Micro-Frontend Architecture in Software Development: A Systematic
Mapping Study

Giovanni Cunha de Amorim

University of

2 and Edna Dias Canedo®®
ilia—DF, Brazil

giovanni.amorim.ti@ gmail.com, ednacanedo @unb.br

Keywords:

Abstract:

Micro-Frontend Architecture, Software Architecture, Web Development, Systematic Mapping Study.

Context: The integration of new technologies into monolithic frontend projects poses significant chal-

lenges, including code redundancy, inconsistency, and limited scalability. The micro-frontend architecture
has emerged as a promising solution, offering a more modular and independent approach to frontend develop-
ment. Goal: This study aims to explore the impacts and challenges of adopting micro-frontend architecture in
software projects. Method: We conducted a systematic mapping study to identify common architectural pat-
terns and strategies used in micro-frontends. Results: Our findings underscore the potential of micro-frontend
architecture in modernizing frontend development, particularly for large, complex projects. However, suc-
cessful implementation depends on the project’s scale and requires careful methodological and technological

planning.

1 INTRODUCTION

The growing interest of large organizations in adopt-
ing micro-frontend architectures highlights a signif-
icant shift in software development practices (SPA,
2022), driven by the pursuit of more flexible and ef-
fective approaches to building frontend applications
(Simdes et al., 2023). However, this strategy can lead
to a decrease in operational efficiency. To mitigate
this issue, micro-frontends enable the integration of
the entire application portfolio through a single gate-
way, addressing the need for rapid application evolu-
tion (Moraes et al., 2024; Rappl and Schéttner, 2021).

By enabling independent development and de-
ployment of application modules, this approach en-
hances scalability and flexibility in software projects
(Gashi et al., 2024; Tilak et al., 2020). However,
its adoption also brings challenges, such as dupli-
cated functionalities leading to code redundancy, dif-
ficulties in ensuring a consistent user experience, in-
creased complexity due to the use of diverse technolo-
gies, and a growing volume of frontend code resulting
from multiple dependencies (Geers, 2020).

Taibi and Mezzalira (Taibi and Mezzalira, 2022)
identified four crucial decisions to consider before
embarking on a micro-frontends project. The first is

https://orcid.org/0009-0001-7933-1552
@ https://orcid.org/0000-0002-2159-339X

Cunha de Amorim, G. and Canedo, E. D.

Micro-Frontend Architecture in Software Development: A Systematic Mapping Study.
DOI: 10.5220/0013195800003929

Paper published under CC license (CC BY-NC-ND 4.0)

the choice between a “Horizontal Split”, and a “Verti-
cal Split”’, which determines whether teams will col-
laborate on different frontends within the same view
(horizontal) or each team will manage a distinct view
(vertical). The second decision, “Composition Side”,
involves choosing between client-side composition,
where micro-frontends are dynamically loaded in the
browser, and server-side composition. The third deci-
sion focuses on “Routing”, which concerns directing
user requests to the correct micro-frontend. Lastly,
the fourth decision, “Communication between Micro-
frontends”, addresses how to enable communication
between different applications, either through custom
events or shared services.

Although the concept has gained popularity in re-
cent years, more research is needed to explore its
practical applications in software development envi-
ronments. This study aims to fill this gap by sys-
tematically identifying and analyzing the key factors,
practices, and challenges reported in the literature re-
garding the implementation of micro-frontends.

Given the challenges associated with large mono-
liths and their drawbacks, such as code redundancy,
consistency issues, heterogeneity, and excessive code
(Geers, 2020; Lewis and Fowler, 2014), as well as ar-
chitectural decisions related to composition, routing,
and communication (Taibi and Mezzalira, 2022), this
study aims to explore the impacts and challenges of
adopting micro-frontends in the development of com-

105

In Proceedings of the 27th International Conference on Enterprise Information Systems (ICEIS 2025) - Volume 2, pages 105-116

ISBN: 978-989-758-749-8; ISSN: 2184-4992

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

plex web applications. To achieve this, we conducted
a Systematic Mapping Study (SMS) to identify the
impacts and challenges of implementing the micro-
frontends architecture.

Thus, we highlight the following contribution di-
rections: the identification of design and architec-
ture patterns specific to the implementation of micro-
frontends, aiming to promote consistency, modularity,
and reuse of front-end components in a distributed
ecosystem; the identification of practices and tools
that facilitate continuous integration and continuous
delivery (CI/CD) of micro-frontends, enabling teams
to implement updates quickly and safely. The results
of this work highlight the positive impact of micro-
frontends on software projects, the architectural pat-
terns used, and the challenges faced during adoption,
contributing to the validation of the SMS.

2 RELATED WORK

Experiments comparing frontend architectures con-
nected to microservices-based backends were con-
ducted by (Harms et al., 2017). Their findings indi-
cate that Micro-Frontends offer good testability and
modifiability, though with variations in performance
and interface consistency. This study emphasized the
practical application of Micro-Frontends in hybrid ar-
chitectures but did not explore specific composition or
splitting strategies, which are gaps our research seeks
to fill.

A multi-platform web application using Micro-
Frontends and microservices to ensure a consistent
user experience across different devices was devel-
oped by Mena et al. (Mena et al., 2019). Their
primary focus was on fulfilling the application’s
functional requirements, highlighting that Micro-
Frontends helped isolate the development of distinct
components and minimize codebase conflicts. Our re-
search complements this approach by investigating ar-
chitectural patterns that support component isolation
in a more structured and comparative manner.

A Multivocal Literature Review to investigate
the motivations behind companies adopting Micro-
Frontends was conducted by Peltonen et al. (Pel-
tonen et al., 2021). The study analyzed 173 pub-
lications, 43 of which addressed motivations, bene-
fits, and challenges. The results showed that compa-
nies adopted Micro-Frontends to increase team auton-
omy and reduce frontend complexity, benefits similar
to those promised by microservices in the backend.
However, the authors identified drawbacks such as
increased application payload size and code duplica-
tion. While the study highlights general motivations

106

and impacts, it does not address specific architectural
patterns, which is the main focus of our research.

Pavlenko et al. (Pavlenko et al., 2020) reported
the creation of a React-based single-page application
using Micro-Frontends. While the architecture intro-
duced greater complexity, the authors found it suit-
able for applications with extensive frontend logic and
larger development teams. Although the study de-
tailed operational challenges, it did not address the
systematization or comparison of different architec-
tural patterns, which is a key aspect of our analysis.

