
Performance and Usability Implications of Multiplatform and
WebAssembly Containers

Sangeeta Kakati a and Mats Brorsson b

Interdisciplinary Center for Security, Reliability, and Trust (SnT),
University of Luxembourg, Luxembourg
{sangeeta.kakati, mats.brorsson}@uni.lu

Keywords: WebAssembly, Heterogeneity, Cloud-Edge, Containers, Multi-Platform, Runtimes.

Abstract: Docker and WebAssembly (Wasm) are two pivotal technologies in modern software development, each of-
fering unique strengths in portability and performance. The rise of Wasm, particularly in conjunction with
container runtimes, highlights its potential to enhance efficiency in diverse application stacks. However, a
notable gap remains in understanding how Wasm containers perform relative to traditional multi-platform
containers across multiple architectures and workloads, especially when optimizations are employed. In this
paper, we aim to empirically assess the performance and usability implications of native multi-platform con-
tainers versus Wasm containers under optimized configurations. We focus on critical metrics including startup
time, pull time (both fresh and cached), and image sizes for three distinct workloads and architectures- AMD64
(AWS bare metal) and two embedded boards: Nvidia Jetson Nano with ARM64 and Starfive VisionFive2 with
RISCV64. To address these objectives, we conducted a series of experiments using docker and containerd in
multi-platform built images for native containers and Wasmtime as the WebAssembly runtime within contain-
erd/docker’s ecosystem. Our findings show that while native containers achieve slightly faster startup times,
Wasm containers excel in agility and maintain image sizes of approximately 27.0% of their native counterparts
and a significant reduction in pull times across all three architectures of up to 25% using containerd. With con-
tinued optimizations, Wasm has the potential to emerge as a viable choice in environments that demand both
reduced image size and cross-platform portability. It will not replace the current container paradigm soon;
rather, it will be integrated into this framework and complement containers instead of replacing them.

1 INTRODUCTION

Containers are essential for native cloud computing,
offering efficient and scalable deployment choices for
distributed systems. WebAssembly (Wasm) is a com-
pact binary instruction format and portable compila-
tion target that enables seamless execution of code
written in multiple languages, delivering high perfor-
mance across various platforms.

Containerization and WebAssembly represent a
convergence of technologies that enhance applica-
tion deployment and execution across diverse envi-
ronments. Containerization encapsulates applications
and their dependencies in isolated units, facilitating
consistent execution regardless of the underlying in-
frastructure.

WebAssembly, on the other hand, allows applica-
tions to run in a secure sandbox environment, allow-

a https://orcid.org/0000-0002-4795-7489
b https://orcid.org/0000-0002-9637-2065

ing near-native performance inside and outside the
Web. The WebAssembly System Interface (WASI)
has extended Wasm execution beyond web environ-
ments, making it increasingly popular in cloud com-
puting. The ability to use the same binary executable
on multiple architectures is particularly compelling.
A few years ago, Docker introduced support for dif-
ferent runtimes which opened up for choosing a We-
bAssembly runtime and running Wasm binaries pack-
aged in a container format.

In this paper, we explore the performance implica-
tions and usability benefits/issues of WebAssembly in
container runtimes using Wasmtime, comparing it to
traditional Linux containers. The context is a future
cloud-edge compute continuum where we foresee the
use of multiple hardware architectures. Indeed, in
regular cloud servers, we can already observe both
X86-based- and ARM-based architectures of different
points in the design space. This proliferation of archi-
tectures will only increase with time. Any software

Kakati, S. and Brorsson, M.
Performance and Usability Implications of Multiplatform and WebAssembly Containers.
DOI: 10.5220/0013203200003950
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 15th International Conference on Cloud Computing and Services Science (CLOSER 2025), pages 15-25
ISBN: 978-989-758-747-4; ISSN: 2184-5042
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

15



developed should be capable of running on multiple
architectures. Currently, the options to create cloud-
native applications for this scenario is to either build
native docker container images that can run on any
architecture or to use WebAssembly which is archi-
tecture agnostic.

We present a comprehensive performance eval-
uation and contribution in the field of WebAssem-
bly and multi-architecture native containers across
three workloads and three architectures that show-
case cloud server and edge devices, using a state-
of-the-art runtime: Wasmtime1, which is a project
within the Bytecode Alliance2. WebAssembly and
multi-architecture containers offer significant advan-
tages, but standardization and consistent performance
remain challenges. Resolving these issues is vital for
widespread adoption in IoT settings.

Figure 1 illustrates the workflow for developing
and executing cross-architecture containers. In the
case of native execution, we must build the software
for each architecture and support or build a multi-
architecture docker container image. The Docker en-
gine can execute this image natively through its lay-
ers of runtimes, most notably containerd and runc.
The flow for WebAssembly is almost the same, ex-
cept that the developer only has to build one image.
The docker runtime stack is instead containerd and
WasmTime in which the latter will compile the We-
bAssembly bytecode for native execution.

Cloudnative applications require fast startup times
and low resource overhead, especially in serverless
and edge computing environments. Native contain-
ers offer high performance, but at the cost of portabil-
ity, and as we will see, larger container image sizes,
while Wasm containers offer portability which might
come with performance trade-offs. We aim to analyze
these trade-offs across different architectures. Multi-
architecture containers enhance security but add man-
agement complexity and potential performance trade-
offs, which must be carefully evaluated in deployment
strategies.

