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The rapid expansion of the Industrial Internet of Things (IloT) has significantly advanced digital technologies
and interconnected industrial sys- tems, creating substantial opportunities for growth. However, this growth
has also heightened the risk of cyberattacks, necessitating robust security measures to protect I[IoT networks.
Intrusion Detection Systems (IDS) are essential for identifying and preventing abnormal network behaviors
and malicious activities. Despite the potential of Machine Learning (ML)-based IDS solutions, existing mod-
els often face challenges with class imbalance and multiclass IIoT datasets, resulting in reduced detection
accuracy. This research directly addresses these challenges by implementing six innovative approaches to en-
hance IDS perfor- mance, including leveraging an autoencoder for di- mensional reduction, which improves
feature learning and overall detection accuracy. Our proposed Decision Tree model achieved an exceptional
F1 score and accuracy of 99.94% on the Edge-IloTset dataset. Furthermore, we prioritized lightweight model
design, ensuring deployability on resource-constrained edge devices. Notably, we are the first to deploy our
model on a Jetson Nano, achieving inference times of 0.185 ms for binary classification and 0.187 ms for mul-
ticlass classification. These results highlight the novelty and robustness of our approach, offering a practical
and efficient solution to the challenges posed by imbalanced and multiclass IIoT datasets, thereby enhancing

the detection and prevention of network intrusions.

1 INTRODUCTION

The Industrial Internet of Things (IIoT) integrates
traditional industrial processes with advanced digi-
tal technologies, enabling the seamless interconnec-
tion of sensors, devices, and systems across vari-
ous sectors(Lynn et al., 2020). This integration en-
hances operational efficiency, productivity, and in-
novation through real-time data collection, analy-
sis, and decision-making. IIoT is applied in indus-
tries such as manufacturing, energy, healthcare, and
transportation, where it supports predictive mainte-
nance, asset tracking, remote monitoring, and smart
automation(Xu et al., 2018). However, the exten-
sive interconnectivity in IIoT systems makes them
vulnerable to cyber threats, exacerbated by weak au-
thentication mechanisms and irregular security up-
dates(Alani, 2023). The vast number of connected
devices and diverse communication protocols cre-
ate multiple entry points for cybercriminals(Hassan
etal., 2019), exposing IIoT networks to malware, data
breaches, denial-of-service (DoS) attacks, and ad-
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vanced persistent threats (APTs)(Yugha and Chithra,
2020). These threats can lead to significant op-
erational disruptions, financial losses, and compro-
mise the safety of critical infrastructure(Hassija et al.,
2019).

Intrusion Detection Systems (IDSs) are essential
for detecting and preventing unauthorized access and
abnormal behavior in networks(Elrawy et al., 2018).
IDSs monitor network traffic in real time, identifying
potential threats using methods like signature-based,
anomaly-based, and hybrid detection(Buczak and Gu-
ven, 2015; Leu et al., 2015; Mirsky et al., 2018).
While these methods are effective, they face chal-
lenges in the complex and large-scale IIoT environ-
ments(Zarpeldo et al., 2017), highlighting the need
for more advanced IDS solutions. Moreover, current
IDSs perform well with a limited number of classes
and balanced data(Karatas et al., 2020). However,
real-world scenarios often involve more classes and
significant data imbalance, where infrequent yet crit-
ical classes may be overlooked. This imbalance can
degrade detection performance, increasing the risk of
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undetected security threats. To address these chal-
lenges, performing machine learning (ML) inference
on edge devices is crucial. Edge inference allows real-
time traffic analysis, reducing latency and reliance on
centralized systems while enhancing privacy and se-
curity. Lightweight ML models designed for edge
environments operate efficiently under resource con-
straints, enabling robust intrusion detection even in
remote or bandwidth-limited IIoT settings(Hossain
et al., 2025).

To address these challenges, we make the follow-
ing contributions in this paper:

* We propose a novel intrusion detection sys-
tem (IDS) that leverages an autoencoder for
dimensionality reduction, effectively addressing
challenges with imbalanced and multiclass IIoT
datasets while enhancing feature learning.