Minnistd et al. (Méinnistd et al., 2023) de-
scribed the migration of a monolithic application to
a Micro-Frontends architecture using a framework-
less approach based on Web Components. The study
highlighted that even small teams can benefit from
Micro-Frontends, particularly in terms of configura-
bility, and that web standards-based APIs offer viable
alternatives to JavaScript frameworks. While the au-
thors focused on cost benefits and client-specific con-
figurability, our research delves into the analysis of
specific architectural strategies and their applicability
to diverse development scenarios.

3 RESEARCH METHOD

In this work, we conducted a Systematic Mapping
Study (SMS) to identify the impacts and challenges
associated with the implementation of the micro-
frontends architecture. This approach enabled us to
systematically review existing literature, categorize
key findings, and synthesize insights relevant to both
academic and industry perspectives. The goal of
this study is to provide insights into the architectural
views and patterns associated with micro-frontends
and understand how these elements resonate in the
development environment. It is important to empha-
size that our scope is strictly limited to aspects related
to the implementation of the micro-frontends archi-
tecture, without delving into specific technical devel-
opment issues such as programming languages and
frameworks. To achieve the objectives of the SMS,
we formulated three research questions to guide our
investigation, described as follows:

* RQ.1: What architectural patterns are used in the
implementation of micro-frontends?

* RQ.2: What are the impacts of adopting a micro-
frontends architecture?

* RQ.3: What challenges do software development
teams encounter when adopting micro-frontends?

Search String. The PICOC terms (Wohlin et al.,
2012) were used as a guide to define the inclu-

Micro-Frontend Architecture in Software Development: A Systematic Mapping Study

sion and exclusion criteria, although they were not
directly applied in the construction of the search
string. The Population was defined by terms re-
lated to micro-frontends, software industry, develop-
ment teams, and micro-frontend architecture adop-
tion. The Intervention focused on terms like imple-
mentation, patterns, and adoption. The Outcome was
shaped by terms such as impacts, challenges, team co-
ordination, continuous integration, continuous deliv-
ery, and dependencies. Finally, the Context involved
software development, implementation, and frontend
paradigms. The search string was iteratively adjusted
based on preliminary results, ensuring greater preci-
sion in identifying relevant articles for the study.

We selected five digital databases (ACM Dig-

ital Library, IEEE Xplore, ScienceDirect, Scopus
e Springer Link) to apply the search string. The
choice of these platforms was based on their rel-
evance in Software Engineering research(Brereton
et al.,, 2007). The search string used in the system-
atic mapping study was: (“micro-frontend” OR “mi-
cro frontend” OR “microfrontend”). Studies pub-
lished before 2016, as the micro-frontend technology
became widely adopted primarily from that year on-
ward.
Selection Criteria. To ensure a rigorous and well-
defined selection process, we adopted specific inclu-
sion and exclusion criteria, as summarized in Table
1. The inclusion criteria focus on identifying stud-
ies that provide comprehensive insights into the tech-
nologies, challenges, and organizational impacts as-
sociated with micro-frontends. Conversely, the exclu-
sion criteria were designed to filter out studies that
lack relevance or clarity regarding the adoption and
implementation of micro-frontends.

Table 1: Selection Criteria.

Type Criteria

Inclusion IC1. Technologies or methodologies used in the
implementation of micro-frontends.

1C2. Challenges related to the implementation of
micro-frontends.

IC3. Impacts on team organization when im-
plementing technologies and methods related to

micro-frontends.

Exclusion ECI. Studies that do not explicitly address the
adoption of micro-frontend architecture, or that
lack a clear focus.

EC2. Studies published in languages not under-

stood by the authors (Portuguese and English).

Execution. To conduct the review, we used the Par-
sifal tool. Figure 1 presents the number of studies
selected at each stage of the review. A total of 279
studies were initially identified, distributed across the
following databases: 14 from the ACM Digital Li-

brary, 150 from IEEE Xplore, 27 from ScienceDirect,
48 from Scopus, and 40 from Springer Link. Dur-
ing the Duplicate Removal Phase, 110 duplicate stud-
ies were identified and removed. This left a final set
of 169 studies for analysis. Then, inclusion, exclu-
sion, and quality assessment criteria were applied to
the remaining studies through a review of titles and
abstracts.

Although the initially selected studies addressed
topics related to the search string, 119 studies were
excluded for not meeting the established selection cri-
teria or not being relevant to the context of this paper,
resulting in a total of 50 studies for analysis in the
next phase.

SEARCH STRING ‘

M UBRARY IEEE EXPLORE SCIENCE DIRECT scoms SPRINGER LINK

o g 150 27 | 4 |

[|
[e | K
| |
[s | 21 [
[
L

|
“4
:
| |
0 0
' i '
2 1

+ 6 +

IC=Inclusion Criteria EC=Exclusion Criteria QA=Quality
Assessment

&
3

i (.

2

REMOVED IC/IC/QA TO
RULLTET

+ 13+

LN oy —

Figure 1: Selected Studies for Data Extraction.

Finally, we conducted a full reading of the se-
lected studies. During this stage, we applied all the
established selection criteria to a total of 24 studies,
including 2 from the ACM Digital Library, 6 from
IEEE Xplore, 1 from ScienceDirect, 13 from Scopus,
and 2 from Springer Link.

3.1 Data Extraction

In the data extraction phase, our goal was to ensure
the completeness of the SMS. To achieve this, we sys-
tematically identified, evaluated, and interpreted all
the selected studies (Table 2). The data extracted from
these studies served as the foundation for both quan-
titative and qualitative analyses. This process went
beyond merely classifying the studies; it involved a
detailed evaluation to support the subsequent phases
of the investigation. We have made the Supplemen-
tary Material available on Zenodo!.

Uhttps://zenodo.org/records/ 14834868

107

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

Table 2: Data Extraction.

Study | Year #Cite Type Conference/Journal Score Ref.