Although most of the related work concentrates
on the viability of WebAssembly as an alternative to
Docker containers for IoT applications (Pham et al.,
2023), it has not yet emerged as a fully functioning
alternative to Docker. Furthermore, previous work
focused on WebAssembly as a mechanism to reduce
cold start latency compared to Docker-based run-
times, but did not use optimizations and best practices
for building multi-architecture containers (Gackstat-
ter et al., 2022).

Hence, to assess the performance characteristics

1https://github.com/bytecodealliance/wasmtime
2https://bytecodealliance.org/

of Wasm containers, our experiments emphasize col-
lecting key metrics associated with their utilization
and management. These metrics encompass image
size, startup duration, pull time, and the distinc-
tions between Wasm-based and native Docker’s op-
timized, multi-platform built containers. Addition-
ally, we explore the use of containerd as an alter-
native to Docker for image management, providing
a more direct and efficient means of handling multi-
architecture containers.

The findings of our experiments indicate that the
Wasm containers are on average 85% smaller than
the native containers. In particular, Wasm containers
can reduce image pull times across the amd64, arm64,
and riscv64 platforms up to 25% compared to native
containers using containerd directly. In particular,
the main contributions of this paper are as follows.

1. This study is the first to extensively explore
Wasm’s integration with Docker alternative run-
times, like Wasmtime, on multiple architectures.

2. We provide a thorough performance compari-
son between multi-architecture optimized native
and Wasm containers in three distinct workloads
across key metrics such as image size, pull time,
and startup duration. In particular, our exper-
iments on arm64, amd64, and riscv64 archi-
tectures using containerd (ctr) demonstrate
clear performance benefits in pull times.

3. We investigate best practices not commonly em-
ployed by related works (e.g., non-optimized im-
ages) and use of ctr, focusing on the usage of
docker and ctr for both native and wasm work-
loads across architectures.

2 BACKGROUND

Docker containers and WebAssembly are two foun-
dational technologies that have greatly impacted the
domain of software development. The Docker con-
tainer technology is a way to package software with
its dependencies in a standardized format, making it
easy to deploy and execute in any runtime environ-
ment of the same architecture for which the software
was compiled. WebAssembly is a compact binary for-
mat that serves as a versatile compilation target for a
variety of programming languages, such as Rust, C,
C++, JavaScript, C# and Go.

Docker containers are typically distributed to their
runtime environment from a container registry, such
as Docker hub3. The container runtime is given a

3https://hub.docker.com/

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

16



Figure 1: Cross-architecture container execution.

container image specification and will pull the image
from the registry if it is not found locally.

A WebAssembly runtime performs the bytecode
execution in three semantic steps: decoding, valida-
tion, and execution, ensuring that code executes at
near-native speeds within a secure, sandboxed envi-
ronment to safeguard against harmful software. Ex-
ecution can be done through interpretation or after
a compilation step done by the runtime. Some We-
bAssembly runtimes also perform tiered compilation
where ”hot” functions are further optimized during
execution. Wasmtime, which is the runtime used in
our study, compiles the WebAssembly bytecode in
one step prior to execution.

Dockers’ integration with WebAssembly allows
developers to use the performance and security ad-
vantages of WebAssembly while benefiting from
Docker’s efficient image management and distribu-
tion capabilities. The motivation for containerizing
Wasm modules is rooted in utilizing existing con-
tainer orchestration ecosystems. While Wasm pro-
vides portability and sandboxing, Docker’s image dis-
tribution and management capabilities offer signifi-
cant operational benefits, such as seamless integra-
tion with CI/CD pipelines, image versioning, and reg-
istry services. Docker containerizes WebAssembly
runtime environments, ensuring uniformity across di-
verse development and production landscapes. More-
over, packaging Wasm applications streamlines de-
ployment and scaling across different infrastructures.
By merging both, developers can navigate the com-
plexities of establishing cross-platform Wasm envi-
ronments while enjoying the benefits of Docker’s es-
tablished workflows and comprehensive ecosystem.

3 RELATED WORK

The cloud landscape is evolving, and we increasingly
see a development that includes data center servers,
regional or on-premise servers, mobile edge stations,
and even end-user devices connecting to the edge. To-
gether, we call this the cloud-edge continuum (Gko-
nis et al., 2023). Quite a lot of heterogeneity charac-
terizes this evolving infrastructure. In the context of
serverless computing, (Kjorveziroski et al., 2022) dis-
cuss the impact of serverless computing on cloud and
edge networks, highlighting the startup latency issues
associated with current platforms that use containers
and microvirtual machines. It proposes WebAssem-
bly as a potential solution to these cold start prob-
lems, enabling faster execution of server-side appli-
cations and serverless functions. The authors in (Fujii
et al., 2024) explored the migration of stateful virtual
machines among various runtimes. They aimed to ad-
dress the complexities of migrating VMs across dif-
ferent Wasm implementations, which lack standard-
ized internal designs.

