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Abstract: This paper introduces the Explanatory Argumentation Rule-based Framework (XARF), a new approach in Ex-
plainable Artificial Intelligence (XAI) designed to provide clear and understandable explanations for machine
learning predictions and classifications. By integrating a rule-based system with argumentation theory, XARF
elucidates the reasoning behind machine learning outcomes, offering a transparent view into the otherwise
opaque processes of these models. The core of XARF lies in its innovative utilization of the apriori algorithm
for mining rules from datasets and using them to form the foundation of arguments. XARF further innovates
by detailing a unique methodology for establishing attack relations between arguments, allowing for the con-
struction of a robust argumentation structure. To validate the effectiveness and versatility of XARF, this study
examines its application across seven distinct machine learning algorithms, utilizing two different datasets: a
basic Boolean dataset for demonstrating fundamental concepts and methodologies of the framework, and the
classic Iris dataset to illustrate its applicability to more complex scenarios. The results highlight the capability
of XARF to generate transparent, rule-based explanations for a variety of machine learning models.

1 INTRODUCTION

Explainable Artificial Intelligence (XAI) aims to
make AI systems more transparent, understandable,
and trustworthy. As AI becomes integrated into daily
life and critical decision-making, the need for inter-
pretable systems increases. XAI addresses the gap
between advanced AI capabilities and the human need
for clarity, accountability, and ethical assurance (Gi-
anini and Portier, 2024). An argumentation frame-
work (AF) is a fundamental tool in artificial intelli-
gence and computational logic, used to formalize and
analyze argumentation processes. AF models, evalu-
ates, and resolves conflicts between arguments, draw-
ing on principles of classical and informal logic (Vas-
siliades and Patkos, 2021). In the context of XAI, the
development of methods to interpret machine learn-
ing predictions is essential. This paper introduces the
Explanatory Argumentation Rule-Based Framework
(XARF), an innovative approach leveraging argumen-
tation frameworks to explain machine learning deci-
sions. XARF uses a rule-based mechanism rooted in
explanatory argumentation to provide clear and un-
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derstandable explanations. At the core of XARF is
the use of rules derived from datasets via the apriori
algorithm. These rules, which consist of premises and
conclusions, form the backbone of the argumentation
framework. XARF constructs arguments and defines
attack relations among them, enabling structured rea-
soning that aligns with the extensions of the argumen-
tation framework such as grounded and preferred se-
mantics. The adaptability of XARF is demonstrated
through its application to seven machine learning al-
gorithms across two datasets. This highlights its ef-
fectiveness in generating transparent explanations for
diverse models. By combining rule-based insights
from the apriori algorithm with argumentation the-
ory, XARF enhances transparency and understand-
ing of machine learning models. This paper details
the architecture, operational mechanisms, and empir-
ical evidence of the ability of XARF to bridge the in-
terpretability gap in machine learning, contributing a
significant advancement to XAI. This work was con-
ducted in the context of the Manna Team. This arti-
cle begins with a literature review, covering AF, XAI,
and related work. It then details the methodology be-
hind XARF, explaining its application to datasets and
machine learning algorithms. The results section an-
alyzes the effectiveness of the framework, followed
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by a conclusion summarizing findings and potential
future work.

2 BACKGROUND REVIEW

2.1 Argumentation

Argumentation is an interdisciplinary field that has
attracted significant interest within artificial intelli-
gence, particularly in reasoning and multi-agent sys-
tems, where agents evaluate arguments and reach con-
clusions collectively. This has spurred both theoret-
ical and practical research within computer science
(Lu, 2018). Therefore, the knowledge area known
as computational argumentation was concisely devel-
oped and, furthermore, laid the groundwork for con-
sidering argumentation as a discipline within artificial
intelligence, especially with the model proposed by
Dung (Dung, 1995) defining what is known as Ab-
stract Argumentation. Since Dung’s model, various
semantics have been developed to adapt the frame-
work for different problems and applications. Argu-
mentation semantics formally defines protocols that
dictates all the rules for evaluating arguments (Jha and
Toni, 2020). The extension-based semantics approach
focuses on creating subsets (extensions) of arguments
that can coexist (Amgoud and Ben-Naim, 2018).