* We provide robust evidence of our IDS’s effec-
tiveness, achieving an exceptional F1 score and
accuracy of 99.94

* We highlight the practical applicability of our
approach by being the first to deploy the top-
performing IDS models on a Jetson Nano, achiev-
ing fast inference times of 0.185 ms for binary
classification and 0.187 ms for multiclass clas-
sification, making it suitable for real-world edge
computing environments.

2 RELATED WORK

A notable approach in IoT/IIoT network security is
the Lightweight Stacking Ensemble Learning (SEL)
method combined with Feature Importance (FI) for
dimensionality reduction. This method reduces stor-
age requirements by 86.9% while maintaining a
high classification accuracy of 99.96% (Abdulkareem
et al., 2024). SEL’s performance, particularly in mul-
ticlass classification scenarios, surpasses traditional
models like Decision Trees and SVMs (Hassini et al.,
2024). Similarly, a CNN1D model offers an end-
to-end approach for intrusion detection, achieving
99.96% accuracy across 15 attack classes (Saadouni
et al., 2023). Its strength lies in efficiently handling
feature extraction and classification, making it valu-
able in real-time Industrial IoT environments Fur-
thermore, a Self-Attention-based Deep Convolutional
Neural Network (SA-DCNN) enhances feature prior-
itization, improving detection in IIoT networks with
an accuracy of 99.95% on the Edge-IloTset (Alshehri
et al., 2024). Deploying edge ML and HPC

The Edge-IloTset dataset stands out for its com-
prehensive coverage of IoT/IIoT devices and pro-
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tocols, supporting both centralized and federated
learning models. It is more versatile compared to
MQTTset and WUSTL-IIoT-2021, which have nar-
rower focuses (Ferrag et al., 2022). Hybrid models
like CNN-LSTM and CNN-GRU are also effective in
IIoT security. The CNN-LSTM model excels in fea-
ture extraction and sequence prediction, particularly
for complex attacks like MITM , while the CNN-GRU
model optimizes time-series data classification, fur-
ther enhancing IIoT network security (Saadouni et al.,
2023). Additionally, the Multi-Head Attention-based
Gated Recurrent Unit (MAGRU) model addresses
data imbalance and complex class structures in IIoT,
achieving high accuracy and precision on datasets like
Edge-lIloTset and MQTTset (Ullah et al., 2023).

3 METHODOLOGY

This section outlines our methodology for designing
an effective IDS for IIoT. Using the Edge-IloTset
dataset, we preprocess data through feature selec-
tion, normalization, and encoding. To tackle class
imbalance, we introduce a cost-sensitive autoencoder
that prioritizes underrepresented attack types. Finally,
we implement a lightweight architecture optimized
for deployment on resource-constrained edge devices,
balancing accuracy and efficiency.

3.1 Dataset

The Edge-IloTset dataset, comprising 2.2 million
records from a seven-layer, ten-device setup, includes
1.6 million normal traffic instances and over 600,000
across 14 attack types, highlighting significant im-
balance. Similarly, the MQTTset, with 541,000
records from eight sensors, also skews heavily to-
ward normal traffic. Edge-IloTset, featuring 61 novel
detection-enhancing features, realistically represents
imbalanced IIoT traffic, making it vital for develop-
ing robust intrusion detection systems.

Table 1 shows the distribution of attack types in
our dataset. Below is a brief summary of these at-
tacks:

e Normal (71.65%): Legitimate network traffic
without malicious activity.

* DDoS UDP (6.31%), DDoS ICMP (3.53%),
DDoS TCP (2.60%), DDoS HTTP (2.55%):
DDoS attacks using UDP, ICMP, TCP, or HTTP
packets to overwhelm network resources.

¢ SQL Injection (2.64%): Inserting malicious
SQL code to manipulate databases.



