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Abstract: Deep Neural Networks are being utilized in increasingly numerous software systems and across a wide range
of data modalities. While this affords many opportunities, recent work has also shown that deep learning
systems often fail to perform up to specification in deployment scenarios, despite initial tests often indicating
excellent results. This disparity can be attributed to shifts in the nature of the input data at deployment time
and the infeasibility of generating test cases that sufficiently represent data that have undergone such shifts. To
address this, we leverage recent advances in uncertainty quantification for deep neural networks and outline a
framework for developing runtime verification support for deep learning systems. This increases the resilience
of the system in deployment conditions and provides an increased degree of transparency with respect to the
system’s overall real-world performance. As part of our framework, we review and systematize disparate work
on quantitative methods of detecting and characterizing various failure modes in deep learning systems, which
we in turn consolidate into a comprehensive framework for the implementation of flexible runtime monitors.
Our framework is based on requirements analysis, and includes support for multimedia systems and online
learning. As the methods we review have already been empirically verified in their respective works, we
illustrate the potential of our framework through a proof-of-concept multimedia diagnostic support system
architecture that utilizes our framework. Finally, we suggest directions for future research into more advanced
instrumentation methods and various framework extensions. Overall, we envision that runtime verification
may endow multimedia deep learning systems with the necessary resilience required for deployment in real-
world applications.

1 INTRODUCTION

Deep learning is considered the state-of-the-art ap-
proach for a wide variety of tasks and is being uti-
lized in a growing number of software systems. Nev-
ertheless, Deep Neural Networks (DNNs) have been
shown to exhibit several shortcomings in deployment
settings that are not generally observed at the devel-
opment stage (Paleyes et al., 2022; Lwakatare et al.,
2020). In particular, it has been shown that DNNs
readily fail to generalize to data that exhibit proper-
ties that are not well-represented in the training data,
for instance different lighting-conditions (Ali et al.,
2022), demographic stratification (Oakden-Rayner
et al., 2020), image-noise (Hendrycks and Dietterich,
2019), or other, more subtle changes (Geirhos et al.,
2020). In addition to this, there are also significant
issues with respect to fairness (Holstein et al., 2019),
privacy (Mireshghallah et al., 2020), and security (Liu
et al., 2021). Current state-of-the-art large language
models have also been shown to exhibit severe prob-

lems with respect to reliability (Liu et al., 2024) and
hallucinations (Azamfirei et al., 2023). While deep
learning researchers are making strides towards ad-
dressing these shortcomings, DNNs still lack the nec-
essary degree of resilience that would warrant their
implementation in many software systems (Paleyes
et al., 2022). This is of particular relevance to high-
stakes domains such as autonomous vehicles, medical
systems, and algorithmic decision-making, wherein
any of the aforementioned failures could incur sig-
nificant consequences for stakeholders if not imme-
diately recognized and reacted to by a human in the
loop.

Many of these issues can be attributed to the sen-
sitivity of neural networks with respect to shifts in the
nature of the data – i.e. distributional shifts – and
are further complicated by the fact that there is a lack
of testing methodologies capable of uncovering these
shortcomings at the development stage. This means
that these shortcomings are often not identified until
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after they have already manifested in a deployment
scenario. Although it is common development prac-
tice to test neural networks using hold-out datasets
or through cross-validation, this does not generally
constitute a realistic representation of the network’s
accuracy during deployment. Indeed, many of the
shortcomings outlined above can only be discovered
after administering rigorous stress-tests or assessing
the constituent networks on an entirely new, manually
labeled, and curated out-of-distribution dataset (Ali
et al., 2022; Geirhos et al., 2020; Winkler et al., 2019;
D’Amour et al., 2020; Li et al., 2022). While large-
scale testing of this kind already constitutes a signif-
icant improvement over the current standard practice
of simply partitioning the training dataset (Li et al.,
2022), this is often infeasible in production contexts
to the required costs of data-curation and annota-
tion, and is in any case unlikely to account for all
the possible edge-cases that may be encountered in
a deployment scenario (Li et al., 2022; Riccio et al.,
2020). In conventional software systems, such edge-
cases are often identified through input fuzzing tech-
niques (Myers et al., 2011), but this is not generally
a feasible approach with respect to the testing of neu-
ral networks. Whereas conventional software systems
are generally characterized by a well-defined state-
and input-space from which test-cases can be sam-
pled (Myers et al., 2011), deep learning systems op-
erate on manifolds of high-dimensional data (Brahma
et al., 2016). Sampling inputs that sufficiently repre-
sent the scope of variability present in a deployment
scenario thus requires accurately modeling this man-
ifold, a task of equal difficulty to training a network
capable of perfect generalization (Li et al., 2022; Ric-
cio et al., 2020).