2.2 XAI

Explainable Artificial Intelligence (XAI) emphasizes
transparency and understandability in AI systems,
addressing the ”black box” nature of models to
foster trust and accountability (Samek and Müller,
2021). Reviews by (Arrieta and Herrera, 2020) and
(Linardatos and Kotsiantis, 2021) highlight the evolu-
tion of XAI, from simple methods to advanced tech-
niques for deep learning models. XAI applications
span sectors like healthcare, where it enhances diag-
nostic transparency, and finance, where it clarifies au-
tomated trading and risk assessment (Fan and Wang,
2021). For instance, XAI has improved trust in med-
ical AI systems by explaining predictions related to
patient outcomes (Tjoa and Guan, 2020).

2.3 Related Work

Argumentative systems have been applied to explain
machine learning algorithms. For example, the DAX
framework (Deep Argumentative Explanations) inte-
grates computational argumentation with neural net-
works to enhance interpretability and explainability
(Albini and Tintarev, 2020). Similarly, Quantitative

Argumentation Frameworks (QAF) provide benefits
for neural network explainability using a different
methodology (Potyka, 2021). For Random Forest al-
gorithms, Bipolar Argumentation Graphs (BAP) have
been used to justify and explain decisions (Potyka
and Toni, 2022). In another study (Achilleos and
Pattichis, 2020), ML algorithms like Random For-
est and Decision Trees were applied to brain MRI
images to distinguish between normal controls and
Alzheimer’s Disease cases. Data-Empowered Ar-
gumentation (DEAr) offers an approach to gener-
ate explainable ML predictions by structuring ar-
guments through data relationships (Cocarascu and
Toni, 2020). Similarly, the EVAX framework (Ev-
eryday Argumentative Explanations) generates user-
accessible explanations for AI decisions by mirroring
natural human reasoning, demonstrating its versatility
across four machine learning models (Van Lente and
Sarkadi, 2022).

3 METHODOLOGY

This research was conducted using two distinct
datasets, employing a consistent methodological ap-
proach with necessary adaptations tailored to each
dataset. The first dataset, a Boolean dataset, com-
prises three attributes (Sun, Wind and Sore Knee), a
binary class activity (which is 1 for surfing and 0 for
fishing), and ten instances, serving as a foundation
to elucidate the concepts and methodology integral
to the XARF framework and can be found in Table
I. The second dataset, the well known Iris dataset, is
characterized by four numerical attributes and encom-
passes three distinct class labels representing different
species of the Iris flower and 150 instances.

Table 1: Boolean dataset D. Source: (Dondio, 2021).

3.1 Definitions of Dataset, Attributes,
and Elements

Dataset (D)

Let D be a dataset consisting of tuples
(X1,X2, . . . ,Xn,CX), where each Xi represents
an attribute of the data with i denoting the specific
attribute index, and CX is the class attribute. D can

ICEIS 2025 - 27th International Conference on Enterprise Information Systems

684



also be defined as a set of elements (E1,E2, . . . ,En)
where each Ei is an element.

Attribute (X)

Each Xi represents an attribute of the data where i de-
notes the specific attribute index.

Class Attribute (CX)

The class attribute CX indicates the outcome or class
label for each tuple in D. It is a special type of at-
tribute used to distinguish the categories or classes to
which data instances belong. This is the target vari-
able in the classification task. Class attributes can
be represented as CX j where j represents different
classes. For example, in a dataset for iris plant classi-
fication, the class attribute could represent the type of
iris plant, such as Setosa, Versicolour, or Virginica.

Element (E)

An element refers to any attribute, including class at-
tributes. Thus, it can be represented as Ek, where k
can refer to any attribute or class attribute index, and
E ∈ X ∪CX . Types of Attributes/Elements.

• Boolean Attributes/Elements. A Boolean at-
tribute Xi can have a true or false value, repre-
sented as X1

i (true) and X2
i (false).

• Numerical/Categorical Attributes/Elements. A
numerical or categorical attribute Xi is discretized
(divided into bins or encoded categories), for ex-
ample, X1

i , X2
i , X3

i , etc., representing different
ranges of values or categories.