Table 1: Dataset Distribution of Edge-IloTset.
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Traffic Class Records

Normal| Normal 1,380,858 (71.65%)
DDoS_UDP 121,567 (6.31%)
DDoS_ICMP 67,939 (3.53%)
SQL_injection 50,826 (2.64%)
DDoS_TCP 50,062 (2.60%)
Vulnerability 50,026 (2.60%)
Password 49,933 (2.59%)

Attack DDoS_HTTP 49,203 (2.55%)
Uploading 36,915 (1.92%)
Backdoor 24,026 (1.25%)
Port_Scanning 19,983 (1.04%)
XSS 15,066 (0.78%)
Ransomware 9,689 (0.50%)
Fingerprinting | 853 (0.04%)
MITM 358 (0.02%)

Total 1,927,304 (100%)

* Vulnerability Scanner (2.60%): Probing sys-
tems for security weaknesses.

* Password (2.59%): Attempting to crack or guess
passwords.

* Uploading (1.92%): Unauthorized file uploads
to compromise security.

* Backdoor (1.25%): Bypassing authentication for
unauthorized access.

* Port Scanning (1.04%): Identifying open ports
and services as a precursor to attacks.

* XSS (0.78%): Injecting malicious scripts into
webpages (Cross-Site Scripting).

* Ransomware (0.50%): Encrypting data and de-
manding payment for decryption.

* Fingerprinting (0.04%): Gathering device infor-
mation for targeted attacks.

* MITM (0.02%): Intercepting and altering com-

munication between two parties (Man-in-the-
Middle).

Algorithm 1: Training a Deep Autoencoder on Edge-IloTset
Dataset.
Data : Training and validation data in
DataFrames
Result: Trained autoencoder model

1 Load training and validation samples into
DataFrames;

2 Initialize and compile the model with Adam
optimizer and MSE loss;

3 Define ModelCheckpoint for saving the best
model and EarlyStopping to prevent
overfitting;

4 Fit the model on the training set and validate
on the validation set;

5 Save the best model;

3.2 Data Preprocessing
3.2.1 Feature Selection

Irrelevant columns were removed as they provided
no predictive value, while columns with constant val-
ues and highly correlated features(correlation > 0.6)
were dropped to reduce redundancy and computa-
tional complexity.

3.2.2 Label Encoding

Categorical variables were converted to numerical
format using label encoding to ensure compatibility
with machine learning algorithms.

3.2.3 Normalization

Features were normalized to a [0, 1] range using Min-
Max Scaling, preventing scale dominance and im-
proving training efficiency for sensitive models like
neural networks.

3.3 Addressing Class Imbalance with
Cost-Sensitive Autoencoder

As shown in Fig. 1 we introduce a cost-sensitive
autoencoder to address the imbalanced nature of the
Edge-IloTset dataset. An autoencoder is a type of
artificial neural network designed to learn efficient
data representations by encoding inputs into a com-
pressed latent space and then reconstructing the out-
put as closely as possible to the original input.

The proposed autoencoder sets itself apart from
existing approaches, such as variational autoencoders
(VAEs), by focusing on architectural simplicity and
addressing data imbalance directly. While VAEs aim
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Figure 1: Architecture of the proposed cost-sensitive au-
toencoder.

to model data distributions through probabilistic la-
tent representations, our approach is deterministic,
prioritizing compact and discriminative feature learn-
ing for accurate reconstruction. By excluding the
probabilistic layers used in VAEs, our autoencoder re-
duces computational complexity and is better suited
for resource-constrained environments, such as edge
devices. This deterministic approach also ensures sta-
bility in reconstruction, particularly when handling
highly imbalanced datasets like Edge-IloTset. Archi-
tecturally, our autoencoder is designed to efficiently
handle the specific challenges posed by IloT datasets.
The encoder compresses the input feature space from
24 dimensions to a bottleneck layer of 6 dimensions,
retaining critical features while discarding redundant
information. This reduction is mathematically repre-
sented as:
h=f(x)=c(Wx+b)

where W and b denote the weights and biases of the
encoder, and G is the nonlinear activation function.
This compressed latent representation, &, captures the
essential patterns of the input data. The decoder then
reconstructs the input from /4, expanding it back to the
original dimensionality, as given by:

t=g(h)=c(Wh+b)

where W' and b’ represent the weights and biases of
the decoder. The reconstruction objective is to mini-
mize the difference between the original input x and
the reconstructed output £. This difference is typi-
cally quantified using the mean squared error (MSE)
loss function, defined as:

