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Abstract: The impact of Large Language Models (LLMs) in computer science (CS) education is expected to be profound.
Students now have the power to generate code solutions for a wide array of programming assignments. For
first-year students, this may be particularly problematic since the foundational skills are still in development
and an over-reliance on generative AI tools can hinder their ability to grasp essential programming concepts.
This paper analyzes the prompts used by 69 freshmen undergraduate students to solve a certain programming
problem within a project assignment, without giving them prior prompt training. We also present the rules
of the exercise that motivated the prompts, designed to foster critical thinking skills during the interaction.
Despite using unsophisticated prompting techniques, our findings suggest that the majority of students suc-
cessfully leveraged GPT, incorporating the suggested solutions into their projects. Additionally, half of the
students demonstrated the ability to exercise judgment in selecting from multiple GPT-generated solutions,
showcasing the development of their critical thinking skills in evaluating AI-generated code.

1 INTRODUCTION

Large Language Models (LLMs) have been shown to
have the capacity to generate computer code from nat-
ural language specifications (Xu et al., 2022; Destefa-
nis et al., 2023). Currently, there are multiple avail-
able LLM-based tools which display that behaviour.
Two examples of such tools are OpenAI’s ChatGPT 1

and Google’s Gemini 2.
The implications of such tools for CS education

are obvious: students now have access to tools that
can generate code to solve programming assignments,
with the capacity to obtain full marks or close to it
(Prather et al., 2023; Savelka et al., 2023; Cipriano
and Alves, 2024b; Finnie-Ansley et al., 2023; Ouh
et al., 2023; Reeves et al., 2023).

There has been extensive research into how com-
puter science teachers should respond to LLMs,
adapting their teaching methods, assessments, and
more (Lau and Guo, 2023; Leinonen et al., 2023; Lif-
fiton et al., 2023; Finnie-Ansley et al., 2022; Sridhar
et al., 2023). Some resist (fight), contemplating ways

a https://orcid.org/0000-0003-4054-0792
b https://orcid.org/0000-0002-2017-7511
1https://chatgpt.com
2https://gemini.google.com

to prevent students from using chatbots like ChatGPT,
such as blocking access or employing detection tools
for AI-generated text with questionable effectiveness
(OpenAI, 2023). Others embrace this new paradigm,
adapting exercises so that students are encouraged to
make the most of LLMs, with presentations/discus-
sions or non-text-based prompts (Denny et al., 2024),
or analyzing the tool’s capacity to help students (Hel-
las et al., 2023).

Regardless of the instructional strategy adopted by
teachers, be it one of resistance or acceptance, stu-
dents will inevitably turn to ChatGPT, perhaps with
a certain degree of naivety, lacking knowledge about
prompting techniques and an exaggerated faith in its
responses. Moreover, most of their interactions will
occur without direct teacher oversight. With this
study, we want to understand what happens in these
cases: whether they will succeed in their endeavors
or fail miserably, and how can teachers help in their
journey.

We investigate two research questions:
RQ1. Can first-year students take advantage of LLMs
for code generation without any specific or formal
training?
RQ2. Are students able to incorporate solutions pro-
vided by ChatGPT into their projects?

This work makes the following contributions:
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• Proposes an exercise template that teachers may
use to foster their students’ critical thinking skills
when interacting with LLM-based tools;

• Analyzes the interactions of 69 first-year CS stu-
dents with ChatGPT to produce code using the
aforementioned template, but without having re-
ceived any formal training on the matter. This
analysis is based on log files provided by the stu-
dents documenting their attempts to solve a spe-
cific exercise within the context of their course
project;

• Presents the results of a post-exercise survey
(N=52) to find out the students’ perceptions on its
usefulness.

