by mutating the default values of
form fields. If the default value is an empty string, it
is replaced by ’mutated string’. If it is a non-empty
string it is replaced by an empty string. If the default
value is a numeric literal, its value is increased by one,
and if it is a boolean literal, it is inverted. In Angular,
the most common type of form is the “reactive form”
(Malcher et al., 2023). A reactive form, including its

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

392



default values, can be defined in various ways. The in-
put default value mutation operator supports all those
various ways. The mutants generated by this muta-
tion operator can, for example, be killed by test cases
using the default value of a form field instead of an
individually entered value.

4.4 Input Validation Mutation Operator

The fourth new mutation operator is called “input val-
idation mutation operator”. It simulates the mistake
of forgetting to set up input validation for a form field
or an entire form. The mutation operator thus deletes
the client-side input validation which ensures that the
user has entered valid data into the form before sub-
mitting it. In general, several ways of defining input
validation for reactive forms exist in Angular. Inde-
pendent of which way is used, the new input vali-
dation mutation operator deletes the input validation.
The mutants generated by this mutation operator can,
for example, be killed by test cases purposefully in-
serting invalid data into a form and checking whether
this case is handled properly. It thus encourages writ-
ing test cases representing unexpected user behavior.

4.5 Input Name Mutation Operator

The fifth new mutation operator is called “input name
mutation operator”. It simulates the mistake of as-
signing an incorrect name to a form field. The in-
put name mutation operator thus changes the name of
a form field by appending the postfix “ mutated” to
it. As explained in further detail in Section 5, due
to technical reasons, it was not possible to mutate
names that were defined as class properties. All other
ways of how names can be set are supported by the
new mutation operator. This mutation operator en-
courages writing test cases checking whether all in-
put fields work as expected and process their values
correctly, which would not be possible if an incorrect
name would be assigned.

4.6 Subscribe Call Mutation Operator

The sixth new mutation operator, which is called
“subscribe call mutation operator”, simulates the mis-
take of forgetting to subscribe to an Observable.
Since an Observable is lazy and is only invoked if
it is being subscribed to, forgetting the subscription
has the effect that the Observable is never executed
(Lesh et al., 2022). In Angular, an Observable is
subscribed by calling the subscribe method on it.
The new mutation operator deletes the subscribe call
including everything that is passed to the method.

Mutants generated by this mutation operator can be
killed by adding test cases which depend on the
Observable to actually be invoked.

4.7 Unsubscribe Call Mutation
Operator

The seventh new mutation operator is called “un-
subscribe call mutation operator”. It simulates the
mistake of forgetting to unsubscribe an Observable.
Unsubscribing is necessary if the Observable never
completes on its own and if its execution is thus infi-
nite (Lesh et al., 2022). Without unsubscribing, com-
putation power and memory resources are wasted, po-
tentially causing memory leaks (Lesh et al., 2022).

Two ways of unsubscribing from an Observable
exist. First, the unsubscribe() method can be called
on an existing subscription (Malcher et al., 2023).
Second, when creating an Observable, the pipe()
method can be called on it. To the pipe method, sev-
eral RxJS operators can be passed which manipulate
the emitted stream of values. The five RxJS opera-
tors first(), take(), takeUntil(), takeWhile(),
and takeUntilDestroyed() can be used to automat-
ically unsubscribe from the Observable, e.g., based
on a certain condition passed to the operator (Malcher
et al., 2023). The new mutation operator deletes both
the unsubscribe calls and the five listed RxJS opera-
tors from the TypeScript files of the Angular web ap-
plication. This mutator encourages writing test cases
which depend on the Observable to be finished as
required.

4.8 RxJS Mutation Operator

The eighth and last new mutation operator is the
“RxJS mutation operator”. It simulates the mistake of
using the wrong RxJS operator. According to the of-
ficial RxJS website, over one hundred operators such
as map(), reduce(), and switchMap() exist, each
of which can be applied to the values emitted by an
Observable (Lesh et al., 2023). The new RxJS mu-
tation operator switches the RxJS operators within the
TypeScript code to another one. As explained in fur-
ther detail in Section 5, due to technical reasons, it is
not possible to switch an RxJS operator to an arbitrary
other RxJS operator, but only to another RxJS opera-
tor which has already been imported into the file. The
RxJS operators are thus switched with the first im-
ported operator that has a different name than itself.
The mutants generated by this mutation operator can
be killed by test cases which depend on the values of
the Observable to be changed as required by the con-
text.