L= LSy
= — wyix[—xi
Ni:l

Here, N represents the number of inputs, x; and
X; are the original and reconstructed values, and wy,
denotes the class weight for the i-th instance.

To address the pronounced class imbalance in
the Edge-IloTset dataset, we employ a cost-sensitive
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Figure 3: Proposed AutoEncoder based IDS Module.

learning mechanism using class weights. These
weights are assigned inversely proportional to the fre-
quency of each class, ensuring that minority classes,
such as "MITM” and “’Fingerprinting,” receive greater
attention during training. By amplifying the contri-
bution of these underrepresented classes to the loss
function, the autoencoder becomes more sensitive to
detecting subtle variations in their patterns. This in-
tegration of class weighting into the training pro-
cess eliminates the need for external methods like
oversampling or data augmentation, which can in-
troduce biases or increase computational costs. The
results demonstrate the effectiveness of this strategy,
as the model achieves superior performance on rare
attack types without compromising overall accuracy.
Compared to traditional autoencoders or VAEs, our
method is more efficient, scalable, and specifically
tailored for real-world deployment in IIoT environ-
ments. The combination of architectural optimization
and cost-sensitive learning underscores the novelty
of our approach and its ability to address the unique
challenges of intrusion detection in imbalanced IIoT
datasets.

Fig. 2 shows the training and validation loss
curves of our autoencoder model which employs class
weights inversely proportional to their frequencies,
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emphasizing the learning of underrepresented attack
types. As shown in Fig. 4 this approach enhances
the model’s ability to detect less frequent but critical
attack types within the dataset, effectively addressing
the class imbalance issue and improving the overall
robustness of the intrusion detection system.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
proposed approach.

4.1 Experimental Setup

The experiments were conducted on two platforms: a
workstation with Ubuntu 20.04.3 LTS, 16 GB RAM,
and a 2.20 GHz Intel Xeon processor, and a Jetson
Nano with a 128-core Maxwell GPU and a 1.43 GHz
Quad-core ARM A57 CPU. The workstation used
Python 3.10.12, while the Jetson Nano used Python
3.7.

4.2 Evaluation Metrics

The performance evaluation of various models used
is summarized in the following tables and the confu-
sion matrix. We evaluated our models based on the
following metrics.

_ TP+TN
Aceuracy = tppp i rNTEN (1)
Precision = 775 2)
— TP
Recall = 75 py 3)
— PrecisionxRecall
Fl1=2x Precision+Recall (4)

4.3 Confusion Matrix

Table 2 presents the confusion matrix for several mod-
els, with the LGBM model achieving perfect detec-
tion accuracy (4820 TPs, 25620 TNs, 0 FP, 0 FN),
while the XGB model also performs well (4818 TPs,
25619 TNs, 2 FPs, 1 FN). In contrast, the LDA model
shows significantly weaker performance (1771 TPs,
24876 TNs, 3049 FPs, 744 FNs).

4.4 Results of Binary Classification

We present the results of binary classification in Ta-
ble 3. LGBM achieves perfect performance across
all metrics, while XGB and Decision Tree models
also perform well but with slightly longer training
times. In contrast, LDA shows significantly lower

Table 2: Confusion Matrix for Various Models (Absolute
and Normalized Percentage Values).