Current approaches to the verification of deep
learning systems are thus not typically successful in
their objective of ascertaining whether or not a given
DNN will perform up to specification during deploy-
ment, and deep learning systems often fail in deploy-
ment scenarios as a result. Taking inspiration from
high-stakes systems engineering disciplines (Linde-
mann et al., 2023; Francalanza et al., 2018; Pike
et al., 2012; Falcone et al., 2013), we contend that
these issues can be largely mitigated through the im-
plementation of runtime verification (RV) as system
support. This provides an effective safeguard against
insufficient testing at development time, and circum-
vents the problem of representative test-case genera-
tion by simply extracting test-cases as the system is
deployed and executing. While these inputs are nec-
essarily unlabeled, recent advances in DNN uncer-
tainty quantification has shown that it is nevertheless
possible to extract meaningful surrogates of system

performance from DNN representations of the input
data alone (Yang et al., 2022; Zhang et al., 2022).
By continuously monitoring these surrogates across
all data sources within the system at runtime, devia-
tions from specified behavior can be detected and re-
acted upon as they arise, mitigating – and, given suit-
able fall-back measures, possibly preventing – system
failure.

To this end, we introduce a framework for the de-
velopment of RV support for deep learning systems.
Our framework is based on requirements analysis,
and involves the composition of various online test-
ing methods that evaluate surrogates of system prop-
erties, selected in accordance to the system’s require-
ments and data modalities. Our framework is com-
patible with several different data modalities, can ac-
count for the implementation of active-learning, and
can be used to develop RV for complex multimedia
systems. We support our arguments with a review
of suitable online testing methods extracted from dis-
parate work on distributional-shift detection, fairness
in machine learning, adversarial attacks, guardrails
for Large Language Models (LLMs), and more. As
the efficacy of these methods have already been em-
pirically verified in their respective works, we forego
additional empirical analysis in favor of demonstrat-
ing the potential of our framework through a proof-
of-concept multimedia medical deep learning system
architecture.

We summarize our contributions as follows:

• We outline a general-purpose framework for de-
veloping robust deep-learning systems with RV,
including support for multimedia systems and ac-
tive learning.

• We review, systematize, and unify previous work
on uncertainty quantification and verification of
deep neural networks, highlighting existing meth-
ods suitable for RV.

• We contextualize our work in terms of an example
system architecture consisting of a medical multi-
media system.

• We propose several avenues of further investiga-
tion and development, including an outline for a
probabilistic risk-assessment framework for deep
learning systems.

We organize our work as follows: in Section 2, we
review shortcomings of deep learning systems, out-
line existing work on the verification of deep learning
systems, and relate the concept of RV in conventional
software systems to deep learning systems. In Sec-
tion 3, we outline our proposed framework, including
a review of methods and metrics in the literature that
are suitable for use as runtime monitors. In Section 4,
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we outline an example of a multi-modal medical deep
learning system that implements our framework. Fi-
nally, we discuss the potential of this framework to-
wards endowing deep learning systems with opera-
tional resilience and propose several promising direc-
tions for future research.

2 RELATED WORK

In this section, we outline related work on the short-
comings and verification of deep learning systems,
and outline the benefits of RV in other domains.