Mutation Operators for Mutation Testing of Angular Web Applications

393



5 IMPLEMENTATION OF THE
MUTATION OPERATORS

For the implementation of the new mutation opera-
tors, the existing mutation testing tool StrykerJS was
taken as a starting point and was extended by the
new mutation operators.1 StrykerJS was selected be-
cause it is the most common mutation testing tool for
JavaScript, because it is an open-source project, and
because it already offers sixteen built-in mutation op-
erators to which the new mutation operators can be
compared (Sánchez et al., 2022; Info Support, 2023).

StrykerJS performs the mutations not in the Type-
Script code directly but in the abstract syntax tree
(AST) of the TypeScript code. When making a muta-
tion, StrykerJS replaces one node in the AST by an-
other node. This new node can, e.g., be created com-
pletely new or can be created as a copy of the existing
node and then be modified. The new AST node is then
transformed back into TypeScript code by StrykerJS.

Due to performance reasons, StrykerJS uses an ap-
proach called mutation switching for conducting mu-
tation testing (Jansen, 2020). With mutation switch-
ing, all mutants are inserted into the same file (Jansen,
2020). By using, e.g., if-else-constructs, the mutants
can be activated and deactivated in that file, so that
for each run of the test suite only one mutant is ac-
tive (Jansen, 2020). This has a performance advan-
tage since only this one file needs to be transpiled and
compiled (Jansen, 2020). One disadvantage, however,
is that it allows only mutations of AST nodes, which
are located at places where if-else-constructs are al-
lowed. Due to this reason, the RxJS mutation operator
cannot switch an RxJS operator to an non-imported
other RxJS operator, since the import statement can-
not be changed. Similarly, this is also the reason for
why the input name mutation operator cannot mutate
names that are defined as class properties.

6 EVALUATION OF THE
MUTATION OPERATORS

For the evaluation, the new mutation operators were
applied to an existing Angular web application. This
web application is a desk sharing tool developed com-
mercially. For unit testing of the web application,
the testing framework Jest is used. Currently, 24 test
suites with a total of 138 tests exist.

Mutation testing was applied with three different
sets of mutation operators to this web application:
with only the eight new mutation operators, with only

1https://stryker-mutator.io/docs/stryker-js/introduction/

the 16 mutation operators which were already pre-
implemented in StrykerJS, and with all 24 mutation
operators in combination. In the following subsec-
tions, first, the result of the mutation testing is pre-
sented. Then the execution time, the realism of the
mistakes, and expert feedback are discussed in fur-
ther detail. Afterward, the findings are combined for
a final discussion.

6.1 Mutation Testing Results

For all three versions – for applying only the new,
only the traditional, or all mutation operators – the
distribution of the mutants on the four different sta-
tuses killed, survived, no coverage, and timeout was
determined. No coverage means that the mutant sur-
vived because it was not even covered by any test.
Timeout means that StrykerJS has stopped the exe-
cution due to it taking unexpectedly long. This can,
for example, happen if accidentally an infinite loop
is created by the change made by the mutation oper-
ator. The two further statuses of compile errors and
runtime errors are not considered, since they did not
occur. The distribution in percent can be seen in Table
1. In absolute numbers, the eight new mutation oper-
ators generated a total number of 192 mutants, while
the 16 existing, traditional mutation operators gener-
ated a total 1114 mutants.

The mutation testing result of the eight new muta-
tion operators can be beneficial in several ways. First
of all, the results can be used to improve the quality
of the test suites. For example, for the 58,85% of mu-
tants that survived, it could be checked which tests
have covered them and why they did not detect the
inserted mistake. Those tests can then be improved
so that they afterwards catch the inserted mistakes,
thus ensuring that if such mistakes are accidentally in-
serted in the future, they will be caught. Similarly, the
21,35% of mutants that were not covered can be used
to get insights into which parts of the code are not
covered by tests yet. This information can motivate
the developer to write additional tests covering that
part of the code. The mutation testing result might
additionally contribute to finding mistakes by direct-
ing the programmer’s attention to the critical parts of

Table 1: Status distribution of the mutants per mutation op-
erator type in percent.

Mutation
operators

Killed Sur-
vived

No
cover-
age

Time-
out

New 19,79% 58,85% 21,35% 0,00%
Traditional 29,17% 33,30% 37,16% 0,36%
All 27,79% 37,06% 34,84% 0,31%

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

394



the code in which common mistakes occur.
Comparing the mutation testing results of the new

mutation operators to the existing, traditional muta-
tion operators, one can see that 19.79% of the mu-
tants generated by the new mutation operators were
killed, while in contrast 29.17% of the mutants gener-
ated by the traditional mutation operators were killed.
That indicates that the new mutation operators gener-
ate harder-to-kill mutants, which therefore potentially
provide more value and insights to the programmer.