Model Pred. Pred. Pred. Pred.
Normal Attack Normal Attack
(TP) (FP) (FN) (TN)
XGB 4818 2 (0.01%) 1 (0.00%) 25619
(15.83%) (84.16%)
LGBM 4820 0 (0.00%) 0 (0.00%) 25620
(15.83%) (84.17%)
LDA 1771 3049 744 24876
(5.82%) (10.02%) (2.44%) (81.72%)
DT 4817 3(0.01%) 2 (0.01%) 25618
(15.82%) (84.16%)
TabNet 4816 3(0.01%) 0 (0.00%) 25545
(15.86%) (84.13%)
BIiLSTM 4812 8 (0.03%) 0 (0.00%) 25620
(15.81%) (84.17%)

accuracy at 0.8754, indicating its inadequacy for this
task. Although TabNet and Bi-LSTM deliver near-
perfect scores, their high training times (1735.4461
seconds and 982.2894 seconds, respectively) suggest
a trade-off between accuracy and computational effi-
ciency.

4.5 Results of Multi Class Classification

Table 4 summarizes our multi-class classification re-
sults using DT, XGB, LGBM, LDA, TabNet, and
LSTM models, achieving 99.94% accuracy and F1
score, demonstrating strong anomaly detection ca-
pabilities. The Decision Tree model excels with
near-perfect metrics and the fastest test time (0.0124
seconds), while LDA shows the lowest performance
(0.4663 accuracy). XGB and LGBM achieve moder-
ate accuracy but have longer training times. Although
TabNet and LSTM perform well, their lengthy train-
ing times, particularly TabNet’s 4436.6573 seconds,
highlight the trade-offs.

4.6 Edge Inference Results

To demonstrate the lightweight nature of our
model, we conducted inference tests using our best-
performing models, Decision Tree and LGBM, on a
Jetson Nano. For binary classification, the total in-
ference time was 5.62 seconds, with an average time
per instance of 0.184 ms. For multiclass classifica-
tion, the total inference time was 5.70 seconds, with
an average time per instance of 0.187 ms.

4.7 Comparison with Other Works

We compared the performance of our model against
four recent intrusion detection techniques: (Alshehri
et al., 2024), (Douiba et al., 2023), (Ferrag et al.,

211



IoTBDS 2025 - 10th International Conference on Internet of Things, Big Data and Security

Initial Loss: 0.5936

—— Training Loss
Validation Loss

Final Loss: 0.0002

Loss

20 30 40
Epoch

(a) Tabnet/Binary Loss curve

Initial Loss: 0.4702
—— Training Loss
Validation Loss

Final Loss: 0.0118

0 5 10 15 20 25
Epoch

(c) BILSTM/Binary Loss curve

Initial Loss: 3.0410

—— Training Loss
Validation Loss

Final Loss: 0.4415

60 80
Epoch

(b) Tabnet/Multi Loss curve

Initial Loss: 2.3031

—— Training Loss
Validation Loss

Final Loss: 0.4638

0 20 40 60 80 100

Epoch

(d) BILSTM/Multi Loss curve

Figure 4: Training and Validation Loss for Tabnet and BiLSTM for Binary and Multiclass Classification.

Table 3: Summary of model performance (Binary).

Algorithm Accuracy PrecisiorRecall F1 AUC Geo Train Time Test Time
Mean (s) (s)
LGBM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0752 0.1099
XGB 0.9999 0.9999 1.0000 0.9999 0.9996 0.9998 1.0283 0.0597
DecisionTree  0.9998 0.9999 0.9999 0.9999 0.9994 0.9996 1.1718 0.0042
LDA 0.8754 0.8908 0.9710 0.9292 0.4487 0.5973 0.1600 0.0072
TabNet 0.9999 0.9999 1.0000 0.9999 1.0000 0.9997 1735.4461 2.7580
Bi-LSTM 0.9997 0.9997 1.0000 0.9998 0.9998 0.9920 0.9990 982.2894
Table 4: Summary of model performance (Multi Class).
Algorithm Accuracy Precision Recall F1 Score Geo Train  Test
Mean Time(s) Time(s)
Macro Weighted Macro Weighted Macro Weighted
DecisionTree  0.9994  0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9997 3.7432 0.0124
XGB 0.8181 0.81060.8233 0.7974 0.8181 0.801 0.8183 0.8872 33.97250.8476
LGBM 0.7946  0.79150.8058 0.7737 0.7946 0.7768 0.795  0.8731 18.5499 4.8402
LDA 0.4663  0.37620.4359 0.3677 0.4663 0.3333 0.4261 0.5946 0.2051 0.0178
TabNet 0.7756  0.77510.7905 0.7488 0.7756 0.7548 0.7769 0.8584 4436.65 —
LSTM 0.7729  0.76820.7882 0.74  0.7729 0.7279 0.7567 0.8532 958.55 3.1581