The shortcomings of DNNs can be understood in
terms of the affected system properties. This often
includes failures with regards of correctness, robust-
ness, fairness, explainability, scalability, privacy, se-
curity, etc. The correctness of a DNN is, for instance,
only guaranteed given that the data is identically dis-
tributed to the data with which it was trained and val-
idated (Goodfellow et al., 2016). Violations of this
assumption results in generalization failure. This has,
for instance, been studied in the polyp-segmentation
domain, where a change in center or lighting con-
ditions was shown to significantly reduce polyp de-
tection rates, despite utilizing generalization-oriented
training procedures (Ali et al., 2022). In another study
it was shown that medical systems for skin-cancer di-
agnosis and diabetic retinopathy detection failed to
generalize to underrepresented skin-tones and imag-
ing equipment respectively (D’Amour et al., 2020). In
general, vision-models have been shown to be sensi-
tive to adversarial attacks and natural corruptions such
as additive noise or blurs (Hendrycks and Dietterich,
2019). State-of-the-art LLMs have been shown to
fail to generalize to sentence reversal (Berglund et al.,
2023), often fabricate information in outputs (Azam-
firei et al., 2023), and readily yield harmful or other-
wise unethical outputs (Yao et al., 2024). They have
also been shown to be prone to generating incorrect
answers when prompted with leading questions or
continued prompt contradiction, a phenomenon often
referred to as LLM-sycophancy (Wang et al., 2023).
It is often argued that these errors can be elucidated
through the use of explanations (Adadi and Berrada,
2018), based on the assumption that incorrect pre-
dictions will yield incongruous explanations. This
view has been challenged by recent work, however,
which has shown that explanations are often mislead-
ing (Rudin, 2019) and can be easily fooled by adver-
sarial perturbations (Heo et al., 2019). DNNs have
also been shown to often lack the fairness necessary
for responsible deployment in domains with socially
salient outcomes (Holstein et al., 2019), as exempli-

fied in a aforementioned study on skin-cancer diag-
nosis. Credit-scoring systems have also been shown
to readily learn biases with respect to gender, race,
and other such variables, despite these variables not
appearing in the training data (Hurlin et al., 2024).
Privacy violations, though somewhat less frequently
studied, are also commonplace in deep learning sys-
tems. It has, for instance, been shown that it is possi-
ble to recover confidential training data using model
inversion (Song and Namiot, 2023) and that it may be
possible to re-identify users from anonymized medi-
cal signal data (Ghazarian et al., 2022).

In the majority of the aforementioned works, sys-
tem failures were only identified after administering
rigorous stress-tests and testing the system on unseen,
Out of Distribution (OOD) data. Such testing has
been shown to generally not be standard practice in
the industry due to high costs and a general lack of
suitable testing frameworks (Li et al., 2022; Riccio
et al., 2020). The majority of deep learning systems
are instead typically evaluated by computing simple
correctness metrics on hold-out sets, which generally
do not represent the variability present in a deploy-
ment scenario. While synthetic test-input generation,
for instance through generative modeling with OOD
seed data (Pei et al., 2017), offer a partial solution,
the efficacy of these methods has been contested (Li
et al., 2022).

In conventional software engineering and other
systems engineering disciplines, too, the state-spaces
can be so large that conventional testing is consid-
ered insufficient. Where system failures can incur
significant consequences, another solution is to use
RV. RV is the study of algorithms, metrics, and meth-
ods for understanding the behavior of an executing
system (Falcone et al., 2013; Falcone et al., 2021).
Implementing these methods in software systems al-
lows increased confidence that the system is working
as specified at runtime. The RV process is illustrated
in Figure 1, and can be distinguished according to
two distinct components: the monitor, which tracks
the events or states of the system and compares these
against predefined correctness criteria, and the instru-
mentation, which refers to the process or techniques
by which the system’s behaviour is characterized. At
runtime, the monitor reads from the system instru-
mentation and yields a verdict in accordance with the
specified acceptable range of the observations. The
verdict can, in turn, be used to activate fall-back mea-
sures or generate system-wide alerts.

RV is widely used in high-stakes systems.
NASA’s copilot (Perez et al., 2020), for instance, is
a form of RV designed to detect and react to sys-
tem failures aboard space shuttles. Similar methods
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Figure 1: The RV process.

are also often utilized in aviation (Pike et al., 2012)
and semi-autonomous vehicles (Lindemann et al.,
2023). Decentralized and distributed systems also of-
ten implement some form of RV, typically to ensure
that crashed or faulty nodes do not adversely affect
the overall system or to resolve conflicting messages
within the network (Francalanza et al., 2018). RV has
a distinct advantage compared to conventional testing,
precisely in that the system can be verified on what-
ever data is required at runtime. With conventional
testing, it would be necessary to generate a test case
that represents this data – and, depending on require-
ments, all possible data – but with RV, test cases are
extracted from the execution itself, with the main ob-
stacle being the design of test criteria. Though RV
may be less robust than conventional testing as a re-
sult, it significantly mitigates any undesirable behav-
ior from untested inputs, as exemplified in the afore-
mentioned applications.