PS1 2021 21 J Information and Software Technology 2.0 (Peltonen et al., 2021)

PS2 2020 0 J Journal of Internet Services and Information Security 1.5 (Pavlenko et al., 2020)

PS3 2022 1 C AICMHI 2022 2.0 (Mohammed et al., 2022)

PS4 2023 0 C CLOSER 2023 1.5 (Abdelfattah and Cerny, 2023)
PS5 2019 11 J IOP Publishing Ltd 1.5 (Yang et al., 2019)

PS6 2023 0 C Politechnica University of Bucharest 2.0 (Petcu et al., 2023)

PS7 2020 5 C ETFA 2020 1.0 (Shakil and Zoitl, 2020)

PS8 2021 0 C ETFA 2021 2.0 (Lorenz et al., 2021)

PS9 2023 0 J International Journal of Web Engineering and Technology 1.5 (Wanjala, 2022)

PS10 2022 0 J Journal of Information Processing 2.0 (Nishizu and Kamina, 2022)
PS11 2021 0 C Budapest Tech Polytechnical Institution 2.0 (Poloskei and Bub, 2021)
PS12 2022 1 C ICTI1 2022 1.5 (Stefanovska and Trajkovik, 2022)
PS13 2021 1 C ICITCS 2021 1.5 (Noppadol and Limpiyakorn, 2021)
PS14 | 2022 0 C SummerSOC 2022 2.0 (Biihler et al., 2022)

PS15 2021 11 J SN Computer Science 2.0 (Sorgalla et al., 2021)

PS16 | 2020 | 4 C IEEE-HYDCON 2020 1.5 (Tilak et al., 2020)

PS17 | 2023 1 C ICSA 2023 1.0 (Minnisto et al., 2023)

PS18 | 2023 1 C AICT 2023 2.0 (Perlin et al., 2023)

PS19 2019 17 J IEEE Access Journal 2.0 (Mena et al., 2019)

PS20 2022 1 C ACM SIGSOFT Softw. Eng. Notes 2.0 (Taibi and Mezzalira, 2022)
PS21 2023 1 C Web3D 2023 1.0 (Simdes et al., 2023)

PS22 | 2020 9 J KES-2020 2.0 (Wang et al., 2020)

PS23 | 2023 0 C ISCSIC-2023 2.0 (Zhang et al., 2023)

PS24 | 2024 0 C MECO 2.0 (Gashi et al., 2024)

4 SMS RESULTS

The results of our Systematic Mapping Study (SMS),
addressing the three research questions (RQs) that
guided our investigation. The analysis provides in-
sights into the architectural patterns employed in
micro-frontend implementations (RQ.1), the impacts
of adopting this approach in software development
projects (RQ.2), and the challenges faced by develop-
ment teams during its adoption (RQ.3). The findings
are synthesized from relevant studies and categorized
to highlight key trends, benefits, and obstacles associ-
ated with micro-frontends.

4.1 RQ.1. What Architectural Patterns
Are Used in the Implementation of
Micro-Frontends?

To address RQ.1, we used the data from the selected
studies presented in Table 2. In these studies, ar-
chitectural views and patterns used in the implemen-
tation of micro-frontends were identified, including
technologies such as frameworks, programming lan-
guages, and tools for development and deployment.
Due to the breadth of RQ.1, we divided it into two
topics: architectural views and architectural patterns.

108

Architectural Views. The architectural views (Fig-
ure 2) identified in the studies illustrate the strategies
adopted by companies to implement micro-frontend
architecture, as follows:

e API View: Addressed in 20 studies (PS1, PS2,
PS3, PS4, PS5, PS8, PS9, PS10, PS11, PS12,
PS13, PS14, PS15, PS16, PS17, PS19, PS20,
PS21, PS23, and PS24), this view demonstrates
the role of APIs as a single entry point for backend
requests, allowing micro-frontends to remain in-
dependent and loosely coupled, facilitating com-
munication between components, and optimizing
development and maintenance.

¢ Single-SPA View: Mentioned in 18 studies (PS1,
PS2, PS3, PS4, PS5, PS6, PS7, PS9, PS10, PS11,
PS12, PS13, PS17, PS18, PS20, PS21, PS22, and
PS24), this view supports the scalability and mod-
ularity of the application, allowing for the addi-
tion of new micro-frontends without impacting
existing parts of the application.

* Web Components: Discussed in 13 studies (PS2,
PS5, PS6, PS8, PS10, PS11, PS12, PS14, PS17,
PS19, PS20, PS22, and PS24), the implementa-
tion in the studies used technologies such as Cus-
tom Elements, HTML Templates, Shadow DOM,
HTML, and JavaScript without the need for a spe-
cific library or framework.

Micro-Frontend Architecture in Software Development: A Systematic Mapping Study

* App Container and Module Federation Views:
The App Container view (containerization) was
referenced in 7 studies (PS1, PS2, PS4, PS7,
PS11, PS12, PS22). Similarly, Module Federa-
tion, addressed in seven studies (PS3, PS6, PS12,
PS18, PS20, PS21, and PS24), these studies ex-
plored how different parts of an application can be
loaded on demand without requiring a full system
recompilation.

* DevOps Views: DevOps was discussed in 4 stud-
ies (PS1, PS2, PS11, and PS15), noted for its
efficiency in continuous integration and delivery
(C1/CD).

e BFF Views: The BFF (Backend for Frontend)
view appeared in 3 studies (PS3, PS4, and PS11),
highlighting that different parts of the user inter-
face can communicate with specific backends, en-
suring targeted and efficient communication.

These findings highlight the various architectural
views employed in micro-frontend implementation,
emphasizing their significance in promoting modular-
ity, scalability, and effective communication.

T T
API 20] =

Single-SPA 18] —
‘Web Components

[S—

App Container |7] —
7 "
4]

Module Federation
DevOps

BFF

Programming Languages 18 | o

Frameworks 17 | N

Communication 16 | B
Routing 14 | |
Composition | 3] .
Iframe 10 -

Design System | 0 | -
DDD |6] N
Application Shell |6 | -
MvC|[3] f

|
0 10 20
Number of Studies

[[] Architectural Patterns [Architectural Views

Figure 2: Architectural Views and Architectural Patterns.

Architectural Patterns. During the analysis of the
selected studies, we identified the most employed ar-
chitectural patterns in the implementations of micro-
frontends architecture (Figure 2). These patterns rep-
resent the strategies adopted by development teams
to address routine challenges, such as choosing pro-
gramming languages, frameworks, libraries, and spe-
cific decisions regarding micro-application architec-
ture, such as composition and routing.

¢ Programming Languages: Mentioned in 18
studies, JavaScript, TypeScript, HTML, and CSS
are widely used in the frontend layer. The stud-
ies addressing these languages include PS1, PS2,
PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12,
PS13, PS14, PS17, PS18, PS20, PS21, PS22, and
PS24. These languages are often used in conjunc-
tion with frameworks such as Angular, React, and
Vue.