Previous works have examined WebAssembly for
web applications and explored its use in edge com-
puting, however, limited research has focused on
comparing Wasm with native containers in multi-
architecture scenarios, particularly for cloud-native
applications. Several works have explored the use of
WebAssembly in the cloud due to its cross-platform
and security features. (Ferrari et al., 2021) studied
Wasm performance on edge devices, while (Fiedler
et al., 2020) analyzed Wasm startup latency in the
context of serverless computing. (Felter et al., 2015)
focused on docker container performance on x86 ar-

Performance and Usability Implications of Multiplatform and WebAssembly Containers

17



chitectures but did not explore Wasm.
WebAssembly’s ability to address constraints re-

lated to quality of service, hardware availability, and
networking configurations has been a subject of in-
vestigation. The research work of (Hilbig et al.,
2021) has explored an update on the usage of We-
bAssembly in the real world, highlighting vulnerabil-
ities in insecure source languages and a growing di-
verse ecosystem. Another work by (Kakati and Brors-
son, 2024b) presented the performance of the wasm-
time runtime in the Sightglass benchmark suite focus-
ing on architecture-specific outcomes.

Another study by (Chadha et al., 2023) explores
the utilization of WebAssembly as a distribution for-
mat for MPI-based HPC applications, introducing
MPIWasm to facilitate high-performance execution of
Wasm code. The study demonstrates competitive na-
tive application performance, coupled with a signif-
icant reduction in binary size compared to statically
linked binaries for standardized benchmarks.

(Bosshard, 2020) explore the execution of Wasm
in various serverless contexts. It compares server-side
Wasm runtime options, such as Wasmer, Wasmtime,
and Lucet, and investigates running it within Open-
whisk and AWS Lambda platforms. Experiments per-
formed by (Spies and Mock, 2021) and (Wang et al.,
2021) demonstrated Wasm’s usage using the bench-
mark PolyBench. Despite being an effective compiler
benchmark suite, PolyBench appears to be unable to
reflect applications in a wider range of non-web do-
mains.

A previous investigation by (Hockley and
Williamson, 2022) examined the use of WebAssem-
bly as a sandboxed environment for general-purpose
runtime scripting. However, the experiments are
conducted on specific hardware configurations,
which might not fully represent the performance
on a broader range of devices and architectures.
The performance of WebAssembly is compared to
native and container-based applications on ARM
architecture by (Mendki, 2020) with benchmarking
across various application categories. (Kakati and
Brorsson, 2023) highlights a WebAssembly survey
as the changing landscape of cloud computing, with
a shift toward edge computing, and emphasizes the
need for a cross-platform and interoperable solution.

Continuing the exploration of WebAssembly,
(Wang, 2022) addressed the gap in previous research
by conducting a detailed analysis of standard Wasm
runtimes, covering five widely used Wasm runtimes.
They introduced a benchmark suite named WaBench,
which includes tools from established benchmark
suites and whole applications from various domains.

(Kakati and Brorsson, 2024a) provided a thor-

ough analysis of the two most prominent WebAssem-
bly runtimes employing an extensive array of instru-
mented benchmarks and sheds light on Wasm’s poten-
tial to address the requirements of a cross-architecture
cloud-to-edge application framework.

There are a multitude of architectures and dif-
ferent performance characteristics, making applica-
tion development and deployment difficult. We need
to ensure that software can run on as many differ-
ent nodes as possible without specifically adapting
to each hardware platform. This is an active re-
search area addressed by several researchers, includ-
ing (Mattia and Beraldi, 2021), (Nastic et al., 2021),
and (Orive et al., 2022). There also exists an op-
portunity for exploration within the domain of multi-
architecture native containers and the incorporation of
WebAssembly into containerization.

4 METHODOLOGY

To understand Docker’s support for WebAssembly,
it is imperative to understand the operational frame-
work of the Docker Engine. The Docker Engine
is predicated on a higher-level container runtime,
containerd, which furnishes essential functionality
for controlling the container lifecycle. Using a shim
process, containerd can take advantage of the capabil-
ities of runc, a low-level runtime used for native con-
tainers. Subsequently, runc interfaces directly with
the operating system to manage diverse facets of con-
tainer operations. This design offers the capability to
develop a shim to integrate various runtimes with con-
tainerd, including WebAssembly runtimes. Conse-
quently, it becomes feasible to seamlessly utilize dif-
ferent WebAssembly runtimes within Docker, such as
Wasmtime, Spin, and Wasmedge. Our experiment in
this regard encompassed three distinct architectures:

• amd64: The benchmarks were run on an AWS
bare metal server (Linux, AMD64).

• arm64: The benchmark was run on an Nvidia Jet-
son Nano server (ARM64 architecture).

• riscv64: We used an additional benchmark that
was also run on a StarFive VisionFive2 board with
RISCV64 architecture.

This multi-architecture setup allowed us to eval-
uate the performance of WebAssembly containers
against native containers across different hardware
environments. The general methodology is shown in
Fig.2.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

18



amd64, arm64, riscv64
server environments

Docker CE and Buildx (For
multi-architecture builds)

Native Containers Wasm Containers

Docker default
runtime(runc)

Containerd shim
(Wasmtime runtime in

runwasi)

Final Measurements:
Startup Time, Pull Time,

Image size, etc,.

Cloud/Edge Environments
Build methods
Containerized Workloads
Choice of runtime
Measurement scripts

Figure 2: Overview of native and wasm container work-
flows.