3 RUNTIME VERIFICATION FOR
DEEP LEARNING SYSTEMS

So far, we have shown that DNNs exhibit a num-
ber of shortcomings that greatly hinder their utility
as components of software systems. We have also
outlined how they are difficult to test sufficiently due
to their large input spaces, and how similarly com-
plex systems in other disciplines greatly benefit from
RV. It therefore stands to reason that that deep learn-
ing systems, too, stand to benefit from implement-
ing RV methods as a system support. In this section,
we thus outline a framework for the development of
RV for deep learning systems based on requirements
analysis, and provide an overview of suitable meth-
ods thereto as described in other literature, which we
organize according to data modalities.

The framework is summarized in Figure 2. The
process starts at the requirements specification stage.
For the system requirements to be satisfied at runtime,
the corresponding properties – e.g. correctness, fair-
ness, safety, etc – must be actively monitored.

Next, it is necessary to identify any parts of the
system that may be prone to failures with respect
to each of the aforementioned requirements, for in-

stance, data sources, intermediate results in pipelined
models, explanations, system outputs, and user in-
puts. We refer to these collectively as data paths.
Increasingly complex systems contain larger amounts
of these data paths, each of which may require moni-
toring. Consider, for instance, a system consisting of
a single model that requires two input data sources.
It is not sufficient to monitor only one of these data
sources, and analyzing both sources simultaneously
requires data fusion (Baltrušaitis et al., 2017; Lahat
et al., 2015), which may introduce additional errors.
Similarly, intermediates in pipelined models – for ex-
ample, where the output of one DNN is used as the
input to another – must be monitored in order to avoid
error propagation (Srivastava et al., 2020). As imple-
menting monitors for each requirement in each data
path is likely to incur significant computational costs,
it is, however, necessary to assess what system prop-
erties are at risk at each path according to a threat
model. For example, if it is unlikely that a data source
contains privacy violations, there is no point in imple-
menting a privacy monitor on this path. If a threat
to the system’s ability to meet its specified require-
ments has been identified for a given data path, it is
considered a critical data path and is determined to
require monitoring. Distinguishing between threats
across data sources and domains is particularly im-
portant in systems composed of multiple modalities –
i.e. multimedia systems – due to the increased com-
plexity that arises due to cross-modal contexts. It has,
for instance, been shown that state-of-the-art multi-
modal LLMs can be jail-broken if certain images are
provided alongside a prompt that the guardrails would
otherwise deem harmful (Li et al., 2024b). In this
case, monitoring both images and prompts would be
necessary for the attack to be detected.

Once these critical data paths have been identi-
fied, the next step is to implement suitable monitors
for each of them. This requires a means by which the
incidence of system failures can can be characterized.
Whereas this may be fairly straightforward in conven-
tional systems, one cannot generally characterize such
violations precisely in deep learning systems. Instead,
it is necessary to develop sufficiently expressive sur-
rogates for each system requirement as part of the in-
strumentation development process. To aid in this, we
provide a brief overview of potential threats to over-
all system performance in terms of system properties
alongside suitable instrumentation algorithms as pre-
sented in other literature in Table 1. To benefit a wide
array of different application domains, we organize
these methods according to data modalities. We note
that this list is by no means comprehensive and that
the development of specialized monitoring methods
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1 2 3 4 5

Define System
Requirements

Identify Critical Data Paths
Input sources, outputs, and

intermediates that may affect system
requirements

Design/Implement Suitable
Monitors

For each critical data path and threat,
implement a suitable monitor

Assess Monitors
Verify that the monitors work as

intended, e.g. through synthetic input
generation. Tune monitors.