2 RELATED WORK

Some recent studies evaluated students’ interactions
with LLMs for code generation. One example,
(Denny et al., 2024) analyzed the interactions be-
tween students and ChatGPT in several dimensions
such as prompt lengths and number of attempts, fol-
lowing a methodology where instead of asking the
students to write the code themselves, they had to
write prompts to generate the code for them. In
(Prather et al., 2023), researchers studied how first
year students use Copilot (a GPT-based code gen-
eration code, trained on code publicly available on
GitHub) to solve a typical assignment on an intro-
ductory programming course, and found that these
novice students struggle to understand and use Copi-
lot, and are wary of the tool’s implications (i.e. such
as not being able to understand the generated code),
but are optimistic about integrating the tool into their
future development workflow. Another study (Prasad
et al., 2023) analyzed the GPT interactions of students
in a upperlevel course on applied logic and formal
methods, using an IDE plugin. The authors of (Babe
et al., 2023a) asked 80 students with a single semester
of programming background to write prompts for 48
problems and found that the students’ prompts can be
ambiguous to LLMs. Finally, (Kazemitabaar et al.,
2023) analyzed the interaction logs of learners aged
10 to 17, recruited from programming bootcamps,
and verified how the availability of Codex (a GPT-
based LLM) impacted their ability to independently
learn Python. They found evidences of learner’s self-
regulation, with some learners actively adding code to
test the AI-generated code, as well as over reliance,
with some learners submitting the assignment’s in-
structions in a single prompt.

Our study differs from these studies since all of
them analysed student’s interactions using introduc-

tory programming exercises as the basis for the study.
In our study, students had to generate code for a spe-
cific part of a large project (developed over the course
of approximately 3 months), meaning that GPT’s gen-
erated code would have to be integrated with the re-
maining of the students’ code, thus having an extra
layer of complexity.

3 EXERCISE TEMPLATE

This section describes a template for programming
exercises to be solved using Generative AI tools (e.g.,
ChatGPT, Gemini). The structured approach culti-
vates critical thinking (Naumova, 2023) and requires
no prior training in prompt engineering techniques.

The problem can be stated in any form (textual,
diagram, etc..) and the students must interact with an
LLM to get a good solution, that they can efficiently
apply (e.g., incorporate in their course project). Since
LLMs are prone to failing (Babe et al., 2023b; Denny
et al., 2023), students must ask the LLM for two al-
ternative implementations, a well-known prompting
technique (Treude, 2023), which must be documented
within a log file, to be submitted alongside the exer-
cise solution. This log file must also include a con-
cluding section wherein the chosen implementation
must be elucidated, along with the rationale behind
the selection. In summary, students must follow these
steps:

1. State the problem by asking a question to Chat-
GPT;

2. Analyze the provided solution;

3. Ask ChatGPT for an alternative solution, eventu-
ally providing further information or constraints;

4. Compare both solutions and write a description of
their findings;

5. Select one of the versions (i.e. the best one);

6. Integrate the selected version into their own
project.

All these interactions should be recorded for fur-
ther analysis.

To ensure uniformity in format and to clarify the
expected nature of interaction, an exemplar log file
was provided (shown in Listing 1).

4 EXPERIMENTAL CONTEXT

This study was performed in the scope of a Data
Structures and Algorithms (DSA) course belonging to
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Listing 1: Log format example, supplied to the students.

Human: Please implement a function in Java
that can identify the largest number in an
array of integers.
--------
ChatGPT: Sure thing! Here ’s a possible
implementation of a function in Java , which
finds the largest number in an array of
integers:

public static int findLargest(int[] numbers)
{

int largest = numbers[0]; // start with
the first number in the array
for (int i = 1; i < numbers.length; i++)
{

if (numbers[i] > largest) {
largest = numbers[i]; // update
the largest number

}
}
return largest;

}

This function takes an array of integers
(...)
--------
Human: Implement an alternative version of
this function that doesn ’t initialize the "
largest" variable with the first number in
the array.
--------
ChatGPT: Certainly! Here ’s a possible
alternative Java implementation to find the
largest number in an array of integers
without initializing the largest variable
with the first number in the array:

public static int findLargest(int[] numbers)
{

int largest = Integer.MIN_VALUE; //
start with the smallest possible value
for an integer
for (int i = 0; i < numbers.length; i++)
{

if (numbers[i] > largest) {
largest = numbers[i]; // update
the largest number

}
}
return largest;

}

This function begins by setting (...)