Looking at the column entitled “survived”, one
can see that 58.85% of the mutants generated by
new mutation operators survived, while only 33.30%
of the traditional mutation operators survived. This
shows that the new mutation operators generate a
higher percentage of mutants that are covered by a
test but that are still not killed. This might indicate
that the new mutation operators have a higher poten-
tial for improving the existing test cases that cover
those survived mutants. The programmer can check
which test case covered the mutant and can improve
it to catch the mistake inserted by the mutation oper-
ator.

In the next column, one can see that 21.35% of
the mutants generated by the new mutation operators
were not covered while 37.16% of the mutants gen-
erated by the traditional mutation operators were not
covered. This might indicate two things. First, the
new mutation operators seem to generate more mu-
tants in areas of code already covered by tests than
the traditional mutation operators, confirming that the
tests address relevant code areas which often include
mistakes. Second, the traditional mutation opera-
tors seem to perform better at highlighting uncovered
parts of the code than the new mutation operators. To-
wards that goal, however, other metrics such as code
coverage can be used instead of mutation testing.

All in all, it becomes clear that the traditional mu-
tation operators highlight more areas of the code that
are not covered yet, thus motivating the programmer
to write more tests for the uncovered parts of the
code. At the same time, the new mutation opera-
tors insert more changes at locations already covered
by test cases than the traditional mutation operators
but still achieve a lower percentage of killed mutants.
This shows that they insert hard-to-kill changes that
require the existing test cases to be improved.

6.2 Execution Time

Mutation testing was executed on the web application
in three versions: with only the eight new mutation
operators, with only the 16 traditional mutation oper-
ators, and with all 24 mutation operators. As was al-

Table 2: The execution time of mutation testing.

Mutation operators Average execution time
New 21min
Traditional 92min
All 112min

ready mentioned in the previous subsection, the new
mutation operators inserted 192 mutants. This makes
an average of 24 mutants per new mutation opera-
tor. The traditional mutation operators inserted 1114
mutants, corresponding to an average of around 69
mutants per traditional mutation operator. Since the
number of mutants is lower for the new mutation op-
erators, this indicates that using the new mutation op-
erators instead of the traditional mutation operators
might be beneficial in terms of execution time.

The execution time was determined for the three
versions of using only the new, only the traditional,
and all mutation operators. Since the execution time
is influenced by the timeout setting of StrykerJS, the
timeout was set to 30 seconds across all runs. Since
the execution time might vary per run, four runs were
conducted, and the average was calculated. The re-
sults rounded to minutes can be seen in Table 2. As
can be seen in the table, the new mutation operators
have a lower execution time than the traditional mu-
tation operators.

6.3 Past Mistakes

To evaluate the new mutation operators, it was
checked whether the mistakes inserted by them have
already occurred in the web application in the past.
If they did, this indicates that the new mutation op-
erators are of relevance insofar that they might have
helped prevent those errors as they would have moti-
vated improving the test suite in a way to catch such
errors and would have generally raised awareness for
these types of errors. To gain insights into the mis-
takes made in the past, both the bug tickets and the
code review findings were consulted. In the follow-
ing, for each new mutation operator, the bug tickets
and code review findings related to that new mutation
operator are briefly discussed.

The mistake of using a loose comparison operator
instead of a strict one, which is simulated by the first
new mutation operator, was uncovered in one code re-
view. The mistake simulated by the second mutation
operator, i.e., the mistake of forgetting to catch an er-
ror, was addessed in one code review finding and two
bug tickets. The third mutation operator is the muta-
tion operator artificially inserting the mistake of set-
ting a wrong default value. This mistake was found in
one bug ticket as well. The fourth mutation operator

Mutation Operators for Mutation Testing of Angular Web Applications

395



simulates the mistake of forgetting input validation.
This mistake was addressed in three bug tickets and
one code review finding. The fifth and sixth new mu-
tation operator are the mutation operators for chang-
ing the name of a form field and for forgetting to sub-
scribe to an Observable. For those two mistakes, no
occurrence could be found. This could be due to the
reason that both of these errors might become appar-
ent already when testing the implementation locally
during development. Therefore, maybe, the mistakes
are noticed too early to be found in a code review or
bug ticket. The seventh mutation operator is the one
simulating the mistake of forgetting to unsubscribe an
Observable. This mistake was found in two code
review findings. The eighth and last new mutation
operator is the one simulating the wrong use of the
RxJS operators. This mistake was also addessed in
one code review.