Deploy System
Store system traces such that

undetected system failures can be
addressed through updates or redesigns

Figure 2: RV development process for deep learning systems.

may be required in production systems. Moreover,
it is worth noting that the scope of efficacy of these
methods is not yet fully understood. The credibility
of the reported accuracy of many adversarial attack
detectors has, for instance, been contested (Tramèr,
2022).

After suitable monitors have been implemented at
each critical data path, the next step is to verify that
the monitors perform to a sufficient standard. Though
this might appear to counteract the stated benefits of
using RV methods in the first place – i.e., not re-
quiring extensive testing – it is nevertheless neces-
sary, as RV are in and of themselves software ar-
tifacts (Falcone et al., 2021). Testing RV methods
is generally easier, however, as monitors can gen-
erally be unit-tested and are characterized by more
well-defined problem statements, as evidenced by
the extensively developed methodologies convention-
ally used to evaluate Distributional Shift Detectors
(DSDs). Generating suitable test cases is also expe-
dited by the fact that the monitors yield a single bi-
nary verdict, and that monitors operate on surrogates
for system properties as opposed to the specifications
themselves. For instance, verifying that a correctness
monitor works as expected may simply requite testing
whether a given DSD correctly identifies synthetically
augmented data as OOD, rather than testing whether
the DNN yields accuracies within a specific interval
for all plausible input data.

Finally, it is necessary to continuously collect sys-
tem logs for each critical data path and monitor the
verdict once the system has been deployed. This fa-
cilitates the continued improvement of the monitors
themselves by permitting analysis of system failures
the monitors have failed to detect. If the system im-
plements some form of active learning or other forms
of feedback loops, these logs can then also inform cor-
responding monitor updates. This may, for instance,

be achieved through re-calibration of the monitors at
set intervals and be incorporated as a regular form of
system maintenance.

4 EXAMPLE: RUNTIME
VERIFICATION FOR A
MEDICAL MULTIMEDIA
SYSTEM

To illustrate the potential benefits of RV in production
scenarios, we include an example of a system archi-
tecture that implements our framework for a diagnos-
tic support system for heart disease detection. The
system inputs consist of several data modalities, in-
cluding time-series data in the form of cardiographs,
visual data in the form of echocardidograms and tab-
ular data in the form of patient information such as
medical history, age, etc. The central model in this ar-
chitecture, LLaVA-Med (Li et al., 2023), accepts this
data as input and yields a diagnosis, an initial prog-
nosis, and suggests treatment if required, all in accor-
dance with a clinician’s prompt(s).

In accordance with our framework, we start with
defining some system requirements. Critical data
paths are then identified, along with suitable moni-
tors for each path. Though we have provided exam-
ples of suitable monitor algorithms, we note that in a
production scenario, these choices should ideally be
informed by prototyping. The results are shown in
Table 2, and the resulting architecture is shown in in
Figure 3.

Though we do not assess this architecture empir-
ically, the results in each of the cited works for each
monitor indicate that this system architecture would,
in a deployment context, exhibit a significantly im-
proved degree of robustness, safety, privacy, trans-
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Table 1: Overview of typical threats to deep learning system performance and examples of viable RV monitors, separated
according to data modality. * = survey papers; ? = unable to find suitable monitors.

Modality Property Threat(s) Suitable Monitors

Images
& Video

Correctness Generalization Failure (D’Amour
et al., 2020; Geirhos et al., 2020;
Kauffmann et al., 2020)

(Yang et al., 2022)*

Robustness Corruptions, Noise (Hendrycks and
Dietterich, 2019)

(Yang et al., 2022)*

Privacy Model Inversion (Song and Namiot,
2023)

(Song and Namiot, 2024)

Safety Adversarial Attacks (Biggio
et al., 2013), data poison-
ing (Schwarzschild et al., 2021)

(Harder et al., 2021; Zheng and
Hong, 2018; Metzen et al., 2017),
(Paudice et al., 2018; Steinhardt
et al., 2017; Wang et al., 2019)

Explainability Misleading explanations (Zhou et al., 2021)*
Fairness Unfair predictions, model bias, un-

fair performance
(Chen et al., 2024), ?

Compliance Intellectual Property violations ?