-------
GROUP ’S CONCLUSION: We chose the first
option because it avoids an extra comparison
at the beginning of the loop (the loop can

start at position 1 instead of position 0).

a Computer Engineering degree, during the 2022/23
school year. The course takes place in the second
semester of the first year, which means that most stu-
dents have only been exposed to one semester of pro-
gramming.

The course’s main assignment is the development
of a project, typically a command line application
that performs queries on a very large data set, pro-
vided in the form of multiple CSV files. The queries
must be implemented using efficient data structures
and algorithms—for example, some queries will re-
quire the usage of hash tables to achieve good perfor-
mance. Its development is split in two parts: in the
first part, students mainly need to implement code for
reading and parsing the input files, and, in the second
part, they have to focus on implementing the different
queries. This project is either implemented in groups
of 2 students or individually.

The project’s topic varies from year to year, as
does the input file structure and the required queries.
In this particular year, the project was about songs
and artists, using data extracted from the Million Song
data set3.

Note that, in this course, the professors and in-
structors allow and even encourage students to in-
teract with GPT. Also, the course’s main project ex-
plicitly asks students to use GPT in some of the re-
quirements. However, students were warned that they
would not be allowed to use GPT during the project’s
defense at the end of the semester. The following sec-
tion describes those requirements.

4.1 The ChatGPT Assignment

To foster a controlled student experimentation of
ChatGPT’s capabilities and its integration into the ed-
ucational framework, the project’s first part includes
a specific ChatGPT exercise.

Students were instructed to employ ChatGPT as
an aid in the reading and parsing a large CSV file con-
taining information about artists. The file’s format
is available4. Some of the challenges related to this
file were handling two different formats for single-
artist songs and multiple-artist songs, handling mul-
tiple artists associated with the same song across dis-
tinct lines, dealing with invalid lines, among others.
There were also technical restrictions: they couldn’t
use hash-based data structures (e.g., HashMap) in the
first part.

Students validated their code using an automated
assessment tool (AAT). They could submit multiple
times without penalty and received the execution re-
sults of several unit tests.

To guide their interaction with ChatGPT, this exer-
cise followed the template proposed on Section 3 and
resulted in a log file detailing all their interactions to
achieve a good solution. Incorporating this log file

3http://millionsongdataset.com/pages/getting-dataset/
4https://doi.org/10.5281/zenodo.8430808
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within the project was optional but carried a weight
of 0.5 points on the evaluation scale ranging from 0 to
20.

This strategic integration of ChatGPT served to
not only motivate students to delve into its usage
under controlled conditions but also to encourage a
structured evaluation process.

5 METHODOLOGY

In order to better understand how the students inter-
acted with ChatGPT to solve the ChatGPT assign-
ment (see Section 4.1), we manually analyzed their
interaction logs, categorizing them in several dimen-
sions. Furthermore, a brief survey was administered
subsequent to the assignment to ascertain the senti-
ments of the students towards the task.

5.1 Categorization

Since the students had been instructed to interact with
ChatGPT using the exercise template described in
Section 3, their logs mostly followed these steps: (1)
ask a question; (2) ask for an alternative solution; and
(3) provide a conclusion. Therefore, we decided to
analyze each step individually: initial prompt, sec-
ond prompt and conclusion. We added a fourth di-
mension called problem, to capture the diversity of
the problems students were asking GPT to help them
for.