* Frameworks: The choice of frameworks Angu-
lar, React and Vue was the most discussed in stud-
ies PS1, PS2, PS3, PS5, PS7, PS8, PS9, PS10,
PS11, PS12, PS13, PS14, PS18, PS19, PS20,
PS21, and PS22. These 17 studies highlighted the
flexibility provided by micro-frontends, allowing
teams to adopt their preferred technologies for de-
veloping components independently.

e Communication Pattern: Referenced in stud-
ies PS1, PS4, PS5, PS6, PS7, PS8, PS12, PS13,
PS14, PS15, PS17, PS18, PS19, PS20, PS22 and
PS24, this pattern promotes more efficient inte-
gration between micro-applications. It improves
communication between components, particularly
through dynamic routing, offering more effective
control and management of component state.

* Routing Pattern: Mentioned in studies PS1, PS2,
PS5, PS6, PS9, PS10, PS11, PS12, PS19, PS20,
PS21, PS22, PS23, and PS24, this pattern im-
proves the efficiency of the application’s initial
load by dynamically loading micro-frontends. It
can be managed on the server side, reducing load
time and enhancing the user experience (Mezza-
lira, 2021). The pattern is associated with deploy-
ment independence, team autonomy, and ease of
code maintenance, although study PS9 noted in-
creased operational complexity when used with
SPAs and the Static Assets pattern.

¢ Composition Pattern: Analyzed in studies PS1,
PS2, PS3, PS6, PS11, PS12, PS13, PS14, PS15,
PS18, PS19, PS20, and PS24, this pattern includes
Client-Side Composition, Server-Side Composi-
tion, and Edge-Side Composition. Composition
is associated with increased application scalabil-
ity and operational complexity.

* Iframe Pattern: Highlighted in studies PS1, PS2,
PS5, PS6, PS11, PS12, PS19, PS20, PS22, and
PS24, this pattern simplifies the loading of mul-
tiple applications within the browser, promoting
independence and agility in team deployments.
However, it may lead to potential CSS style con-
flicts and code redundancy.

* Design System: Mentioned in studies PS5, PS6,
PS8, PS9, PS15, PS17, PS18, PS20, and PS24,

109

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

this pattern addresses code reuse, interface stan-
dardization, and reduction of complexity in fron-
tend application development. Study PS24, al-
though not explicitly using the term Design Sys-
tem, refers to it as Component Library and User
Experience (UX), contextualizing it with design
patterns.

* DDD Pattern: Mentioned in studies PS1, PS12,
PS15, PS21, PS22, and PS24, this pattern aligns
business strategies with technology to improve
operational efficiency. The studies discuss how
DDD, in the context of Micro-Frontends, helps
unify product and development teams by associ-
ating each micro-frontend with a specific business
domain, ensuring better alignment between tech-
nology and business needs while supporting scal-
able and adaptable architectures.

» Application Shell: Referenced in studies PSI,
PS11, PS16, PS17, PS20, and PS24, this pat-
tern mounts and unmounts a micro-frontend, im-
proving performance by quickly loading the basic
structure of the application for a faster initial re-
sponse.

* Model-View-Controller (MVC): Addressed in
studies PS2, PS9, and PS22, this pattern improves
source code organization and maintenance effi-
ciency.

The identified architectural patterns reflect diverse
strategies and tools employed by development teams
to tackle common challenges in micro-frontend archi-
tectures.

4.1.1 Comparative Analysis of Micro-Frontend
Architectural Patterns

In this section, we present a comparative analysis of
the main architectural patterns for micro-frontends:
Split Horizontal, Split Vertical, Client-Side Composi-
tion, Edge-Side Composition, and Server-Side Com-
position. Although other patterns can be applied
in different software architecture contexts, we focus
on those most relevant to this approach. We will
then explore the differences between the splitting ap-
proaches and composition methods, which have a
significant impact on the implementation of micro-
frontend-based solutions.

Horizontal Split. In the Horizontal Split pattern,
different teams work on distinct functionalities within
a single page or view, sharing the same rendering area
on the front end. Each team is responsible for a por-
tion of the application’s layout, facilitating collabora-
tion across teams working on different functionalities
(Figure 3).

110

HEADER (Team C)

PRODUCT PRODUCTS
(Team A) {Team B)

|
|
|
|
DETAILS | CAROUSEL
i
1
1

FOOTER (Team C}

Figure 3: Horizontal Split (Mezzalira, 2021).

This model is more suitable for small teams or ap-
plications with simple requirements, where communi-
cation among members is more fluid. In Study PS12,
the authors present use cases that apply this approach
and also conclude that Split Horizontal can introduce
communication overhead between teams, which may
hinder coordination and impact the user experience if
not managed efficiently.

Vertical Split. In the Vertical Split pattern, teams
are responsible for entire sections of the system, such
as a login screen or a user dashboard, having full con-
trol over the behavior and appearance of that section.
This approach aligns with the DDD principle, as dis-
cussed for example in Study PS24, where each team
is responsible for a specific business domain, such as
authentication. By structuring teams around business
capabilities, this pattern enhances domain expertise
and improves development efficiency. The main ad-
vantage of this pattern is the greater autonomy and
control teams have over their work areas, facilitat-
ing responsibility isolation and system maintenance,
as shown in Figure 4.

Team A Team B

‘ HEADER | | HEADER ‘
VIDEO PLAYER
PRODUCT PRODUCTS
DETAILS CAROUSEL
‘ CATALOG ‘
| FOOTER ‘ [FOOTER |

Figure 4: Vertical Split (Mezzalira, 2021).

However, coordinating functionalities that involve
data or actions across different sections can be more
challenging, increasing system complexity. Addition-
ally, there is a higher likelihood of functionality dupli-
cation between teams. Split Vertical is better suited
for larger systems with multiple independent func-
tionalities that require greater team autonomy.

Micro-Frontend Architecture in Software Development: A Systematic Mapping Study

Client-Side Composition. This approach involves
assembling components on the client side, meaning
in the user’s browser. The micro-frontend is dynam-
ically loaded when the page is accessed as show in
Figure 5, reducing server costs as composition is han-
dled by the client and improving user experience with
asynchronous and responsive loading.

Composition
inside the browser

Client

Team A Team B Team C
Thunder.js Wonder.js v1.3 Wonder.js v1.4

Figure 5: Client-Side Composition (Geers, 2020).