Text

Correctness Generalization Failure (Berglund
et al., 2023; Perez-Cruz and Shin,
2024), Misinformation

(Achintalwar et al., 2024; Li et al.,
2024a)*

Robustness Sentence Reversal (Berglund et al.,
2023)

?

Privacy Model Inversion (Song and Namiot,
2023)

?

Safety Jail-breaking, unsafe output (Alon and Kamfonas, 2023; Inan
et al., 2023; Yuan et al., 2024; Li
et al., 2024b), (Achintalwar et al.,
2024)*

Explainability Sycophancy(Wang et al., 2023) ?
Fairness Latent Bias (Chu et al., 2024) (Chu et al., 2024)*
Compliance Intellectual Property violations ?

Audio

Correctness Generalization Failure (Yang et al., 2022)
Robustness Noise and Poor Acoustics (Xu et al.,

2021)
?

Privacy User-identification (Williams et al.,
2021)

?

Safety Adversarial Attacks (Carlini and
Wagner, 2018)

(Ma et al., 2021; Harder et al., 2021)

Compliance Intellectual Property viola-
tions (Blumenthal, 2024)

?

Signals
Correctness Generalization Failure (Yang et al., 2022)*(Provotar et al.,

2019)
Robustness Sensor Drift (Zheng and Paiva,

2021)
(Yang et al., 2022; Marathe et al.,
2021)

Privacy Re-identification (Ghazarian et al.,
2022)

?

Tabular
Data

Correctness Incomplete/Invalid data (Hynes et al., 2017)
Safety Data Poisoning (Schwarzschild

et al., 2021)
(Steinhardt et al., 2017)

Fairness Algorithmic Bias (Holstein et al.,
2019)

(Chen et al., 2024)

Explainability Misleading Explanations (Heo
et al., 2019)

?

parency, and trustworthiness over a naive, monitor-
free implementation. A full picture of the value of
such a system architecture does, however, require

integration testing, ideally as part of a field study,
though this is beyond the scope of this paper.
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Table 2: System requirements and suitable monitors for a diagnostic support system.

Property Requirement Threat(s)
Critical
Data Paths Monitor

Correctness The system should assign
correct diagnoses at rates
comparable to a trained
clinician

Distributional Shift, incom-
plete data, leading prompts

All data sources OOD-detector (Yang
et al., 2022), data-
lintering (Hynes et al.,
2017), sycophancy-
monitoring (Achintalwar
et al., 2024)

Robustness The model should be robust
to minor perturbations

Noise, blurs, adversarial at-
tacks

Echocardiogram data, EKG
data

Adversarial attack detection
(Harder et al., 2021)

Explainability The factors informing diag-
nosis need to be communi-
cated with respect to each
data stream

Stakeholders do not trust
system/ insufficient regula-
tory compliance

Explanation outputs Explanation quality met-
rics (Zhou et al., 2021)

Safety The system should raise
alerts when yielding diag-
noses with high-impact or
otherwise risky treatment
plans

System suggests treat-
ments that can interact
adversely with patient
history/medication or oth-
erwise exhibit high risks

LLaVA-Med outputs Database check of treat-
ment plans, their side-
effects, and overall risk
assessment

Privacy The patient’s privacy and
the privacy of previous pa-
tients must be maintained,
including training data

Privacy violations in gener-
ated outputs

LLaVA-Med outputs, Ex-
planations

Privacy Guard-rails (Achin-
talwar et al., 2024)

Safety/ Extensibility If monitors indicate im-
peded performance, the
clinician’s manual diagno-
sis and patient data should
be used to update the model

Data sources have been
tampered with or are other-
wise poor quality, clinician
has failed to enter ground-
truth correctly

Clinician diagnosis and
treatment plan, data sources

Data poisoning detec-
tion(Paudice et al., 2018)

Fairness Outputs should be invariant
to non-causal patient prop-
erties, e.g. race, income

System yields unfair out-
comes

LLaVA-Med outputs Fairness tests(Chen et al.,
2024)

Patient 
Records

ECG
Cardiogram

Echocardiogram

All
InD?

No

Prompts

Prompt Guardrails
(Sycophancy

Detection)

Adversarial
Attack/Noise

Detector
OOD-Detector

OOD Detector
(Anomaly
Detection)

Data lintering

Valid?