We then further categorized each dimension into
the following categorization variables:

• Problem - What was the problem students were
asking GPT help for?
>Abstraction level (high or low) - Some students
asked very concrete and direct questions such as
’How to remove spaces and quotes from a string
in Java?’ while others asked more abstract ques-
tions such as ’Implement a function in Java that
read a .txt file with the following format (...)’
>Nature (generic or domain-specific) - If the
stated problem was or wasn’t specific to the
project. For example ’How to remove spaces and
quotes from a string in Java?’ is a generic prob-
lem, since it can be applied to a variety of prob-
lems and not specifically to the ’artists file pars-
ing’ problem

• Initial prompt
>Language - Since our students are native Por-
tuguese speakers, the majority of the interactions
were done in Portuguese, although a small per-
centage of students used English

>Type - This defines the goal of the prompt
– Ask for code - These prompts usually included

terms like ’implement a function...’ or ’give me
the code...’ which inspired the title of this paper

– Explain how - Ask GPT to explain how they
could solve a certain problem, without explic-
itly asking for code

– Help with error - Students provided an error
they were struggling with (e.g. a compilation
error which they couldn’t understand)

– Analyze code - Students provided code from
their project and asked GPT for errors or possi-
ble improvements in their code.

>Provided context? - Some students copied or
adapted part of the project statement explaining
the rules behind the artists file, including them
into the initial prompt.
>Provided restrictions - Here we analyzed if
the students provided ChatGPT with technical re-
strictions. In particular, we looked for the words
’java’ and ’hashset/hashmap’ in the prompt. The
first was the language the project had to be devel-
oped in and the second was an explicit prohibition
in the project statement (since at this point, they
hadn’t yet learnt these data structures).
>Gave examples? - For prompts of the type ’ask
for code’, we analyzed if the students provided
any examples to guide the model. We considered
examples of input (e.g., lines in the artists file)
and/or output (e.g., given these parameter values,
the function should return this).
>Function signature - For prompts of the type
’ask for code’, we analyzed if the students pro-
vided the function signature beforehand (i.e., the
name of the function along with its parameters
and return type).

• Second prompt
>Type
– Inexistent - Although the exercise template di-

rected students to ask for alternatives, some stu-
dents provided only the initial prompt

– Give me an alternative - We analyzed if the
students asked for an alternative solution. This
was one of the goals of this exercise.

– Clarify initial prompt - We analyzed if the
second prompt was just a clarification of the
first prompt. This could be an attempt to gen-
eralize the previous solution or provide more
information.

– Ask different question - Some students didn’t
comply with the exercise statement and used
the second prompt to ask for a different ques-
tion
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>Guided alternative? - Here we wanted to find
out if, only for the ’give me an alternative’ cases,
the students provided some guidance (e.g., ’Im-
plement again without using replaceAll()’) when
asking for an alternative solution

• Conclusion
>Type
– Decided for one solution - We analyzed if the

students achieved the main goal of the exer-
cise, by choosing one of the alternative solu-
tions given by ChatGPT

– Useful but didn’t use the solution - Some stu-
dents didn’t use any of the solution but have
written they still found the interaction to be use-
ful (e.g., ’We didn’t use any of the solutions.
However we used some of the suggested in-
structions such as replaceAll()’)

– Not useful - Some students didn’t find any of
the solutions useful

– Inexistent/invalid conclusion - There are the
cases where the students didn’t write any con-
clusion or the conclusion seems to have no con-
nection with the given prompts.

>Decision criteria - This metric was applied only
to the conclusions of the type ’Decided for one
solution’. All the decisions fell into one of these
categories: simpler/more compact, more flexible/-
generic, and easier to understand.
>Used GPT solution - Here we wanted to find
out if the students really used the GPT solution
(complete ou partially) in their projects. We veri-
fied this by manually analyzing the project’s code
for each group, searching for code that is similar
to one of the GPT solutions.

5.1.1 Classification Example

As an example, the interaction shown in Listing 2 was
classified like this:
Problem: low abstraction level; general.
First Prompt: ’ask for code’ type; no context given;
provided a restriction (“must be in Java”); provided
an example but didn’t provide the requested function
signature
Second Prompt: inexistent
Conclusion: useful but didn’t directly use the pro-
vided solution; we confirmed that their project actu-
ally used one of the suggestions made by ChatGPT
regarding the use of replaceAll().