4.1 Workloads

Three workloads were designed to evaluate the per-
formance of both native and Wasm containers:

• Matrix Multiplication Workload: Implements
matrix multiplication in Rust, C++ and TinyGo,
with corresponding Wasm versions. This work-
load tests computational performance in the con-
text of heavy mathematical operations.

• Sorting Workload: Reads a text file, sorts its
contents, and writes the sorted output to a new
file. The sorting algorithm supports both ”all at
once” and ”one at a time” processing and is im-
plemented in Rust, Cpp, TinyGo, and their Wasm
counterparts. This workload tests file I/O and
memory handling capabilities.

• Face Detection Workload: Written in C++, we
run this workload on three architectures and use
containerd directly, thereby bypassing Docker en-
tirely.

To investigate the performance and resource char-
acteristics, we conducted experiments using three dif-
ferent hardware platforms with different instruction
set architectures. Table 1 provides some details on
the platforms used.

4.2 Container Configurations

For each workload, we containerized both native and
WebAssembly implementations, all approaches are
optimized to keep them comparable. Rust programs
were built with --release, C++ programs with -O3,
and TinyGo programs with -opt=2, because these are
the highest optimizations available in their respective
compilers, and the respective docker images are kept

to a minimum. Rust --release and C++ -O3 are
equivalent optimization levels, both focusing on max-
imum performance. TinyGo -opt=2 is the highest
optimization available for TinyGo, but it is not as ag-
gressive as Rust’s --release or C++’s -O3. Unfor-
tunately, TinyGo does not have an equivalent to -O3,
so we are using the best available option.

Native Containers: The Rust, TinyGo and Cpp
applications were compiled natively for each ar-
chitecture. We used Docker multi-platform builds
(--platform linux/amd64,linux/arm64) to
generate native containers compatible with both
architectures. For the riscv64 target, we need to
do it a little bit differently as there is no base
image common for amd64, arm64 and riscv64,
but the end result is the same, an image which
contains a sub-image for each architecture.
The Dockerfiles were optimized through several
key measures including a multi-stage build pro-
cess, which separates the build environment from
the runtime environment, ensuring that the final
image is minimal and only includes necessary
runtime dependencies. The first stage is the build
stage during which we use a regular Linux base
image such as Alpine (for amd64 and arm64) and
an Ubuntu image for riscv64. We ensure that the
final image is extremely small and contains only
the application binary and its essential dependen-
cies. These measures collectively contribute to an
efficient and lightweight Docker image.

Wasm Containers: We compiled the Rust, TinyGo
and Cpp applications to WebAssembly and exe-
cuted them using the wasmtime runtime through
docker run. To run these containers, the con-
tainerd wasmtime shim was installed which is
provided by the runwasi4 project. The contain-
erd runtime can provide support for Wasmtime as
an alternative container runtime 5. The runtime
provided a secure execution environment with the
added sandboxing offered by WebAssembly. The
Dockerfile is kept minimal for running a wasm bi-
nary.
Again, by using ”scratch” as the base image, we
ensure that the final image is lightweight, contain-
ing only the Wasm binary and no additional layers
or dependencies. This approach minimizes the at-
tack surface and significantly reduces the image
size. This setup is ideal for environments where
resource efficiency and security are paramount.
We used the command --platform wasm and

4https://github.com/containerd/runwasi
5https://docs.docker.com/engine/daemon/

alternative-runtimes/

Performance and Usability Implications of Multiplatform and WebAssembly Containers

19



Table 1: Hardware Architectures Used in Experiments.
Platform CPU Model Clock Threads per Cores per Caches

frequency Core Socket
X86 64 AWS c5.metal Intel Xeon 8275CL 3 GHz 2 24 L1d: 32 KiB, L1i: 32 KiB, L2: 1 MiB, L3: 71.5 MiB
Nvidia Jetson Nano ARM Cortex-A57 1.5 GHz 2 4 L1d: 32 KiB, L1i: 48 KiB, L2: 2048 KiB
StarFive VisionFive2 SiFive U74 Core 1 GHz 1 4 L1d: 32 KiB, L1i: 32 KiB, L2: 2048 KiB

runwasi 
(containerd-wasm-shim) containerd-shim-runc-v2

Wasmedge Wasmtime spin crun youki

High level Container
Runtimes

Container Management
Platforms

Wasm Runtimes Low Level Container Runtimes

containerd shims

Figure 3: Wasi support with containerd shims.

runtime=io.containerd.wasmtime.v1 to exe-
cute the wasm containers. For native containers,
the default docker runtime was used.

The general workflow of WebAssembly and the
use of it as an alternative docker runtime is shown in
Fig. 3. As illustrated in this figure. when running
a program using the docker run command, docker
will use containerd to manage the container. First, it
will check the local image store if it is already present
locally, and if not, it will pull a fresh image from the
used image registry. In our case, the Docker hub.

4.3 Benchmarking Approach

We measured the startup time of each container (both
native and Wasm) using a custom script that detects
the system architecture, allowing it to run appropriate
container images for either AMD64 or ARM64. We
instrumented the source code to capture the current
time at the beginning of the main function, providing
a precise timestamp for when the main function starts
to execute. In addition to measuring the time until
the main function starts, the script also logs the im-
age pull time, ensuring that we capture the overhead
of pulling the container image when a fresh pull is
required.