Preprocessing and Application of the Apriori
Algorithm

Transformation for Boolean Attributes. Each at-
tribute Xi is expanded into two columns representing
the attribute X1

i (e.g., Sun) and its negation X2
i (no

Sun), thus capturing both presence and absence. This
dichotomy is crucial for constructing comprehensive
association rules that account for both positive and
negative associations.
Discretizing and Encoding for Numerical At-
tributes. Continuous attributes are discretized into
bins. This step simplifies the data structure and en-
ables the application of the Apriori algorithm, which
typically operates on categorical data. For instance, a
numerical attribute like petal length in the Iris dataset
is divided into bins - such as X1

1 = [0− 2.5), X2
1 =

[2.5− 5.0), X3
1 = [5.0− 7.5), and so on - enhancing

the detail and interpretability of the association rules
derived.

Preprocessed Dataset (D′). This dataset, D′, is
formed by applying preprocessing steps necessary for
the Apriori algorithm, including binning, encoding,
and handling of Boolean attributes and elements as
described previously.

3.2 Application of the Apriori
Algorithm and Argumentation
Framework

Apriori Algorithm

Following the preprocessing phase, the Apriori algo-
rithm is applied to generate association rules from the
dataset, thereby forming the basis for argument cre-
ation within the argumentation framework. The Apri-
ori algorithm is a classic algorithm used to extract fre-
quent itemsets from a dataset and derive association
rules. It operates on a dataset D′, producing a set of
rules R, each of the form Ant ⇒ Con where Ant (an-
tecedent) and Con (consequent) are itemsets derived
from D′ and both are formed by subsets of elements
Ant,Con ⊆ E.

Definition of Arguments

In the context of XARF, an argument arg is formed
by premises and conclusions which are both struc-
tured sets of elements E derived from association
rules where Premise (P) is the antecedent Ant of an
association rule and Conclusion (C) is the consequent
Con of an association rule. An argument arg is a pair
(P,C) formed by a premise leading to a conclusion
Arg = (P,C). Like Ant and Con, P,C ⊆ E.

Definition of Argumentation Framework (AF)

An argumentation framework can be formally defined
as a pair AF = (Ar,att), where:

• Ar is a set of arguments derived from the associa-
tion rules.

• att⊆Ar×Ar is the attack relation among these ar-
guments, defining which arguments attack others
based on defined rules (e.g., conflicting premises
and conclusions).

For the Boolean dataset, we provide a selection of
randomly chosen examples of the arguments gener-
ated: arg1, Premise: ’Fishing’, Conclusion: ’Sun’
arg9, Premise: ’Sore Knee’, Conclusion: ’Fish-
ing’ arg12, Premise: ’No Sun’, ’Wind’, Conclusion:
’Surf’ arg16, Premise: ’Wind’, ’Good Knee’, Conclu-
sion: ’Surf’ For instance, arg12 implies that if there is
no sun and there is wind, the activity is most likely to
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be surfing. As arg = (P, C) argument 12 is mathemat-
ically described as:

arg12 =
(
P{X2

1 - No Sun,X1
2 - Wind},C{CX1- Surf}

)
.

Similarly, for the Iris dataset, we present a sub-
set of randomly selected examples of the arguments
produced: arg2, Premise: ’petal length bin (4.0,
5.0]’, Conclusion: ’species versicolor’ arg5, Premise:
’petal width bin (0.1, 0.5]’, ’petal length bin (1.0,
2.0]’, Conclusion: ’species setosa’
Support and Minimum Support Value. The sup-
port of a rule, and the minimum support of a rule,
which are critical in the Apriori algorithm, are defined
as:

Support(R) = Probability(Ant ∩Con)

Support(R)≥ min support

where Probability denotes the probability of occur-
rence within the dataset, and min support is a thresh-
old value determining which rules are significant
enough to consider. For example, a minimum sup-
port of 0.75 means only the rules found in at least
75% of the data instances are considered. This intro-
duces a significant trade-off: a higher minimum sup-
port value yields fewer arguments, leading to more
generalized yet precise explanations, whereas a lower
value enhances detail at the cost of increased com-
putational complexity. Several minimum support val-
ues were tested, however, for the purposes of the re-
search documented in this paper, minimum support
values of 0.2 and 0.3 were selected for the Boolean
and Iris datasets, respectively. This selection was
to optimize the balance between the granularity of
the explanations generated and the computational effi-
ciency of the Explanatory Argumentation Rule-based
Framework (XARF). Other values can be used with-
out changing the concepts and the main results pre-
sented in the paper.