Listing 2: Partial example of log file supplied by the stu-
dents (group 22), translated from Portuguese.

Human: How to remove the white spaces between

the symbols [, ’, and ] in Java?

1434545625 @ [ ’The National ’ ]

--------

ChatGPT: To remove the white spaces between the

symbols [, ’, and ] in a string in Java , you can

use regular expressions and string replacement.

Here ’s an example of code that uses regular

expressions to remove these white spaces:

(...)

Explanation:

The first replaceAll replaces the sequence (...)

-------

Group ’s Conclusion: We didn ’t use what ChatGPT

provided , but we ended up using the function

that it suggested: replaceAll()

5.2 Survey

To complement the log analysis results, in particular
regarding the usefulness of the ChatGPT assignment
(see Section 4.1), we conducted an anonymous ques-
tionnaire a few weeks after the completion of the as-
signment (Cipriano and Alves, 2024a). Of the 154
enrolled students, 52 responded to the questionnaire,
corresponding to a 33.77% participation rate.

The questionnaire was composed of the following
4 questions:
Q1 - In part 1 of the project, you were asked to inter-
act with GPT. Did you? [Yes/No];
Q2 - If you answered “No” to the previous ques-
tion, what is the reason for not interacting with GPT?
[Open-ended];
Q3 - If not for the exercise, would you still have used
GPT? [Yes/No];
Q4 - How useful do you think this exercise was (ask-
ing ChatGPT for help in processing the artists’ file)?
[Scale:1-5].

6 RESULTS

65 groups (corresponding to 122 students) submitted
a project that passed at least half of the assessment
tests. From those, 37 groups (corresponding to 69
students), submitted a log file of the respective inter-
action with ChatGPT.

We manually analyzed each of those files both
quantitatively and qualitatively. A public repository
of these files is available5.

5https://doi.org/10.5281/zenodo.8430808
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Table 1: Log analysis results: problem.

problem
abstraction level high 52.8%

low 47.2%

nature generic 35.1%

domain 64.9%

6.1 Quantitative

We classified all the ChatGPT interaction logs follow-
ing the criteria outlined in Section 5, for the 4 steps
involved: problem, first prompt, second prompt and
conclusion.

As illustrated by Table 1, the abstraction level of
the problem presented to ChatGPT was evenly dis-
tributed between low and high, with a slight incli-
nation toward the high level (52.8%). The majority
of students posed domain-specific questions (64.9%)
rather than generic ones. These results were expected,
given the context of using ChatGPT within a specific
project.

Regarding the initial prompt (see Table 2), most
of the students used their native language (91.7%)
and asked for code (72.2%). Still, a small minority
preferred to ask ChatGPT to explain how they could
solve the problem (19.4%), and an even smaller frac-
tion asked for help identifying errors (8.3%) or ana-
lyzing code (5.6%). Most students didn’t provide any
context (81.8%) but provided restrictions, mainly the
restriction that it had to be in Java (81.3%). Also,
the majority of the students didn’t provide examples
(71.9%) and almost no students provided the signa-
ture of the pretended function (92.9%). Notice that
these last 2 criteria were only applied to interactions
where the students asked for code (which most did).

In reference to the second prompt (see Table 3),
a significant number of students didn’t provide it
(27.8%) which was surprising since the students were
explicitly instructed to do so. Still, the majority
asked for an alternative solution on the second prompt
(61.1%) as instructed. Interestingly enough, a few
students opted to use the second prompt to clarify
what they wanted in the initial prompt (11.1%) and
even fewer students just asked a different question
(5.6%). For cases in which students requested an
alternative solution, it is noteworthy that the major-
ity did not provide any specific guidance for their re-
quest, merely asking for a generic alternative (71.4%).
Only in 28.6% of the cases did the students provide
some guidance by adding more information.