To ensure accurate measurements, we use the
‘date‘ command for high-resolution timestamps and
employ Docker’s built-in functionality to run contain-
ers. Before running each experiment, the script force-
removes the image if a fresh pull is specified, ensuring

a cold start, which provides a more accurate measure-
ment of the startup time. The overall approach com-
bines internal timing measurements within the con-
tainer and external validation through the execution
of the Docker container, ensuring consistency and re-
liability across different environments.

The measured time is categorized into two distinct
metrics: Pull Time, defined as the time from request-
ing to run the container until it has been brought in
by pulling it from the remote OCI registry, and Con-
tainer Time, which reflects the duration taken to load
and initialize the image for execution until the pro-
gram starts its main function. This reflects the startup
time of the container.

The script supports testing with forced fresh pulls
and using cached images, allowing us to assess
the performance of the containerization approach in
different scenarios6. This detailed benchmarking
method provides insights into the performance char-
acteristics of native versus Wasm containers in multi-
architecture cloud environments. The script runs the
containers in both architectures (amd64 and aarch64),
performs the workload, and calculates the startup time
based on the elapsed time between image pull and the
execution of the container’s main function.

The AWS instance represents powerful cloud dat-
acenter server instances. The Intel Xeon 8275CL
CPU is a powerful processor with advanced par-
allel pipelines using dynamic instruction schedul-
ing, branch prediction, and cache prefetching mech-
anisms. In contrast, the Nvidia Jetson and StarFive
VisionFive2 boards represent the embedded domain
more likely to be found at the edge.

5 RESULTS

To evaluate startup times for native and Wasm con-
tainers on file sorting and matrix multiplication work-
loads, we initially followed best practices by employ-
ing multistage Dockerfile setups and optimized base
images as shown in Figure 4 for the Matrix Multipli-
cation program and Figure 5 for the Sorting bench-
mark. The results slightly favors native containers,
with smaller differences in image sizes and startup
times between native and Wasm, despite the tradition-

6https://github.com/sangeeta1998/benchmark sort/

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

20



Rust Native Rust Wasm TinyGo Native TinyGo Wasm C++ Native C++ Wasm0

1000

2000

3000

4000

Ti
m

e 
(m

s)

AMD64 Pull Time (Fresh)
AMD64 Container Time (Fresh)
AMD64 Pull Time (Cached)
AMD64 Container Time (Cached)
ARM64 Pull Time (Fresh)
ARM64 Container Time (Fresh)
ARM64 Pull Time (Cached)
ARM64 Container Time (Cached)

Figure 4: Startup Times (image pull and container time) for Matrix Multiplication.

Rust Native Rust Wasm TinyGo Native TinyGo Wasm C++ Native C++ Wasm0

1000

2000

3000

4000

Ti
m

e 
(m

s)

AMD64 Pull Time (Fresh)
AMD64 Container Time (Fresh)
AMD64 Pull Time (Cached)
AMD64 Container Time (Cached)
ARM64 Pull Time (Fresh)
ARM64 Container Time (Fresh)
ARM64 Pull Time (Cached)
ARM64 Container Time (Cached)

Figure 5: Startup Times (image pull and container time) for Sorting Benchmark.

ally smaller size of Wasm. The main reason is that
although WebAssembly execution is fast and com-
petetive, as has been shown by (Kakati and Brorsson,
2024a), there is still some overhead compared to na-
tive execution.

Looking at Figures 4 and 5 we see in the red and
blue bars, the image pull time and container time for
all architectures and source languages. The yellow
and green bars indicate the startup time when the im-
age can be found locally in the Docker image cache.

We first observe that for the AMD64 architecture,
the image pull time (light red) is almost the same
for both native and Wasm images and also across all
source languages. For ARM64, there are some small
deviations: The matrix multiplication C++ Wasm im-
age is pulled slightly faster than the native image. The
reason can be found in the large difference in image
size, see Figure 7. A similar situation occurs for Sort
with TinyGo.

When it comes to the actual startup time after the
container image has been pulled from the remote reg-
istry, the time is normally longer for Wasm contain-
ers than for native. This is normal considering that
there is an overhead of compiling the Wasm bytecode
which is in the critical path of execution. Some source
code languages are more sensitive here, in particular
TinyGo which might indicate that the Wasm genera-
tion in the TinyGo compiler is not yet as mature as for
Rust and C++.

5.1 Evaluation of Startup Times:
Impact of Dockerfile Practices

To closely mirror the scenarios often seen in related
work, which suggests Wasm has significantly lower
startup times than we saw in the previous section, we
conducted a revised experiment on matrix multipli-
cation workload for native containers without scratch

Performance and Usability Implications of Multiplatform and WebAssembly Containers

21



Rust Native Rust Wasm TinyGo Native TinyGo Wasm C++ Native C++ Wasm
0

5000

10000

15000

20000

25000

Ti
m

e 
(m

s)

AMD64 Pull Time (Fresh)
AMD64 Container Time (Fresh)
AMD64 Pull Time (Cached)
AMD64 Container Time (Cached)

(a) Average Startup Time in AMD64.