2022), and (Ullah et al., 2023). While these meth-
ods exhibit promising results, they also face signif-
icant limitations, particularly in handling imbalanced
datasets and multiclass classification scenarios, which
are prevalent in IIoT environments. For instance, ap-
proaches such as (Alshehri et al., 2024) and (Douiba
et al., 2023) struggle with class imbalance, often pri-
oritizing majority classes while neglecting minority
classes. This results in lower Fl-scores and reduces
their effectiveness in capturing nuanced patterns of
intrusion. On the other hand, models like (Ferrag
et al., 2022) and (Ullah et al., 2023) achieve high ac-
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curacy through complex architectures but fail to ad-
dress the computational constraints of edge devices,
making them unsuitable for real-time IIoT applica-
tions. In contrast, our approach not only outperforms
these techniques but also addresses these limitations
comprehensively. By leveraging an autoencoder for
dimensionality reduction and feature learning, our
model effectively mitigates the challenges posed by
class imbalance. This is evident from our superior
F1-score, as shown in Table 4, which demonstrates
our ability to accurately classify both majority and
minority classes. Additionally, while the accuracy
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metric is commonly used, it can be misleading in im-
balanced settings; our model achieves an outstanding
accuracy of 99.94%, striking a balance between pre-
cision and robustness that outperforms existing meth-
ods. Furthermore, our approach is novel in its empha-
sis on practical deployment. Unlike prior work, our
model introduces a lightweight architecture explicitly
designed for edge environments, ensuring scalability
and efficiency. We are the first to deploy an intrusion
detection model on a Jetson Nano, achieving excep-
tionally low inference times of 0.185 ms for binary
classification and 0.187 ms for multiclass classifica-
tion.

Table 5: Comparison of Techniques and Performance Met-
rics.

Authors Techniques Accuracy| F1 Edge
Alshehri et al. SA-DCNN 99.95% 99.53%| No
Douiba et al. GB & DT 100% 99.50%| No
Ferrag et al. DT, RF, SVM, 94.67 99% No
KNN, DNN

Ullah et al. MAGRU 99.97% 99.64%| No
Our DT, XGB, 99.94% 99.94%| Yes
Approach LGBM, LDA,

TabNet, LSTM

This capability demonstrates our model’s suit-
ability for real-world IIoT applications, where low-
latency and resource efficiency are paramount. These
contributions collectively establish our method as a
robust, high-performance, and deployable solution
that addresses the critical challenges faced by state-
of-the-art intrusion detection systems.

5 CONCLUSION

Our Intrusion Detection System (IDS) achieved a
99.94% F1 score on the Edge-IloT dataset, over-
coming significant data imbalance. This success
is attributed to our autoencoder-based methodology,
which enhances feature learning and detection ac-
curacy while being lightweight for edge inference,
making it suitable for real-world IoT environments.
Pretraining the autoencoder enabled efficient knowl-
edge transfer, further boosting performance. Look-
ing ahead, we plan to expand our research by test-
ing the model on additional datasets and diverse IoT
settings, integrating advanced machine learning algo-
rithms, and refining feature extraction techniques to
detect more sophisticated attacks. We also aim to im-
prove the model’s robustness and scalability for real-
time deployment in large-scale IoT networks.
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