Manual Diagnosis
&

Treatment Plan

Output Safety
(Database lookup)

Output Fairness
 (Fairness testing)

Accept
Output

Clinician
Manual Diagnosis

&
Treatment Plan

Yes

VQA Response
Guardrails

Diagnosis &
Treatment 

No

Output Privacy
 (Guardrails)

PatientInfo

gender = male
age = 53

Does the patient
exhibit any 

abnormalities?

Training-Data
Patient

Outcomes,
Monitor Traces

No

Clinician

Explanation
Quality

Explanation
Privacy

VQA
Explanations

LLaVa-Med
Yes

Data Quality
Monitor

(poisoning
detection)

Clinician

Adversarial
Attack/Noise

Detector

Figure 3: Medical Diagnostic Support System. Green blocks correspond to monitors. For simplicity, we have not specified
fallback measures for all monitors except where positive verdicts raise the need for further processing.

5 DISCUSSION

As illustrated by the example in Section 4 and the var-
ious suitable monitors reviewed in Section 3, RV al-

ready has the potential to endow deep learning mul-
timedia systems with an increased degree of fault-
tolerance, increasing the feasibility of real-world de-
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ployment of deep learning systems in performance-
critical scenarios. In contrast to the majority of
current implementations of deep learning systems,
wherein system failures manifest silently, our frame-
work permits the detection of system failures at run-
time. Monitor verdicts can then be utilized as signals
to engage fallback measures, for instance in the form
of human intervention or user alerts. In the medi-
cal system illustrated in Section 4, the use of mon-
itors may contribute to more efficient and accurate
diagnoses and treatment of patients, ensure regula-
tory compliance, and expedite any required analysis
should there be a need to troubleshoot or improve the
system.

Beyond medical domains, we also envision that
our framework may greatly benefit systems for au-
tomated journalism and content creation. One may,
for instance, develop and implement monitors that as-
sess the factual accuracy of generated content, iden-
tify potential sources of bias, and/or highlight ethi-
cal considerations, for instance, built on the same al-
gorithmic principles as LLM guardrails. Automated
content filtering and recommendation systems might
also benefit, in particular, given sufficient monitoring
at all critical data paths. Incitements to violence, hate-
speech, deep-fakes, or other undesired content may be
monitored holistically and with respect to both the au-
dio, video, and textual modalities of social media plat-
forms given sufficient algorithmic development. Indi-
vidual monitors may in these cases be easily updated
to adapt to changes in how undesirable content man-
ifests with regards to terminology, imagery, or stake-
holder values, facilitated by monitor trace logging and
the compartmentalization afforded by our framework.

We envision that RV system support can become
as ubiquitous in deep learning systems as it is in other
critical software systems. Further research is required
to this end, however, in particular with regards to the
development of instrumentation that can serve as ef-
fective surrogates for system requirements. A large
majority of existing research in this regard has been
scattered around the development of robustness- and
correctness monitors for image-based systems in the
form of DSDs (Yang et al., 2022) and adversarial at-
tack detectors (Harder et al., 2021; Zheng and Hong,
2018; Metzen et al., 2017). There has, however, been
sparse research towards equivalent methods for large
language models, and sparser still with respect to tab-
ular data and time-series data. Of equal concern is the
scarcity of monitoring methods for more cross-cutting
system properties, such as security, privacy, and fair-
ness. Though this has recently been more extensively
studied in the context of LLMs guard-rails, there is
a need for equivalent efforts for other modalities. To

the best of our knowledge, there are for instance cur-
rently no existing methods of detecting fairness viola-
tions in the form of correctness discrepancies across
sub-populations, nor any methods of monitoring for
privacy violations in image data, such as the detec-
tion of uncensored watermarks, faces, or logos. For
reference, consider the sparsity of citations in certain
entries of Table 1.

Though in this work, we have included a number
of suitable examples of runtime monitors and instru-
mentation, a more extensive survey of instrumenta-
tion methods is warranted. Given sufficient further
development, a library implementing a suite of such
methods may also be useful, both for the purposes of
engineering and for more granular evaluation of deep
neural networks in academic contexts.