Rust Native Rust Wasm TinyGo Native TinyGo Wasm C++ Native C++ Wasm
0

10000

20000

30000

40000

50000

60000

70000

Ti
m

e 
(m

s)

ARM64 Pull Time (Fresh)
ARM64 Container Time (Fresh)
ARM64 Pull Time (Cached)
ARM64 Container Time (Cached)

(b) Average Startup Time in ARM64.

Figure 6: Pull and Startup Time for AM64 and ARM64: Without best Practices.

and multistage optimizations. In this configuration,
image sizes and startup times were notably impacted,
and prominent differences in native vs. wasm startup
times can be seen. The Alpine-based C++ (433 MB)
produced a minimal image size due to the compact
nature of its dependencies. In contrast, Rust (927
MB) required a larger Alpine image to include the
Rust toolchain. TinyGo (1.55 GB) relied on the
tinygo/tinygo:latest image as a base, as TinyGo
lacks native Alpine support for arm64.

The results shown in Figure 6 reveal a substan-
tial improvement in the start times of Wasm com-
pared to native containers, particularly on AMD64.
For fresh pull and container startup times on AMD64,
Native Rust registered a pull time of 7166 ms, with
an additional container startup of 6190 ms. Mean-
while, Wasm Rust showed a much faster startup at
1996 ms for both pull and container times, underscor-
ing Wasm’s more efficient startup under these condi-
tions.

Specifically, Wasm Rust’s startup time was ap-
proximately 72% faster than the combined pull and
startup time of Native Rust. Similar trends emerged
for TinyGo and C++ images: TinyGo Native required
significantly longer for both pulling and startup com-
pared to Wasm, which achieved an 85% faster overall
startup. Native C++ also showed similar results, with
Wasm C++ maintaining faster performance, resulting
in an 82% faster total startup time.

For ARM64, native images demonstrated greater
overhead relative to Wasm, though the performance
gap between architectures narrowed slightly. Native
Rust showed a higher combined pull and startup time,
while Wasm Rust achieved a faster overall start, being
66% quicker. TinyGo on ARM64 followed a similar
trend, where Wasm’s total startup time was 77% faster
than Native. Native C++ on ARM64 required longer
times overall, with Wasm C++ reducing this signifi-
cantly, achieving a 69% faster total startup time.

In summary, this additional experiment reveals
that Wasm consistently achieves faster startup times
than native containers under nonoptimized Docker
configurations, particularly on AMD64. While na-
tive images in optimized setups can perform similarly
to Wasm, removing best practices reveals Wasm’s
potential for faster initialization, making it suitable
for performance-sensitive applications across both
AMD64 and ARM64 architectures.

On the other hand, if we are using the ultimate
best practices for native multi-platform built images,
Wasm provides no additional benefits in performance
and remains within an acceptable range. These results
highlight Wasm’s suitability for multi-architecture en-
vironments, suggesting that further optimizations can
closely match native performance across platforms,
offering viable cross-architecture consistency.

While Wasm shows notable advantages in startup
time and consistency across architectures, our experi-
ments did not exhaustively compare runtimes for lan-
guages with larger dependencies, such as Java, C#,
Python, and JavaScript. We anticipate that these lan-
guages may yield different performance results due to
their larger runtime requirements, providing avenues
for further study.

For all the other results presented in this paper, we
use optimized native docker images.

5.2 Image Size Comparison

Wasm containers offer significantly reduced image
sizes compared to native containers, making them
optimal for resource-constrained environments. Fig-
ure 7 shows the image sizes at the host architecture
when they have been pulled and cached locally. Fig-
ure 8 shows the compressed sizes at the OCI Registry
(DockerHub) for the same images. Note, however,
that this is only for one architecture. The real size
stored at the registry in order to support multiple ar-

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

22



Figure 7: Host-based Image Sizes comparison.

chitectures should be multiplied with the number of
architectures (the image size is roughly the same size
for each architecture).

Rust Native TinyGo Native C++ Native Rust Wasm TinyGo Wasm C++ Wasm
0

100

200

300

400

500

600

700

OC
I R

eg
ist

ry
 Im

ag
e 

Si
ze

s (
KB

)

Sorting
Matrix

Figure 8: Image Sizes from OCI Registry for the AMD64
architecture.

5.3 Host Architecture Sizes vs. OCI
Registry Sizes

Table 2 and 3 summarize the image sizes for both
workloads comparing the image size stored in the reg-
istry (OCI size) to the one in the image runtime. The
registry images are compressed to save storage space
and transfer time. The reduction in size from the host
architecture to the OCI registry is calculated as shown
in Equation 1.

Reduction =

(
1− OCI Size

Host Size

)
×100 (1)

Table 2: Host Architecture Sizes vs. OCI Registry Sizes for
Sorting Benchmark.

Language Host Size (KB) OCI Size (KB) Reduction (%)
TinyGo Native 1210 373.36 69.2
Rust Native 610 259.27 57.5
C++ Native 2180 746.24 65.8
TinyGo WASM 257 100.31 61.0
Rust WASM 96 40.79 57.5
C++ WASM 212 68.5 67.7

When an OCI image is pulled, the compressed
version of the image layers is transferred over the net-
work. The decompression happens on the client side

Table 3: Host Architecture Sizes vs. OCI Registry Sizes for
Matrix Multiplication Benchmark.