3.3 Establishing Attack Relations
Within the Argumentation
Framework

For the arguments derived from association rules to
integrate into an argumentation framework, it is im-
perative to define attack relations among them. As
previously mentioned, both premises and conclusions
can comprise multiple elements. However, for clar-
ity, the exemplification of attack rules will consider
premises and conclusions consisting of a singular el-
ement each.
1- Mutual Attack (Based on Opposite Conclu-
sions Within the Same Attribute). For all argi =
((Xia),(Xb

k )) and arg j = ((Xia),(Xc
k )) ∈ Ar, where

a, b, c, i, j, k are indices representing values and
b ̸= c, i ̸= k, we have att(argi,arg j) and att(arg j,argi).
This relation highlights a mutual attack when two
arguments share the same premise attribute values
for Xi but have conclusions with different values for
the attribute Xk, such as Xb

k and Xc
k , where these

values are directly opposite (e.g., true and false for
Boolean attributes). For instance, if arg1 = (X1

1 ;X1
2 )

and arg2 = (X1
1 ;X2

2 ) there is a mutual attack between
arg1 and arg2, but notice that, if arg1 = (X1

1 ;X1
2 ) and

arg3 = (X1
1 ;X1

3 ) there are no attacks between these ar-
guments.
2- Mutual Attack (Based on Opposite Premises
within the Same Attribute). For all argi =
((Xkb),(Xa

j )) and arg j = ((Xkc),(Xa
j )) ∈ Ar, where

b ̸= c, we have att(argi,arg j) and att(arg j,argi). This
specifies a mutual attack when two arguments share
the same conclusion but have premises that include
different values of the same attribute Xk, such as
Xb

k and Xc
k . For instance, if arg1 = (X1

1 ;X1
2 ) and

arg2 = (X2
1 ;X1

2 ) there is a mutual attack between
arg1 and arg2, but notice that, if arg1 = (X1

1 ;X1
2 ) and

arg3 = (X1
3 ;X1

2 ) there are no attacks between these ar-
guments.
3- Single Direction Attack (Based on Conclusion-
Premise Attribute Disagreement). For all argi =
((Xka),(Xb

j )) and arg j = ((X jc),(Xa
k )) ∈ Ar, where

b ̸= c, we have att(argi,arg j). This details a directed
attack where the conclusion of argi containing Xb

j di-
rectly conflicts with the premise of arg j containing
Xc

j , and both arguments share another attribute Xa
k that

ties them together. For instance, if arg1 = (X1
1 ;X1

2 )

and arg2 = (X2
2 ;X1

1 ) there is a single direction attack
between arg1 and arg2.
4- Mutual Attack (Based on Different Class
Attributes). For all argi = ((Xka),(CXm)) and
arg j = ((Xka),(CXn)) ∈ Ar, where m ̸= n, we have
att(argi,arg j) and att(arg j,argi). This rule accounts
for a mutual attack based on differing class attributes
CXm and CXn where m ̸= n, occurring despite sharing
the same attribute Xka in their premises or conclu-
sions. For instance, if arg1 = (X1

1 ;CX1) and arg2 =

(X2
2 ;CX2) there is a mutual attack between arg1 and

arg2. In constructing the argumentation framework
(AF), four attack rules are defined as the foundation
of the methodology. Rules 1 and 3 correspond to clas-
sical rebuttal and undercut attack types. Attack rule 2
enhances explanation consistency, reduces argument
redundancy, and lowers computational complexity by
simplifying the system architecture through a higher
number of attacks. Attack rule 4, combined with the
mapping procedure, ensures model class consistency
by preventing the coexistence of class-conflicting ar-
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guments. In parallel with the development of associ-
ation rules and argumentation frameworks, machine
learning (ML) predictive models are utilized. Consis-
tent with XARF’s objective of employing a black-box
methodology, any ML model capable of class pre-
diction can generate explanations within XARF. This
study employs seven widely used ML algorithms:
decision trees, random forests, k-nearest neighbors
(KNN), neural networks, logistic regression, support
vector machines (SVM), and naive Bayes. Upon the
establishment of the AF, the next step is to apply ex-
tensions, the selection of which is contingent upon
the dataset context. Extensions can vary from be-
ing skeptical, which may yield fewer but more pre-
cise explanations, to naive, potentially resulting in a
greater quantity of arguments and explanations, al-
beit with potentially less precision. In this research,
the completed, preferred, and grounded extensions
were evaluated. The grounded extension yielded neg-
ligible valid outcomes and was consequently con-
sidered unsuitable for these datasets. On the other
hand, the completed extensions were rejected due to
their propensity for generating redundant extensions.
Thus, for the purposes of this paper, the preferred ex-
tension was selected.