In Study PS11, it is added that lazy-loading is nec-
essary for satisfactory client-side performance, ensur-
ing that only the required modules are loaded when
needed. This approach involves assembling compo-
nents on the client side, meaning in the user’s browser.
The micro-frontend is dynamically loaded when the
page is accessed, reducing server costs as compo-
sition is handled by the client and improves user
experience with asynchronous and responsive load-
ing. However, this approach also increases client-
side complexity, resulting in higher maintenance costs
within the browser. If too many micro-frontends are
loaded simultaneously, performance degradation may
occur. Reusability, another fundamental aspect, en-
ables some frontend functionalities to be served di-
rectly across various platforms.

Server-Side Composition. This pattern are com-
posed on the server, which generates a fully assem-
bled page, including micro-frontends ready to be ren-
dered in the browser. This model reduces client-side
complexity since composition happens on the server,
providing better performance control by distributing
the workload between the client and the server.
Figure 6 shows the server-side approach, where
page composition occurs on the server before be-
ing sent to the client (browser). The server assem-
bles the micro-frontends to build the complete page
and sends a fully integrated version to the client.
Study PS19 highlights that this approach is a proven
method for implementing microservices mechanisms
in the frontend, such as API gateway patterns, cir-
cuit breakers, and service discovery (client-side and
server-side). These mechanisms enhance scalability,
resilience, and flexibility in distributed systems with
micro-frontends. However, this approach can increase

Al B ¢
C
e ‘ o

e t ™~
E '8 °
: ’ c
Team A Team B Team C

Figure 6: Server-Side Composition (Geers, 2020).

server load, potentially affecting performance in high-
demand systems, and provides less flexibility for dy-
namic content changes.

Edge-Side Composition. Edge-Side composition,
as described by Geers (Geers, 2020), involves com-
bining Micro-Frontends on the server or an inter-
mediary point like a CDN, which is a variation of
server-side composition but occurs closer to the user
at the “edge” of the network. This approach im-
proves performance by offloading composition from
the browser, enabling efficient caching and faster con-
tent delivery.

QOrigin Client

Figure 7: Edge-Side Composition - Adapted from (Mezza-
lira, 2021).

Edge-Side Composition allows for selective
caching strategies, where frequently accessed com-
ponents can be stored at edge locations, reducing
the need for repeated requests to the origin server.
This is particularly beneficial for globally distributed
users, minimizing load times. Study PS20 discusses
how Edge Side facilitate the assembly of views at
the CDN level, as shown in Figure 7, using place-
holders replaced with valid HTML during process-
ing. In the context of Micro-Frontends, this approach
enables faster content delivery by distributing com-
position tasks closer to the user. Since composition
occurs before reaching the client, real-time personal-

111

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

ization and user-specific adaptations may be limited,
requiring additional client-side logic to mitigate these
restrictions.

4.2 RQ.2. What Are the Impacts of
Adopting a Micro-Frontends
Architecture?

The implementation of micro-frontends presents a
perspective of bringing benefits such as scalability,
flexibility, and the ability for independent develop-
ment. However, it is important to analyze the negative
impacts that may arise, notably regarding the com-
plexity in configuration and coordination of the archi-
tecture. Figure 8 presents the number of studies that
addressed both the positive and negative impacts of
adopting the micro-frontends architecture, categoriz-
ing them for a holistic analysis. It is important to note
that we grouped the strategies of Decoupling, Scala-
bility, Productivity, Flexibility, and Performance into
the “Application Efficiency” strategy, and the strate-
gies Components, Conflicts, and Code Redundancy
into the “Reusability” strategy (Figure 8).

Operational Complexity 15] -

Operational Costs —[0:? 3 -
Application Efficiency 7b 3 -
Deployment Efficiency 7b 3 —

Reusability =13 =
Applicability —0 17 =
Team Efficiency =21 17 I

0 2 4 6 8

o is g .
= Positive Impacts = Negative Impacts

Figure 8: Positive and Negative Impacts.

Positive Impacts. The Team Efficiency (Figure 8)
resulting from greater independence, scalability, and
faster deliveries stood out as one of the most men-
tioned impacts by the authors of studies (PS1, PSS,
PS9, PS10, PS11, PS12, and PS22). This impact was
highlighted across multiple studies, emphasizing how
micro-frontends improve development efficiency by
enabling teams to work more autonomously and de-
liver results more rapidly.

Additionally, the Applicability of micro-frontends
was extensively studied. Studies PS3, PS4, PS6,
PS14, PS16, PS19, and PS21 developed prototypes
and use cases in various business scenarios where the
micro-frontends approach was successfully adopted.
These studies demonstrated positive outcomes in in-
dustries such as the Human-Machine Interface (HMI)
(PS14), industrial plants (PS3), and Internet of Things
(IoT) (PS16). Moreover, Study PS6 presented bene-
fits in the effective implementation of chatbots, and

112

PS21 reported the successful construction of plat-
forms designed for organizing functionalities associ-
ated with microservices and micro-frontends.

The Reusability of components and plugins (PS2,
PS5, and PS17) was also identified as an influen-
tial practice in enhancing team velocity and ensur-
ing interface standardization, thus accelerating devel-
opment cycles. In parallel, studies PS10, PS12, and
PS22 highlighted positive impacts on Deployment Ef-
ficiency, allowing for independent implementations,
risk reduction, facilitated rollback, and continuous
updates. These benefits contribute to a more agile de-
velopment cycle and a more resilient application to
changes.

Furthermore, Study PS20 highlighted positive
points related to the decoupling and scalability of ap-
plications, which led to cost reduction and improved
user experience, further illustrating the advantages of
adopting micro-frontends. Studies PS1 and PS15 also
mentioned improvements in Application Efficiency as
positive outcomes of the approach.

Finally, one particular study, PS21, highlighted
the improved application performance as a positive
outcome, which in turn led to a reduction in Opera-
tional Costs. This shift offered greater flexibility and
customization, allowing for a more efficient use of re-
sources. Manufacturers were able to leverage external
expertise and specialized solutions, optimizing their
processes while maintaining cost efficiency through a
pay-as-you-go model.

Negative Impacts. The negative impacts associated
with the adoption of the micro-frontends are related to
technical and operational complexities, including the
implementation of pipelines, and reusability, where
challenges such as conflict resolution and code re-
dundancy become evident (Figure 8). The stud-
ies PS2, PS10, PS12, PS20 and PS21 highlighted
the increase in Operational Complexity as a nega-
tive impact resulting from the adoption of the micro-
frontends architecture. For example, the study PS12
compared two implementation strategies of micro-
frontends using the Iframes and Module Federation
patterns. The results showed that, in a decentralized
architecture, scaling the release and deployment pro-
cesses becomes essential to support multiple applica-
tions. This, in turn, introduces a new type of com-
plexity. This increase in complexity was attributed, in
part, to the considerable effort required in configur-
ing environments, as mentioned by study PS20. This
complexity can result in a steep learning curve and
require efficient configuration management practices.