Finally, with respect to the conclusion (see Ta-
ble 4), almost half of the students accepted one of the
solutions provided by ChatGPT (47.2%) and for those

Table 2: Log analysis results: initial prompt.

initial
prompt

language portuguese 91.7%

english 8.3%

type

ask for code 69.4%

explain how 19.4%

help error 8.3%

analyze code 2.9%

provided
context?

yes, copied 9.1%

yes, adapted 9.1%

no 81.8%

provided
restrictions

must be in java 81.3%

do not use hashset 9.1%

none 21.2%

gave
examples?

no 71.9%

just one 9.4%

several 18.7%

function
signature?

no 92.9%

yes 7.1%

that haven’t, a significant portion still found the inter-
action to be useful (25%), with only a small minority
not getting any value from the interaction (11.1%).
For the cases where the students accepted one of the
solutions, the findings unveil a balanced distribution
of the acceptance criteria. A substantial 35.7% of re-
spondents valued simplicity and compactness as guid-
ing factors. Similarly, an equal 35.7% sought flexibil-
ity and generality. Finally, 28.6% prioritized ease of
understanding. Regardless of what the students wrote
in the conclusion, we found that 72.2% really used
(fully or partially) one of the solutions provided by
ChatGPT.

General Insights. The exercise template encour-
aged a rigid methodology for using ChatGPT: stu-
dents were instructed to use it as assistance in reading
and parsing the artist file, obtain two alternative im-
plementations, and apply critical thinking to choose
one while justifying their decision. However, how
students utilized it varied considerably. Some chose
to focus on a highly specific problem (low abstraction
level), as seen in Listing 2, while others posed more
generic problems, with no clear trend towards either
option.

The initial prompting methods employed by stu-
dents also displayed a significant degree of diversity.
This was expected as they had no formal training, and
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Table 3: Log analysis results: second prompt.

second
prompt

type

inexistent 27.8%

give me an alternative 61.1%

clarify initial prompt 11.1%

ask different question 5.6%

guided
alternative?

yes
(more information,
restrictions, ...)

28.6%

no,
just ”give me an alternative” 71.4%

Table 4: Log analysis results: conclusion.

conclusion

type

decided for one solution 47.2%

useful but didn’t use the solution 25%

was not useful 11.1%

inexistent/invalid conclusion 13.9%

decision
criteria

simpler/more compact 35.7%

more flexible/generic 35.7%

easier to understand 28.6%

used gpt
solution

yes 44.4%

partially 27.8%

no 27.8%

the project statement did not provide any guidance
in this regard. Nonetheless, the majority of prompts
were aimed at obtaining code, although a substan-
tial portion of students also requested explanations on
how to proceed. Due to their limited training, these
prompts tended to be unsophisticated, lacking con-
text, examples, or the pretended function signature.
Even in terms of restrictions, while most students re-
membered to specify Java, few remembered to indi-
cate that the use of hashsets was not allowed. How-
ever, this didn’t stop most students from getting use-
ful results (RQ1): specifically, 47.2% of participants
acknowledged acceptance of one of the provided so-
lutions, with an additional 25% expressing utility de-
spite abstaining from utilization.

A considerable number of students (38.9%) did
not adhere to the project’s instructions and failed to
request an alternative implementation. The reasons
for this remain unclear, but we suspect it may be due
to (1) students not carefully reading the project state-
ment, and (2) being an uncommon way to use Chat-
GPT.

For the students who did request an alternative so-
lution, it is interesting to note that a substantial por-
tion (28.6%) attempted to guide the solution by spec-
ifying constraints, despite receiving no indication to
do so.

In the conclusions, it was expected that students
would employ their critical thinking skills to choose
one of the implementations, which occurred in half
of the cases. Even in instances where this did not
occur, a substantial portion of students found the in-
teraction to be valuable. A confirmation of LLM’s
effectiveness of in assisting students is evident, with
only 27,8% not being able to incorporate solutions
provided by ChatGPT into their projects (RQ2).