3.4 Mapping

The mapping procedure constitutes a critical compo-
nent of our methodology, systematically associating
each argument of every extension with the current
query (the input data for the prediction model) and
the predicted class. This procedure assigns a score to
every argument and, by extension, to every extension,
thereby identifying the combination that provides the
most cogent explanation.

Definitions

• Query (Q): the current input data for which a pre-
diction is made.

• Predicted Class (Cp): the class predicted by the
machine learning model for the query Q.

Scoring of Arguments

Each argument arg is evaluated based on its alignment
with the query Q and the predicted class Cp. The score
of an argument arg can be denoted as score(arg).

• 1- Complete Match with Query
score(arg)+ = 1 if P ⊆ Q and C ⊆ Q

This rule awards a point if all elements of both
premises (P) and conclusions (C) of the argument
match elements in the query.

• 2- Extra Elements in Premises/Conclusions

score(arg)+ = |elements(arg)−1| if rule 1 is 1

This rule awards additional points for each ele-
ment beyond the first in the premises or conclu-
sions, conditional on rule 1 being positive (1).

• 3- Alignment with Predicted Class

score(arg)+ = 1 if Cp ∈C

This rule gives an extra point if the predicted class
is part of the argument’s conclusion.

• 4- Disagreement with Predicted Class

score(arg) = 0if exists a Cx in P or C and Cx ̸=Cp

The score is set to zero if any class attribute in
the premises or conclusions conflicts with the pre-
dicted class.

Extension Scoring and Selection

The score of an extension ext, which is a set of argu-
ments, is the sum of the scores of its arguments:

score(ext) = ∑
arg∈ext

score(arg)

The goal is to identify the extension ext∗ that max-
imizes score(ext) while providing the most relevant
and understandable explanation:

ext∗ = argmax
ext

score(ext)

Following the application of the mapping procedure
to AF extensions, with thorough consideration of the
ML predicted class, the system provides the explana-
tion behind the ML’s class prediction relative to the
query. A comprehensive summary of the methodol-
ogy is depicted in the enclosed chart found in (Figure
1), offering a view of the procedural framework and
its implementation.

Figure 1: Methodology of XARF.