Further research into monitor instrumentation is
hindered by a lack of sufficient benchmarks. As men-
tioned in Section 3, test-cases are required in order
to sufficiently evaluate runtime monitors. For the de-
tection of distributional shift and adversarial attacks,
generating test cases is fairly simple, often only re-
quiring the synthetic modification of training data. On
the other hand, obtaining test cases for other system
properties may be challenging. The development of
a suitable explanation quality monitor, for instance,
would require some notion of what a suitable expla-
nation entails. This requires qualitative assessments
from end-users, which is time-consuming and labour-
intensive. Equivalently, verifying that a fairness mon-
itor correctly detects unfair behaviour requires a test-
bed that contains representative examples of the var-
ious forms of fairness violations that may occur. We
thus also call for the development of datasets and
benchmarks that lend themselves to the development
of RV methods. This could, for instance, entail pack-
aging datasets with two separate model checkpoints
and/or dataset folds, one that satisfies some system re-
quirement and one that does not. Profiling these meth-
ods with respect to execution time and resource re-
quirements is also warranted. Many multimedia sys-
tems have strict technical requirements, and existing
monitoring methods have not generally been devel-
oped with execution time and resource usage in mind.
In domains where real-time execution is necessary,
there may also be a trade-off with respect to the over-
head introduced by the added monitors and the re-
ductions in the DNN’s parameter counts and auxiliary
processing this overhead would necessitate.

Constructing monitors with other monitor outputs
as instrumentation components may also contribute
to greater insight into the system’s function, in par-
ticular in domains requiring multi-modal data. Fair-
ness with respect to correctness may, for instance,
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be monitored by keeping track of any differences in
prediction rates of distributional-shift detectors with
respect to any pertinent variables. In the system
outlined in Section 4, for instance, one might ver-
ify that the system yields fair outputs by monitor-
ing for disparate distributional-shift detector predic-
tion rates with respect to patient data such as age,
gender, race, etc. The explanation quality monitor
might, in an equivalent manner, be improved by uti-
lizing noise detector and prompt monitor outputs, for
instance, by preventing explanation-affecting adver-
sarial attacks (Heo et al., 2019) or mitigating false ex-
planations due to leading questions in the prompts.

A possible additional benefit of utilizing RV for
deep learning is that it may facilitate the development
of a probabilistic risk assessment framework. Proba-
bilistic risk assessment is common in high-stakes do-
mains (Stamatelatos et al., 2011) and involves statisti-
cal analysis of the rates of system failures. RV meth-
ods can be useful in this regard by providing empiri-
cal probability estimates at each point of failure sim-
ply by recording and analyzing monitor verdicts over
time. In turn, this can be used to quantitatively spec-
ify system risk, increase the overall trustworthiness
of deep learning systems, and inform judicial deci-
sions in the event that these failures incur significant
consequences. Given a sufficiently rigorous method-
ology, these probability estimates may also constitute
sufficient evidence for a given system’s overall per-
formance and thus assure regulatory compliance and
inform health and safety evaluations.

Overall, we conjecture that the development of RV
methods for multimedia deep learning systems is an
area of significant potential with respect to further re-
search. Continued efforts to this end may, in time,
facilitate the operationalization of such systems and
ameliorate many of the shortcomings preventing their
application in production domains.

6 CONCLUSION

In this paper, we have proposed an RV framework
for deep learning systems. We have reviewed recent
work in the field on how deep learning systems readily
fail in practical deployment and how existing meth-
ods for testing these systems generally fall short. Im-
plementing deep learning systems with RV methods
can, however, improve the system’s trustworthiness,
transparency, fault-tolerance and overall utility, as ev-
idenced by the recent successes with regard to the
development of methods of detecting distributional
shift. By building monitors for each system require-
ment and at each critical data path, system failures can

be detected and treated, improving the overall trust-
worthiness of the system. We envision that runtime
monitors may, in time, become necessary components
of deep learning systems, similar to how they are crit-
ical components of safety-critical or otherwise high-
stakes systems in other fields. Continued research
and development of RV methods may, over time, ease
the difficulty of regulatory compliance, improve sys-
tem stability and overall performance, and reduce the
risks involved with the real-world deployment of deep
learning systems.
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