For the traditional mutation operators in Stryk-
erJS, it was also checked whether matching bug tick-
ets or code review findings exist. For those mutation
operators, however, only mistakes corresponding to a
removal of the sort() method, an inverted boolean
value, and several wrong string literals were found. It
thus becomes apparent that the new mutation opera-
tors are, in comparison to the traditional mutation op-
erators, more successful in simulating real-world pro-
gramming mistakes.

6.4 Developer Feedback

To evaluate the new mutation operators, a semi-
structured expert interview was conducted with the
main developer of the web application under consid-
eration. He set up the initial application, has been on
the team ever since, and is the team member doing
most code reviews.

Even though he had not come across mutation
testing in practice yet, the developer said he would
expect mutation testing to provide an additional level
of quality. According to the developer, the mistakes
occurring in Angular web applications are typically
not generic mistakes, but mostly frontend-, web- and
Angular-specific mistakes. This indicates that the tra-
ditional mutation operators inserting generic mistakes
do not represent typical mistakes in Angular web ap-
plications. This was also supported by the answers
of the developer after being shown the traditional mu-
tation operators implemented into the StrykerJS tool.
He said that most of those mistakes are unlikely to
happen in reality, especially the very basic changes
like switching an operator. The only mutation op-
erator mentioned to maybe be realistic was the one
changing the condition of, e.g., a loop or an if state-

ment. Most of the traditional mutation operators,
however, would not be realistic. Additionally, it was
said that if mistakes such as the ones inserted by the
traditional mutation operators were made, they would
be recognized rather early. Thus, the interview not
only suggests that the traditional mutation operators
do not represent realistic mistakes, but also that if
such mistakes occur, they are recognized early, there-
fore indicating a lower need for test cases catching
those types of mistakes. The new mutation operators,
in contrast, were assessed as mostly being very real-
istic by the developer.

The developer stated that he would prefer the new
mutation operators over the traditional mutation oper-
ators, indicating that the new mutation operators pose
a useful contribution to practice. He would not use
both the new and the traditional mutation operators in
combination, because of the human effort and limited
time of the developers required for checking the muta-
tion testing result and fixing the test suite. If, however,
the human effort would be lower than expected, more
mutation operators could be added. Overall, the in-
terview indicates that the new mutation operators are
an improvement over the traditional mutation opera-
tors and provide benefits for practitioners in the field
of Angular web applications.

6.5 Discussion

Summarizing the results of the four previous subsec-
tions, it can be said that the eight new mutation oper-
ators successfully insert more realistic mistakes than
the traditional mutation operators. The new mutation
operators were additionally found to introduce on av-
erage fewer mutants into the code than the traditional
mutation operators. If used instead of the traditional
mutation operators, they can contribute to reducing
the execution time and possibly also the human ef-
fort. Another insight gained is that – in the case of the
web application under consideration – the new mu-
tation operators inserted more changes into the areas
of code already covered by tests, whereas the tradi-
tional mutation operators inserted more changes into
the uncovered areas. The traditional mutation oper-
ators thus motivate the developers to write more test
cases for uncovered parts of the code, while the new
mutation operators motivate the developers more to
improve the test cases which already cover the mu-
tant but do not manage to kill it. An additional in-
sight is that even though the new mutation operators
inserted a higher percentage of mutants into areas of
code already covered by tests, their use still resulted
in a lower rate of killed mutants than the traditional
mutation operators. This might indicate that the new

ENASE 2025 - 20th International Conference on Evaluation of Novel Approaches to Software Engineering

396



mutation operators insert hard-to-kill changes which
require more specific test cases.

7 CONCLUSIONS

In this work, eight new mutation operators for the
TypeScript files of Angular web applications were in-
troduced. Towards that goal, typical mistakes made
by programmers when developing Angular web ap-
plications were identified, and, based on them, new
mutation operators were designed that simulate such
mistakes. The mutation operators were implemented
to allow applying them to Angular web applications in
practice. Finally, the results were demonstrated and
evaluated to allow assessing whether the new muta-
tion operators provide additional benefits compared
to the existing, traditional mutation operators.