Language Host Size (KB) OCI Size (KB) Reduction (%)
TinyGo Native 1220 366.46 69.9
Rust Native 613 273 55.5
C++ Native 2170 735.43 66.1
TinyGo WASM 250 101.26 59.5
Rust WASM 96.1 42.25 56.1
C++ WASM 192 60.38 68.6

after the image layers are downloaded. This approach
minimizes the amount of data transferred, making the
process more efficient.

Given the small images we are working with here,
we do not see much difference in pull time between
native images over Wasm images, even when the size
difference is large. The docker software introduces
some overhead in addition to the overhead of contain-
erd, which is the service that actually does the image
management.

The fresh startup time for a Docker container in-
volves several steps:

1. Calling Docker and Checking Local Image
Cache: The initial command is sent to the Docker
daemon and it checks if the image is already avail-
able locally.

2. Request Time from and in Docker Hub: If the
image is not available locally, Docker requests it
from the registry. The registry processes the re-
quest and starts sending the image layers.

3. Getting the Image Back and Decompressing:
The image layers are downloaded to the local ma-
chine. The downloaded layers are decompressed.

4. Loading Image to Container Runtime and
Start Execution: The image is loaded into the
container runtime, and the container is started.

It is only step 3 and to some extent step 4, which
are affected by the image size.

Performance and Usability Implications of Multiplatform and WebAssembly Containers

23



Table 4: Image sizes across architectures.

Architecture Image Size (MB)
amd64 1.65
arm64 1.55
riscv64 1.55
wasm 0.816

5.4 Using Containerd to Handle Images

In this section, we present the performance results
for the face detection benchmark, implemented in
C++ with -O3 optimization. The application was
containerized for three target architectures: amd64,
arm64, and riscv64. Notably, the Dockerfiles for
amd64 and arm64 are identical, while the Dockerfile
for riscv64 differs only in the base image used to ac-
commodate the architecture. The image sizes across
different architectures are summarized in Table 4.

We perform the benchmark using containerd,
bypassing Docker, to directly evaluate the image pull
times. This allowed us to compare the performance
when using containerd as opposed to Docker.

The Dockerfiles for the native images (amd64,
arm64, riscv64) follow a similar structure:

• Build Stage: The source code is compiled us-
ing clang++ with optimizations set to -O3.
This includes compiling several C++ source files
which are then linked to the final executable
(facedetection).

• Runtime Stage: The runtime image is based on
the scratch image to minimize its size. The
compiled facedetection executable and an in-
put image are copied into the image.

5.4.1 Image Pull Times

We measured the average image pull time over 10 it-
erations for each architecture using ctr. The results
are presented in Fig. 9.

Figure 9: Containerd Image Pull Time.

The results show that the Wasm containers has
pull times considerably faster than the native contain-
ers. The results also demonstrate the effectiveness
of using containerd for managing containers, as it
provides faster image pull times. These findings con-
tribute to understanding the trade-offs between differ-
ent architectures and container runtimes in the context
of performance benchmarks.

6 CONCLUSION

In response to the growing demand for efficient and
portable cloud-native computing, we have investi-
gated the performance implications of WebAssem-
bly (Wasm) containers compared to native multi-
architecture containers. Through benchmarking
across three distinct workloads on ARM64, AMD64 and
RISCV64 architectures, we found that native contain-
ers exhibited slightly faster startup times when using
highly optimized build process.

Wasm containers demonstrated a significantly
smaller image size, averaging approximately 15%
of the size of their native counterparts (see Fig-
ure 7), making it a compelling choice for resources-
constrained environments, where memory and storage
footprint are critical.

An important aspect of this study was the use
of containerd instead of docker to manage contain-
ers. This direct approach to container management
resulted in up to 25% faster pull times for Wasm im-
ages across all architectures. In particular, the use
of containerd showcased an advantage in efficiency
when using container runtimes that bypass the Docker
layer.

Our contributions include a comprehensive eval-
uation of Wasm’s integration with Docker’s al-
ternative runtime, Wasmtime in runwasi-containerd
shim, across three architectures, along with a de-
tailed performance comparison between native multi-
architecture containers and Wasm containers based on
key metrics such as startup time, pull time, and im-
age size. The integration of Wasm into containerized
environments offers a significant opportunity to opti-
mize performance, and instead of taking the place of
the existing container paradigm, it is more likely to
be integrated into that framework. Therefore, Wasm
will not replace containers; rather, they will function
as complementary technologies.

CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science

24



ACKNOWLEDGMENT

This research has been partly funded by the Luxem-
bourg National Research Fund (FNR) under contract
number 16327771 and has been supported by Prox-
imus Luxembourg SA. For the purpose of open ac-
cess, and in fulfillment of the obligations arising from
the grant agreement, the author has applied a Creative
Commons Attribution 4.0 International (CC BY 4.0)
license to any Author Accepted Manuscript version
arising from this submission.

REFERENCES

Bosshard, B. (2020). On the use of web assembly in a
serverless context. In Agile Processes in Software
Engineering and Extreme Programming–Workshops,
page 141.

Chadha, M., Krueger, N., John, J., Jindal, A., Gerndt, M.,
and Benedict, S. (2023). Exploring the use of we-
bassembly in hpc. In Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Prac-
tice of Parallel Programming, pages 92–106.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2015).
An updated performance comparison of virtual ma-
chines and linux containers. In 2015 IEEE Interna-
tional Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), pages 171–172. IEEE.