Also, half of the students managed to obtain two
alternative solutions, with no clear winner among the
decision criteria.

6.2 Qualitative

During the classification process, we found some
cases worth discussing individually.
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6.2.1 The Database Prompt

Group 36 provided the following initial prompt:
I must create a Java database that receives three

files: songs, artists, and artist details. I need to asso-
ciate songs with artists because there must be some-
thing that relates them, as one artist can have mul-
tiple songs, and multiple songs can belong to other
artists, meaning it is a many-to-many (N:N) relation-
ship. How do I program this?

This prompt mixes concepts from Programming
and Databases, it seems the student wanted to create
a database but it ends with ’How do I program this?’.
ChatGPT answered with a program that interacts with
a relational database, which was not the goal of the
project. What we found interesting in this prompting
is its high abstraction level, for sure the highest on all
of the prompts used by the students. However, this
led to a solution that while correct, could not be used
in the project. Notably, this student was the only one
who had taken the Databases course, which is taught
in the second year, while most of these students were
first-year students.

6.2.2 Incomplete First Prompts

Some groups used the second prompt to complement
the first prompt, since the results were not satisfac-
tory. This was accounted in the ’clarify first prompt’
item, in Table 3.

For example, Group 9 issued the following
prompt: I want to read a line that has this format
”[’Name1’, ’Name2’].” How can I check in Java if
the given String follows this format?

Since ChatGPT’s response was specific for lines
with two names, the group issued a second prompt
asking for a more general solution: What if I have to
handle more than two names, what do I do?

This second prompt could be prevented if the stu-
dents had asked for a general solution in the first
prompt, or provided several examples instead of just
one. This confirms that some students cannot get the
best results out of ChatGPT without formal training
[RQ1].

6.2.3 Arm Wrestling with ChatGPT

Group 32 entered into a kind of “arm wrestling” with
ChatGPT since they were not getting the answer they
needed. They asked ChatGPT to explain what could
be improved in a function they developed and that
was probably not working as expected. ChatGPT sug-
gested that they could remove some code duplication.
However, this wasn’t the cause of the error; in fact,
there was no code duplication at all. After several

prompts from the students, ChatGPT kept insisting
the there was code duplication (possible “hallucina-
tion”) and the students kept rebutting, without suc-
cess. Here is one of the prompts:

so, the issue is on a function that I showed you
after you told me there was code duplication? Are you
sure about this? what about the first piece of code i
showed you? (...)

Our analysis of the students’ function revealed no
code duplication issues, indicating that ChatGPT’s
answers were misleading. Interestingly, the students
couldn’t find the code duplication nor conceive that
ChatGPT was wrong, so they kept pushing for more
information.

6.2.4 Why Am I Failing the Automated
Assessment Tests?

Group 4’s motivation for asking for help was the fact
that they weren’t passing an automated assessment
test and they were not understanding why. That par-
ticular assessment test exercised edge cases in the re-
quirements which were not taken proper care in their
implementation such as duplicate ids and missing in-
formation. Notice that the source code of the auto-
mated tests wasn’t available to the students.

After describing the artists file format, the stu-
dents asked ChatGPT for examples of input files that
would cover all possible scenarios. Although Chat-
GPT provided some examples, they were not exhaus-
tive so it didn’t help them pass the tests. The stu-
dents kept pushing ChatGPT for more scenarios with
no success. At a certain point, they switched their
strategy, explaining to ChatGPT how they had im-
plemented the function and asking for what could be
missing. Still, ChatGPT wasn’t able to help them.

We found interesting that this group opted to im-
plement the function by themselves, abstaining from
assistance provided by ChatGPT. Subsequently, upon
encountering difficulties in passing the automated as-
sessment tests, they reached out to ChatGPT, albeit
without success.

6.3 Survey

This section presents the results of the survey con-
ducted after the students completed the exercise
(N=52).