The promising results of the evaluation show that
the new mutation operators can contribute to practice
by allowing Angular developers to better evaluate the
quality of their test suites. Practitioners can apply the
new mutation operators to their Angular web applica-
tions and can use the mutation testing results as guide-
lines to assess the current quality of the test suites and
to improve it so that both current and future mistakes
in the application code are more likely to be identi-
fied. When using the new mutation operators instead
of the traditional mutation operators, they can addi-
tionally contribute to reducing the execution time and
human effort associated with mutation testing.

Threats to validity consist of the evaluation of the
mutation operators on a single web application and
by consulting only the main developer. To confirm
the generalizability of the findings, as part of future
work, the new mutation operators should be tried out
on more Angular applications and more stakeholders
should be interviewed to gain their insights on the po-
tential benefits and drawbacks. Similarly, a threat to
validity is that the interviews used to identifying com-
mon mistakes might be biased based on personal ex-
periences and having a similar background. As part of
future work, more interviews with developers of vari-
ous levels of experience might be conducted and more
mutation operators could be added that simulate the
newly identified common mistakes. Another possibil-
ity for future work would be to apply the approach
of this work to other domains or frameworks. All in
all, it becomes clear that the promising results of this
work open up a lot of areas of future work, illustrat-
ing the high research potential of mutation operators
simulating realistic mistakes in the field of mutation
testing.

REFERENCES

Harman, M., Jia, Y., and Langdon, W. B. (2010). A man-
ifesto for higher order mutation testing. In 2010
Third International Conference on Software Testing,
Verification, and Validation Workshops, pages 80–89.
IEEE.

Info Support (2023). Stryker mutator: Supported mutators.
Jansen, N. (2020). Stryker mutator: Announcing stryker 4.0

- mutation switching.
Jia, Y. and Harman, M. (2009). Higher order muta-

tion testing. Information and Software Technology,
51(10):1379–1393.

Jia, Y. and Harman, M. (2011). An analysis and survey of
the development of mutation testing. IEEE Transac-
tions on Software Engineering, 37(5):649–678.

Lesh, B., Driscoll, D., Wortmann, J.-N., Jamieson, N., Tay-
lor, P., and Lee, T. (2022). Observable.

Lesh, B., Driscoll, D., Wortmann, J.-N., Jamieson, N., Tay-
lor, P., and Lee, T. (2023). Rxjs operators.

Malcher, F., Koppenhagen, D., and Hoppe, J. (2023). An-
gular: Das große Praxisbuch - Grundlagen, fort-
geschrittene Themen und Best Practices. ix Edition.
dpunkt Verlag, Heidelberg, 4., überarbeitete und aktu-
alisierte auflage edition.

Marchetto, A., Ricca, F., and Tonella, P. (2009). An em-
pirical validation of a web fault taxonomy and its us-
age for web testing. Journal of Web Engineering,
8(4):316–345.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves
Le Traon, and Mark Harman (2019). Chapter six -
mutation testing advances: An analysis and survey. In
Atif M. Memon, editor, Advances in Computers, vol-
ume 112, pages 275–378. Elsevier.

Mozilla (2023). Mdn web docs: Equality comparisons and
sameness.

Ocariza, F., Bajaj, K., Pattabiraman, K., and Mesbah, A.
(2013). An empirical study of client-side javascript
bugs. In 2013 ACM / IEEE International Sympo-
sium on Empirical Software Engineering and Mea-
surement, pages 55–64. IEEE.

Offutt, A. J. and Untch, R. H. (2001). Mutation 2000: Unit-
ing the orthogonal. In Wong, W. E., editor, Mutation
Testing for the New Century, pages 34–44. Springer
US, Boston, MA.

Petrović, G. and Ivanković, M. (2018). State of mutation
testing at google. In Paulisch, F. and Bosch, J., editors,
Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Prac-
tice, pages 163–171, New York, NY, USA. ACM.

Sánchez, A. B., Delgado-Pérez, P., Medina-Bulo, I., and Se-
gura, S. (2022). Mutation testing in the wild: findings
from github. Empirical Software Engineering, 27(6).

vom Brocke, J., Simons, A., Niehaves, B., Niehaves, B.,
Reimer, K., Plattfaut, R., and Cleven, A. (2009). Re-
constructing the giant: On the importance of rigour in
documenting the literature search process. In Newell,
S., Whitley, E., Pouloudi, N., Wareham, J., and Mathi-
assen, L., editors, Information systems in a globalising
world, volume 161, Verona.

Mutation Operators for Mutation Testing of Angular Web Applications

397