Ferrari, D., Sciascio, E., Gioiosa, R., Krieger, O., Krikellas,
K., and Giuliani, G. (2021). Webassembly for cloud-
native applications: A performance evaluation. Future
Generation Computer Systems, 115:335–348.

Fiedler, M., Alrowaily, H., Menzel, K., and Stiller, B.
(2020). Performance evaluation of webassembly as a
cloud-edge continuum technology. In 2020 IEEE 6th
International Conference on Network Softwarization
(NetSoft), pages 334–340. IEEE.

Fujii, D., Matsubara, K., and Nakata, Y. (2024). State-
ful vm migration among heterogeneous webassem-
bly runtimes for efficient edge-cloud collaborations.
In Proceedings of the 7th International Workshop on
Edge Systems, Analytics and Networking, pages 19–
24.

Gackstatter, P., Frangoudis, P. A., and Dustdar, S. (2022).
Pushing serverless to the edge with webassembly run-
times. In 2022 22nd IEEE International Symposium
on Cluster, Cloud and Internet Computing (CCGrid),
pages 140–149. IEEE.

Gkonis, P., Giannopoulos, A., Trakadas, P., Masip-Bruin,
X., and D’Andria, F. (2023). A survey on iot-edge-
cloud continuum systems: Status, challenges, use
cases, and open issues. Future Internet, 15(12):383.

Hilbig, A., Lehmann, D., and Pradel, M. (2021). An empir-
ical study of real-world webassembly binaries: Secu-
rity, languages, use cases. In Proceedings of the Web
Conference 2021, pages 2696–2708.

Hockley, D. and Williamson, C. (2022). Benchmarking run-
time scripting performance in webassembly.

Kakati, S. and Brorsson, M. (2023). Webassembly be-
yond the web: A review for the edge-cloud contin-
uum. In 2023 3rd International Conference on Intel-
ligent Technologies (CONIT), pages 1–8. IEEE.

Kakati, S. and Brorsson, M. (2024a). A cross-architecture
evaluation of webassembly in the cloud-edge con-
tinuum. 2024 IEEE 24th International Symposium
on Cluster, Cloud and Internet Computing (CCGrid),
pages 337–346.

Kakati, S. and Brorsson, M. (2024b). An investigative study
of webassembly performance in cloud-to-edge. In
2024 International Symposium on Parallel Computing
and Distributed Systems (PCDS), pages 1–5.

Kjorveziroski, V., Filiposka, S., and Mishev, A. (2022).
Evaluating webassembly for orchestrated deployment
of serverless functions. In 2022 30th Telecommunica-
tions Forum (TELFOR), pages 1–4. IEEE.

Mattia, G. P. and Beraldi, R. (2021). Leveraging Reinforce-
ment Learning for online scheduling of real-time tasks
in the Edge/Fog-to-Cloud computing continuum. In
2021 IEEE 20th International Symposium on Net-
work Computing and Applications (NCA), pages 1–9.
ISSN: 2643-7929.

Mendki, P. (2020). Evaluating webassembly enabled server-
less approach for edge computing. In 2020 IEEE
Cloud Summit, pages 161–166.

Nastic, S., Pusztai, T., Morichetta, A., Pujol, V. C., Dustdar,
S., Vii, D., and Xiong, Y. (2021). Polaris Scheduler:
Edge Sensitive and SLO Aware Workload Scheduling
in Cloud-Edge-IoT Clusters. In 2021 IEEE 14th Inter-
national Conference on Cloud Computing (CLOUD),
pages 206–216. ISSN: 2159-6190.

Orive, A., Agirre, A., Truong, H.-L., Sarachaga, I., and
Marcos, M. (2022). Quality of Service Aware Or-
chestration for Cloud–Edge Continuum Applications.
Sensors, 22(5):1755. Number: 5 Publisher: Multidis-
ciplinary Digital Publishing Institute.

Pham, S., Oliveira, K., and Lung, C.-H. (2023). Webassem-
bly modules as alternative to docker containers in iot
application development. In 2023 IEEE 3rd Interna-
tional Conference on Electronic Communications, In-
ternet of Things and Big Data (ICEIB), pages 519–
524. IEEE.

Spies, B. and Mock, M. (2021). An evaluation of we-
bassembly in non-web environments. In 2021 XLVII
Latin American Computing Conference (CLEI), pages
1–10. IEEE.

Wang, W. (2022). How far we’ve come–a characterization
study of standalone webassembly runtimes. In 2022
IEEE International Symposium on Workload Charac-
terization (IISWC), pages 228–241. IEEE.

Wang, Z., Wang, J., Wang, Z., and Hu, Y. (2021).
Characterization and implication of edge webassem-
bly runtimes. In 2021 IEEE 23rd Int Conf on
High Performance Computing & Communications;
7th Int Conf on Data Science & Systems; 19th Int
Conf on Smart City; 7th Int Conf on Dependabil-
ity in Sensor, Cloud & Big Data Systems & Applica-
tion (HPCC/DSS/SmartCity/DependSys), pages 71–
80. IEEE.

Performance and Usability Implications of Multiplatform and WebAssembly Containers

25