Regarding Team Efficiency, while some studies
highlight potential improvements in software devel-

Micro-Frontend Architecture in Software Development: A Systematic Mapping Study

opment team management—such as increased auton-
omy, which allows teams to focus on their specific do-
main and make independent architecture and imple-
mentation decisions—others reveal significant chal-
lenges. Study PS17, for instance, demonstrated that
while micro-frontend architecture provided benefits
in rewriting the Resident Portal application, it also in-
troduced complexities that impacted efficiency. These
challenges included increased coordination overhead,
the need for standardized communication between
teams, and potential inconsistencies in user experi-
ence due to decentralized development.

Furthermore, although sources such as Geers
(Geers, 2020) suggest that micro-frontend architec-
ture is ideal for medium to large-scale applications,
its adoption in smaller organizations, as observed in
study PS1, led to an increase in payload size and the
number of requests to servers, thereby raising oper-
ational costs. Additionally, studies PS6 and PS17
also highlight that the necessity of maintaining mul-
tiple independent frontends results in duplicated ef-
forts and higher operational burdens. Collectively,
these studies indicate that while micro-frontend archi-
tecture offers advantages, it also introduces trade-offs
that can significantly increase Operational Costs, par-
ticularly for teams with limited resources.

Regarding Reusability, the negative impact was
emphasized by the presence of redundancy and con-
flicts in the source code, as evidenced in studies PS5,
PS11, and PS13. These issues highlight the impor-
tance of adopting effective coding and reuse tech-
niques. In this context, study PS6 suggests that com-
ponentization, along with the use of libraries and plu-
gins, can help mitigate redundancy and minimize con-
flicts in the code.

4.3 RQ.3. What Challenges Do
Software Development Teams
Encounter when Adopting
Micro-Frontends?

According to the selected studies, the challenges
faced by software development teams when adopt-
ing micro-frontends are related to Team Coordination,
Environment Configuration, Application Efficiency,
and Reusability.

Challenges in Team Coordination. As differ-
ent teams may be developing independent micro-
frontends, coordination between these teams can be-
come complex. It is essential to establish effective
communication and collaboration strategies to pre-
vent conflicts and ensure software cohesion. Only

study PS7 reported team coordination as a challenge,
likely due to the project’s small scale.

Challenges in Environment Configuration. Con-
figuring environments to support the continuous ex-
ecution and integration of multiple micro-frontends
can be challenging. Environment configuration for
micro-frontends involves both technical complexity
and operational costs, as presented in Figure 8. These
challenges were also reported in studies PS7, PS9,
PS12, PS15, and PS18. Furthermore, studies PS1,
PS3, PS5, PS13, PS16, and PS15 emphasized the im-
portance of a strategic and proactive approach to over-
coming orchestration challenges, considering project-
specific factors such as requirements, technologies in-
volved (Docker and Kubernetes), and intended scala-
bility.

Challenges in Application Efficiency. This chal-
lenge includes aspects inherent to software develop-
ment, used to achieve results such as decoupling,
scalability, productivity, flexibility, and performance.
The aspects include state management, communi-
cation patterns, navigation and routing, composi-
tion, and user experience, including developer experi-
ence. These challenges were identified in studies PS1,
PS10, PS15, PS18, PS19, PS20, and PS21.

Challenges in Reusability. Studies PS22, PS8, and
PS13 identified challenges related to the complexity
of code and component reuse, including difficulty in
efficiently managing CSS style conflicts and code re-
dundancy (PS13). These challenges highlight the in-
herent difficulty in integrating various frontends and
teams working on a single system, even when divided
among different teams and micro-applications, as the
system must ultimately appear seamless for a better
user experience. One solution to mitigating style con-
flicts and avoiding code duplication is the adoption
of a Design System (studies PS2, PS3, PS10, PS11,
PS12, PS13, PS15, PS18, and PS21).

S DISCUSSION

Micro-frontends have emerged as a promising archi-
tectural approach to address the challenges of modern
software development frontend, particularly in foster-
ing agility, scalability, and independent deployment
of frontend components. This systematic mapping
study (SMS) synthesized a broad range of literature
to examine the architectural patterns, implementation

113

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

strategies, impacts, and challenges associated with
micro-frontends.

The analysis of architectural views shows a strate-
gic approach by organizations to enhance modular-
ity and scalability while optimizing communication
between components. The widespread adoption of
API views underscores the role of APIs as pivotal
in enabling independent micro-frontends, facilitat-
ing seamless backend communication and support-
ing efficient development and maintenance practices
across diverse frameworks and technologies. Simi-
larly, views such as Single-SPA and Web Components
illustrate the flexibility and modularity achievable
without strict dependencies on specific frameworks,
promoting adaptability and simplifying the integra-
tion of new features. Containerization and orches-
tration views, alongside emerging concepts such as
Module Federation, further illustrate evolving prac-
tices aimed at maximizing code reuse and operational
efficiency. Overall, these architectural visions under-
score the adaptability and strategic value of micro-
frontend architectures in modern software develop-
ment landscapes.

In parallel, the study of architectural patterns
reveals a comprehensive landscape of strategies
adopted by development teams. These patterns, rang-
ing from framework choices (such as Angular, React,
and Vue) to communication and composition patterns,
underscore the flexibility and complexity inherent in
micro-application development. Key patterns such
as Iframe for deployment agility, Design System for
interface standardization, and Routing for enhanced
user experience illustrate the diverse approaches to
managing frontend complexity and improving appli-
cation scalability. These patterns may facilitate the
integration, scalability, and maintainability of appli-
cations, while also highlighting the complexities in-
volved. Understanding these patterns and their im-
plications helps in making informed decisions during
the adoption and implementation of micro-frontends,
ensuring a balanced approach between innovation and
operational efficiency.

The adoption of micro-frontends offers significant
benefits to software development projects. Improved
team efficiency, highlighted by autonomous develop-
ment teams making independent architectural deci-
sions, enhances productivity and responsiveness to
market demands. Deployment efficiency is also no-
table, with micro-frontends enabling incremental up-
dates, reduced deployment risks, and faster time-to-
market. Furthermore, the scalability and flexibility
afforded by micro-frontends cater to diverse applica-
tion requirements, supporting the dynamic scaling of
components based on user demand. This adaptability

114

is particularly advantageous in sectors requiring rapid
iteration and deployment cycles, such as e-commerce
and content management systems.