4 RESULTS AND ANALYSIS

This section presents the explanations generated
by the XARF framework based on various input
parameters. The focus is not on evaluating machine
learning (ML) models’ performance metrics such as
accuracy or precision but on assessing the quality
and relevance of explanations produced by XARF.
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Examples are provided across different scenarios,
classes, and datasets. Consider the query with input
parameters [Sun: 1, Wind: 1, Sore Knee: 0], or, for
a more detailed representation [Sun: 1, No Sun: 0,
Wind: 1, No Wind: 0, Sore Knee: 0, Good Knee:
1]. For this query, all seven algorithms unanimously
predicted class 1, representing the Surf activity.
Given the size of the database, only two extensions
were identified as preferred extensions. Among
these, one extension had a uniform score of 1 for
its arguments, whereas the other achieved a score
of 10 for all its arguments. The standout argument
was Argument 16, which is arg16, Premise: ’Wind’,
’Good Knee’, Conclusion: ’Surf’, achieving a score
of 3. This score was attributed to its perfect alignment
with the query (+1), the presence of two elements
in the premise (+1), and its conclusion matching
the predicted class (Surf). This argument logically
correlates with the database, indicating that windy
conditions and the absence of knee soreness, rather
than sunny weather, influenced the ML algorithm’s
prediction favoring Surf as the activity. Had the ML
classification model predicted Fishing for the same
query, a completely different set of arguments and
extensions would have emerged, such as Argument
1, with a premise of ’Fishing’ leading to a conclusion
of ’Sun’, thereby attributing the sunny condition as
a decisive factor in predicting Fishing, according to
XARF’s explanation. Examining a query that elicited
split predictions from the ML classifiers [Sun: 0,
Wind: 1, Sore Knee: 1], or more succinctly: [Sun:
0, No Sun: 1, Wind: 1, No Wind: 0, Sore Knee:
1, Good Knee: 0]. The majority of classifiers (5
out of 7) favored class 0 (Fishing), while Random
Forest and Naive Bayes opted for class 1 (Surf).
For models predicting Fishing, the most robust
extension featured a score of 5, with the higher score
argument, arg9, Premise: ’Sore Knee’, Conclusion:
’Fishing’ with a score 2, indicating that a sore knee
is a deterrence from surfing. Additional arguments
in this extension included correlations between the
absence of sun and wind, and a sore knee, further
supporting the Fishing prediction. Conversely, for
models predicting Surfing, the leading extension
scored 13, highlighted by arg12, Premise: ’No Sun’,
’Wind’, Conclusion: ’Surf’. This implies that the
lack of sunshine combined with windy conditions
were considered significant by the classifiers for a
Surf prediction. These explanations, coherent with
both the database content and the predicted classes,
underscore the capability of XARF to generate
plausible explanations, even when classifiers diverge
in their predictions for the same query. Relating
to the experiments in the Iris dataset, upon the

implementation of the Apriori algorithm and the
formulation of attack relations, the argumentation
framework (AF) for the Iris dataset was meticulously
constructed. Analogously to the Boolean dataset, we
herein exhibit examples of explanations generated
by XARF across different scenarios. Consider a
query with the following characteristics: Sepal length
(cm): 5.4, Sepal width (cm): 3.7, Petal length (cm):
1.5, Petal width (cm): 0.2. For this dataset, all
seven ML predictors accurately classified the query
as class 0, corresponding to the Setosa species.
Among the extensions evaluated, one with a score
of 12 was selected, prominently featuring Argument
5 which is arg5, Premise: ’petal width bin (0.1,
0.5]’, ’petal length bin (1.0, 2.0]’, Conclusion:
’species setosa’. This argument, which aligns with
two premises and the conclusion being the predicted
class, received a score of 3. It underscores the
importance of both petal length and width in deter-
mining the Setosa classification. Another query is
examined: Sepal length (cm): 7.0, Sepal width (cm):
3.2, Petal length (cm): 4.7, Petal width (cm): 1.4.
Here, all algorithms concurred on class 1, Versicolor.
The chosen extension scored 4, highlighting two
arguments, Argument 2 and Argument 3, as equally
significant: arg2, Premise: ’petal length bin (4.0,
5.0]’, Conclusion: ’species versicolor’ arg3,
Premise: ’petal width bin (1.0, 1.5]’, Conclu-
sion: ’species versicolor’ Both arguments are
consistent with the query and show that petal sizes
were the most important attributes for the decision
of ML to assign class Versicolor. A contentious
example involves the query: Sepal length (cm): 5.9,
Sepal width (cm): 3.2, Petal length (cm): 4.8, Petal
width (cm): 1.8. Here, a split in predictions occurred:
Naive Bayes, Logistic Regression, KNN, and Neural
Networks opted for class 2, while Decision Tree,
Random Forest, and SVM selected class 1. For
predictions of class 1, XARF highlighted Argument
2, which is arg2, Premise: ’petal length bin (4.0,
5.0]’, Conclusion: ’species versicolor’, as the sole
explanatory factor with a score of 2. Conversely,
for class 2 predictions, the framework found no
supporting arguments, resulting in an extension score
of zero. Although no explanation was discovered in
this particular instance, the outcome aligns with the
dataset and the predicted class. This underscores the
integrity of the framework, as it avoids creating ex-
planations in the absence of sufficient evidence. The
challenge presented by the query, which divided the
”opinion” of the ML algorithms, highlights its com-
plexity and the difficulty in generating explanations
for such cases. Nevertheless, there is a requirement
for a broader spectrum of arguments and, conse-
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quently, a wider range of possible explanations for
complex queries. This can be addressed by adjusting
the minimum support threshold within the Apriori
algorithm. As mentioned earlier, opting for a lower
minimum support value facilitates the generation of
additional explanations, but this adjustment increases
computational complexity and the risk of overfitting
explanations to the data.