84.6% (44) of the students replied that they inter-
acted with GPT during the project (Q1). The students
that did not interact (15.4%, 8) provided two main
reasons for not doing so (Q2): 6 students replied ”I
didn’t feel the need to”, while 2 students replied ”I
didn’t know how to”.
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Question (Q3) tried to understand if the students
would have used GPT even if there was no require-
ment for doing so. Most students, 69.2% (36) in-
dicated that they would have used GPT anyway, but
30.8% (16) indicated that they would not have used
GPT unless asked to do so. This surprised us, as we
expected more students to indicate they would have
used GPT anyway.

The fourth question (Q4) aimed to assess the per-
ceived utility of the ChatGPT assignment within the
framework of students’ projects. Among the respon-
dents, 5.8% (3) selected Option 1 (‘Useless’), while
21.2% (11) opted for Option 2 (‘Slightly useful’). Op-
tions 3 and 4 were each chosen by 30.8% (16) of par-
ticipants. Additionally, Option 5 (‘Very useful’) was
selected by 11.5% (6) of students. These findings in-
dicate a prevalent perception of usefulness among the
majority of students, although opinions vary consid-
erably. However, it is noteworthy that a substantial
proportion (27%) regarded the exercise as minimally
or not useful. We hypothesize that this subgroup may
include students who struggled to elicit useful solu-
tions from GPT to apply in their projects.

In conclusion, a vast majority of students (84.6%)
will use GPT in an assignment if directed to do so,
and most students will use it even if it’s not asked
of them, but the percentage is lower (69.2%). Most
students (73%) found the assignment to be useful or
very useful.

7 LESSONS LEARNT

Based on this experiment, we leave some recommen-
dations for teachers wanting to incorporate LLMs in
their classes.

Integrate prompt training into their curriculum,
focusing on providing richer information to LLMs,
such as the problem context, examples, function sig-
natures, etc.

Incorporate designated LLM-based exercises
into students’ projects, encouraging the use of these
tools as aids for tackling complex problems. Cer-
tain students may experience discomfort in utilizing
LLMs, either due to a lack of familiarity with their
operation or apprehension regarding their appropri-
ateness for use. In such cases, they may benefit from
gentle encouragement or guidance to overcome these
barriers.

Use exercise templates that guide students into ap-
proaching LLMs with a critical thinking mindset.
This can be done by asking for multiple solutions and
selecting one of them using criteria such as flexibil-
ity, compactness or ease of understanding. Evaluating

multiple LLM-generated solutions is a skill that we,
as well as other researchers (Treude, 2023; Alves and
Cipriano, 2023), believe will be of great importance
in the future.

8 LIMITATIONS

GPT’s behaviours are not deterministic. Furthermore,
research has shown that they are dynamic, and can
vary greatly over time (Chen et al., 2023). As such, it
is hard to generalize conclusions, since some students
might have had better results than other students, not
due to lack of ‘prompting skill’, but due to the models
themselves.

We expect most of the students to have used Chat-
GPT with GPT model version 3.5, due to it being free.
However, some students might have used the GPT-4
model6. Since we do not have this information, our
results were not controlled for it.

9 CONCLUSIONS

The proposed exercise template mostly achieved its
goal of fostering students’ critical thinking when in-
teracting with LLMs, enabling them to generate more
refined solutions. Our log analysis shows that most
students can effectively use GPT without formal train-
ing. With 72.2% of students incorporating ChatGPT’s
solutions into their projects, we consider the exer-
cise successful. Additionally, our survey (N=52) indi-
cates that 73% of students found the exercise useful,
with some stating they wouldn’t have used GPT other-
wise. However, the limited sophistication in prompt-
ing highlights the need for further training, as students
often required many prompts or failed to achieve sat-
isfactory results.

More research is needed to devise effective strate-
gies for instructing CS students in the proper utiliza-
tion of these tools. It is crucial to convey an awareness
of their limitations and discourage over-reliance, ulti-
mately better preparing for professional life.
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