Despite its benefits, the adoption of micro-
frontends introduces certain challenges. Techni-
cal complexity arises from managing multiple fron-
tend technologies, necessitating reliable configuration
management and infrastructure orchestration. Chal-
lenges in ensuring consistent user experiences across
micro-frontends, especially in handling state manage-
ment and interface coherence, require careful archi-
tectural planning and design. Moreover, concerns
over code reusability and integration complexities
highlight the importance of establishing clear devel-
opment standards and enforcing best practices. Ad-
dressing these challenges requires ongoing refinement
of architectural strategies, investment in developer
training, and adoption of tools that streamline collab-
oration and code management.

6 THREATS TO VALIDITY

Construction Validity. We ensured clarity in def-
initions of concepts and terms used in the primary
studies, focusing on views and patterns in micro-
frontends architecture. We recognized the threat of
conceptual divergences, such as different interpreta-
tions of component communication and variations in
strategies such as Single-SPA or Module Federation.
To mitigate this, we included definitions aligned with
widely accepted practices, analyzed each study in its
business context, and mapped relationships between
perspectives and results in section 7.

Internal Validity. To address selection bias, we es-
tablished inclusion criteria representing different im-
plementation approaches. We also discussed con-
founding factors and emphasized the observational
nature of included studies, which limits causal infer-
ence. Reusability and conceptual divergence can af-
fect consistency in defining practices, but addressing
divergences during analysis can enhance validity. Op-
erational complexity and costs, influenced by imple-
mentation diversity, also impact results. We assessed
the relationship between these factors to mitigate va-
lidity threats. Efficiency aspects such as decoupling,
scalability, and performance vary by project size and
complexity, requiring contextualized evaluation. De-
ployment strategies and team efficiency are critical in
validating conclusions.

External Validity. Given the modular nature of
micro-frontends, results from specific contexts may

Micro-Frontend Architecture in Software Development: A Systematic Mapping Study

not apply universally. The diversity in implementa-
tions means that findings from one context may not
be directly applicable to others. We addressed this
by transparently discussing the results and consider-
ing the variety of approaches used, which improved
the external validity of our conclusions. The selected
studies covered different scenarios, from large enter-
prise applications to smaller, agile setups, enhancing
the sturdiness and representativeness of our findings.
This approach allowed for more generalized insights
that can guide best practices across various use cases.

7 CONCLUSIONS

In this study, we explored fundamental strategies and
guidelines to address the challenges and maximize the
benefits of adopting micro-frontends through a Sys-
tematic Mapping Study. The results emphasize the
need for strategies to enhance the benefits and miti-
gate challenges associated with this emerging archi-
tecture. Based on the findings of this research and
the identified gaps, a promising area for future explo-
ration involves conducting more in-depth studies on
specific aspects of micro-frontends architecture. This
includes detailed investigations into communication
strategies between micro-frontends, integration pat-
terns, and state management techniques, aiming for
a deeper understanding of their practical implications
and potential improvements.

Additionally, expanding research through empiri-
cal studies to validate and deepen this work’s conclu-
sions is essential. Collecting quantitative and qual-
itative data in real software development environ-
ments will provide valuable insights into the per-
formance, scalability, and maintainability of micro-
frontends in different contexts. A systematic com-
parison with similar architectures, such as microser-
vices, will also help assess their advantages and dis-
advantages, guiding decisions on adopting and evolv-
ing micro-frontends.

Looking ahead, further research is needed to ad-
dress emerging trends and challenges. Exploring
advanced composition strategies, enhancing tooling
support, and optimizing performance and scalability
are key areas of focus. Empirical studies evaluating
real-world implementations and comparative analyses
across architectures will offer deeper insights into the
long-term viability of micro-frontends.

REFERENCES

Abdelfattah, A. S. and Cerny, T. (2023). Filling the gaps in
microservice frontend communication: Case for new
frontend patterns. In van Steen, M. and Pahl, C., edi-
tors, Proceedings of the 13th International Conference
on Cloud Computing and Services Science, CLOSER
2023, Prague, Czech Republic, April 26-28, 2023,
pages 184-193. SCITEPRESS.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M.,
and Khalil, M. (2007). Lessons from applying the sys-
tematic literature review process within the software
engineering domain. J. Syst. Softw., 80(4):571-583.

Biihler, F., Barzen, J., Harzenetter, L., Leymann, F., and
Wundrack, P. (2022). Combining the best of two
worlds: Microservices and micro frontends as basis
for a new plugin architecture. In Barzen, J., Leymann,
F., and Dustdar, S., editors, Service-Oriented Com-
puting - 16th Symposium and Summer School, Sum-
merSOC 2022, Hersonissos, Crete, Greece, July 3-9,
2022, Revised Selected Papers, volume 1603 of Com-
munications in Computer and Information Science,
pages 3-23. Springer.

Gashi, E., Hyseni, D., Shabani, L., and Cico, B. (2024). The
advantages of micro-frontend architecture for devel-
oping web application. In 2024 [3th Mediterranean
Conference on Embedded Computing (MECO), pages
1-5.

Geers, M. (2020). Micro Frontends in Action. Manning
Publications.

Harms, H., Rogowski, C., and Iacono, L. L. (2017). Guide-
lines for adopting frontend architectures and pat-
terns in microservices-based systems. In Bodden, E.,
Schifer, W., van Deursen, A., and Zisman, A., editors,
Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2017,
Paderborn, Germany, September 4-8, 2017, pages
902-907. ACM.

Lewis, J. and Fowler, M. (2014). Microservices. AAccessed
on January 6, 2024.

Lorenz, J., Lohse, C., and Urbas, L. (2021). Microfrontends
as opportunity for process orchestration layer archi-
tecture in modular process plants. In 26th IEEE Inter-
national Conference on Emerging Technologies and
Factory Automation, ETFA 2021, Vasteras, Sweden,
September 7-10, 2021, pages 1-4. IEEE.

Mannisto, T., Tuovinen, A., and Raatikainen, M. (2023).
Experiences on a frameworkless micro-frontend ar-
chitecture in a small organization. In 20th Inter-
national Conference on Software Architecture, ICSA
2023 - Companion, L’Aquila, Italy, March 13-17,
2023, pages 61-67. IEEE.