4.1 Quantitative Analysis and
Limitations

This section demonstrates the selected granularity and
provides a quantitative analysis of the results by cal-
culating the fidelity metric for both datasets, each
evaluated at two distinct minimum support thresholds.
Fidelity measures the accuracy with which the expla-
nation approximates the prediction of the underlying
black box model. A high fidelity explanation should
faithfully mimic the behavior of the black box model
(Lakkaraju and Leskovec, 2019). It is quantified as
the percentage of instances where both the Explain-
able AI Framework (XARF) and the black box model
assign the same output class. The formula for calcu-
lating fidelity is as follows:

Fidelity =
(Number of Correct Predictions

Total Predictions

)
×100

A notable feature of XARF, as delineated by its third
rule, is its assurance of producing explanations that
always align with the class predicted by the ma-
chine learning (ML) model. This characteristic distin-
guishes XARF from other explainable AI (XAI) mod-
els and impacts how fidelity is calculated, particularly
in cases of missing explanations. In practical terms,
the framework is designed to avoid incorrect expla-
nations entirely, potentially achieving a 100% fidelity
score across all ML models if the minimum support
is optimally configured and the instance complexity is
manageable. Conversely, when the minimum support
threshold is set sufficiently high, XARF may fail to
generate any explanations. This is particularly likely
in scenarios where ML models deliver conflicting pre-
dictions, thereby complicating the instance. For our
fidelity assessments, minimum support values of 0.3
and 0.4 were tested for the first dataset, and 0.19 and
0.2 for the second dataset. These values were chosen

Table 2: Fidelity.

to delineate the boundary between achieving 100% fi-
delity and observing a decline. As observed in Table
2, a fidelity of 100% is achievable provided there are
sufficient arguments to support a specific explanation.
Nonetheless, the system’s fidelity may diminish when
the arguments are insufficient to substantiate the ML
prediction. Moreover, as different ML models find
different predictions, the fidelity could vary. In such
cases, while XARF may provide an explanation for
one predicted class, it may fail to do so for another.

5 CONCLUSION

This paper introduced the Explanatory Argumenta-
tion Rule-based Framework (XARF), a novel ap-
proach in Explainable Artificial Intelligence (XAI)
aimed at explaining the decision-making processes
of machine learning models. Combining argumenta-
tion theory and machine learning, XARF uses a rule-
based methodology to generate clear and understand-
able explanations for predictions made by various
ML algorithms. By applying the Apriori algorithm
and defining attack relations within an argumentation
framework, XARF demonstrated its ability to inter-
pret ML predictions across datasets, including the Iris
dataset. XARF extracts rules from datasets using the
Apriori algorithm, transforming these rules into ar-
guments with premises and conclusions. Its innova-
tive method for defining attack relations enhances the
framework, allowing the application of standard ar-
gumentation extensions like grounded and preferred
semantics. These features improve the interpretabil-
ity of ML models, offering stakeholders valuable in-
sights into AI decision-making. Empirical evalua-
tions using a basic Boolean dataset and the Iris dataset
demonstrated the adaptability of XARF to different
data complexities and machine learning paradigms.
XARF constructs logical arguments that align with
ML predictions, even in cases where traditional ex-
planatory models face challenges. These results high-
light XARF as a valuable tool in the XAI field, ad-
dressing the critical need for transparency and ac-
countability in AI systems. Future research could
refine the rule-mining process, expand compatibility
with additional ML algorithms, and explore applica-
tions in more diverse and complex datasets. A specific
enhancement could involve assigning varying weights
to rules based on application requirements, replac-
ing the current uniform +1 weighting. In conclusion,
XARF represents a significant advancement in XAI,
offering a robust tool for uncovering the rationale
behind machine learning decisions. As it evolves,
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XARF holds potential for creating more transparent,
trustworthy, and user-focused AI systems.
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