Mena, M., Corral, A., Iribarne, L., and Criado, J. (2019). A
progressive web application based on microservices
combining geospatial data and the internet of things.
IEEE Access, 7:104577-104590.

Mezzalira, L. (2021). Building Micro-Frontends. O’Reilly
Media.

Mohammed, S., Fiaidhi, J., Sawyer, D., and Lamouchie,
M. (2022). Developing a graphql SOAP conversa-

115

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

tional micro frontends for the problem oriented med-
ical record (QL4APOMR). In Proceedings of the 6th
International Conference on Medical and Health In-
Sformatics, ICMHI 2022, Virtual Event, Japan, May
13-15, 2022, pages 52-60. ACM.

Moraes, F. R., Campos, G. N., de Almeida, N. R., and
Affonso, F. J. (2024). Micro frontend-based de-
velopment: Concepts, motivations, implementation
principles, and an experience report. In Filipe, J.,
Smialek, M., Brodsky, A., and Hammoudi, S., editors,
Proceedings of the 26th International Conference on
Enterprise Information Systems, ICEIS 2024, Angers,
France, April 28-30, 2024, Volume 2, pages 175-
184, https://doi.org/10.5220/0012627300003690.
SCITEPRESS.

Nishizu, Y. and Kamina, T. (2022). Implementing micro
frontends using signal-based web components. J. Inf.
Process., 30:505-512.

Noppadol, N. and Limpiyakorn, Y. (2021). Application of
micro-frontends to legal search engine web develop-
ment. In Kim, H. and Kim, K. J., editors, IT Con-
vergence and Security, pages 165-173, Singapore.
Springer Singapore.

Pavlenko, A., Askarbekuly, N., Megha, S., and Mazzara,
M. (2020). Micro-frontends: application of microser-
vices to web front-ends. J. Internet Serv. Inf. Secur.,
10(2):49-66.

Peltonen, S., Mezzalira, L., and Taibi, D. (2021). Mo-
tivations, benefits, and issues for adopting micro-
frontends: A multivocal literature review. Inf. Softw.
Technol., 136:106571.

Perlin, R., Ebling, D., Maran, V., Descovi, G., and
Machado, A. (2023). An approach to follow microser-
vices principles in frontend. In 2023 IEEE 17th In-
ternational Conference on Application of Information
and Communication Technologies (AICT), pages 1-6.

Petcu, A., Frunzete, M., and Stoichescu, D. (2023). Ben-
efits, challenges, and performance analysis of a scal-
able web architecture based on micro-frontends. UPB
Scientific Bulletin, Series C: Electrical Engineering
and Computer Science, 85(3):319-334. cited By 0.

Poloskei, 1. and Bub, U. (2021). Enterprise-level migra-
tion to micro frontends in a multi-vendor environment.
Acta Polytechnica Hungarica, 18(8):7 —25. Cited by:
4; All Open Access, Bronze Open Access.

Rappl, F. and Schoéttner, L. (2021). The Art of Micro Fron-
tends: Build websites using compositional Uls that
grow naturally as your application scales. Packt Pub-
lishing.

Shakil, M. and Zoitl, A. (2020). Towards a modular archi-
tecture for industrial hmis. In 25th IEEE International
Conference on Emerging Technologies and Factory
Automation, ETFA 2020, Vienna, Austria, September
8-11, 2020, pages 1267-1270. IEEE.

Simdes, B., del Puy Carretero, M., Santiago, J. M., Segovia,
S. M., and Alcain, N. (2023). Twinark: A unified
framework for digital twins based on micro-frontends,
micro-services, and web 3d. In Posada, J., Moreno,
A., Jaspe, A., Muiioz-Pandiella, 1., Stricker, D., Mou-
ton, C., Mohammed, A., and Elizalde, A., editors, The

116

28th International ACM Conference on 3D Web Tech-
nology, Web3D 2023, San Sebastian, Spain, October
9-11, 2023, pages 9:1-9:10. ACM.

Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., and
Ziindorf, A. (2021). Applying model-driven engineer-
ing to stimulate the adoption of devops processes in
small and medium-sized development organizations.
SN Comput. Sci., 2(6):459.

SPA, S. (2022). Single spa - getting started overview. Ac-
cessed on January 6, 2024.

Stefanovska, E. and Trajkovik, V. (2022). Evaluating
micro frontend approaches for code reusability. In
Zdravkova, K. and Basnarkov, L., editors, ICT Innova-
tions 2022. Reshaping the Future Towards a New Nor-
mal - 14th International Conference, ICT Innovations
2022, Skopje, Macedonia, September 29 - October 1,
2022, Proceedings, volume 1740 of Communications
in Computer and Information Science, pages 93—106.
Springer.

Taibi, D. and Mezzalira, L. (2022). Micro-frontends: Prin-
ciples, implementations, and pitfalls. ACM SIGSOFT
Softw. Eng. Notes, 47(4):25-29.

Tilak, P. Y., Yadav, V., Dharmendra, S. D., and Bolloju,
N. (2020). A platform for enhancing application de-
veloper productivity using microservices and micro-
frontends. In 2020 IEEE-HYDCON, pages 1-4.

Wang, D., Yang, D., Zhou, H., Wang, Y., Hong, D., Dong,
Q., and Song, S. (2020). A novel application of educa-
tional management information system based on mi-
cro frontends. In Cristani, M., Toro, C., Zanni-MerKk,
C., Howlett, R.J., and Jain, L. C., editors, Knowledge-
Based and Intelligent Information & Engineering Sys-
tems: Proceedings of the 24th International Confer-
ence KES-2020, Virtual Event, 16-18 September 2020,
volume 176 of Procedia Computer Science, pages
1567-1576. Elsevier.

Wanjala, S. T. (2022). A framework for implementing mi-
cro frontend architecture. Int. J. Web Eng. Technol.,
17(4):337-352.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Systematic Litera-
ture Reviews, chapter 4, pages 45-54. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Yang, C., Liu, C., and Su, Z. (2019). Research and ap-
plication of micro frontends. IOP Conference Series:
Materials Science and Engineering, 490(6):062082.

Zhang, C., Zhang, D., Zhou, H., Wang, X., Lv, L., Zhang,
R., Xie, Y., Liu, H., Li, Y., Jia, D., Huang, Y., and
Jiang, T. (2023). Application business information
interaction bus based on micro frontend framework.
In 2023 7th International Symposium on Computer
Science and Intelligent Control (ISCSIC), pages 306—
310, Los Alamitos, CA, USA. IEEE Computer Soci-
ety.

