
Evaluating Biased Synthetic Data Effects on Large Language
Model-Based Software Vulnerability Detection

Lucas B. Germano a, Lincoln Q. Vieira b, Ronaldo R. Goldschmidt c, Julio Cesar Duarte d

and Ricardo Choren e

Military Institute of Engineering, Brazil

Keywords: Data Preprocessing, Deep Learning, Large Language Models, Synthetic Vulnerability Dataset, Vulnerability
Detection.

Abstract: Software security ensures data privacy and system reliability. Vulnerabilities in the development cycle can
lead to privilege escalation, causing data exfiltration or denial of service attacks. Static code analyzers, based
on predefined rules, often fail to detect errors beyond these patterns and suffer from high false positive rates,
making rule creation labor-intensive. Machine learning offers a flexible alternative, which can use extensive
datasets of real and synthetic vulnerability data. This study examines the impact of bias in synthetic datasets
on model training. Using CodeBERT for C/C++ vulnerability classification, we compare models trained on
biased and unbiased data, incorporating overlooked preprocessing steps to remove biases. Results show that
the unbiased model achieves 98.5% accuracy, compared to 63.0% for the biased model, emphasizing the
critical need to address dataset biases in training.

1 INTRODUCTION

Maintaining software security is crucial for ensuring
data privacy and system reliability. Vulnerabilities in-
troduced during the software development life cycle
can enable intruders to escalate privileges, leading to
data breaches and service disruptions for companies
and public agencies. Static and dynamic code anal-
ysis tools have been developed to address these se-
curity challenges. However, static analyzers rely on
predefined rules, which often fail to detect vulnerabil-
ities that deviate from expected patterns and generate
high false-positive rates. Additionally, as noted by (Li
et al., 2018), defining these rules requires extensive
manual effort, prone to errors due to the complexity
of language syntax and library behavior changes.

Machine learning offers greater flexibility in error
detection but remains under development for achiev-
ing satisfactory performance levels. The recent rise
of Large Language Models (LLMs), powered by the
Transformer architecture (Vaswani et al., 2017), has

a https://orcid.org/0009-0007-1607-4863
b https://orcid.org/0009-0002-7959-6064
c https://orcid.org/0000-0003-1688-0586
d https://orcid.org/0000-0001-6656-1247
e https://orcid.org/0000-0003-4081-2647

sparked interest in their application to software vul-
nerability detection, particularly for C and C++.

To train vulnerability detection models, various
datasets have been developed, incorporating both real
vulnerability data and artificial test cases. One promi-
nent dataset in this field is the Software Assurance
Reference Dataset (SARD) (NIST, 2021), which con-
tains synthetic test cases. Several studies have utilized
SARD to develop and validate their models (Li et al.,
2018; Li et al., 2022; Lin et al., 2022; Zeng et al.,
2023; Huang et al., 2022; Nong et al., 2024).

Although SARD is a widely used dataset, its syn-
thetic nature introduces certain patterns from the al-
gorithms used to generate the data. These patterns are
often subtle and not immediately noticeable. The pur-
pose of this work is to show how such patterns may
actually compromise model performance, potentially
leading to skewed predictions.

(Mehrabi et al., 2021) defines the “User to Data”
bias, which arises when data sources are user-
generated, reflecting inherent user biases. Similarly,
when algorithms are used to create synthetic test
cases, biases embedded in those algorithms can fur-
ther influence the data generation process. (Mehrabi
et al., 2021) notes that when training data are biased,
models trained on them tend to internalize and propa-
gate these biases in their predictions.

504
Germano, L. B., Vieira, L. Q., Goldschmidt, R. R., Duarte, J. C. and Choren, R.
Evaluating Biased Synthetic Data Effects on Large Language Model-Based Software Vulnerability Detection.
DOI: 10.5220/0013156800003890
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) - Volume 3, pages 504-511
ISBN: 978-989-758-737-5; ISSN: 2184-433X
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



It is clear that, as a synthetic vulnerability dataset,
SARD may contain biases introduced by the algo-
rithms used to generate its test cases. (Barbierato
et al., 2022) defines bias as the influence that cer-
tain data elements or variables may exert on other ele-
ments in a given dataset. However, they also indicate
that a more specific definition can vary depending on
the context in which the bias is being analyzed.

In this work, a biased synthetic dataset for vulner-
ability detection is a collection of training data con-
taining specific patterns or keywords that unintention-
ally guide the model to rely on superficial cues in-
stead of understanding the logic behind vulnerabili-
ties. For example, if function names like “bad” or
“good” appear in vulnerable code, the model may as-
sociate these terms with vulnerability presence rather
than analyzing the actual code logic. Such biases re-
sult in incorrect predictions when these patterns are
absent in real-world code, reducing the model’s abil-
ity to generalize and effectively detect vulnerabilities.

In this context, this work has two objectives: (i) to
identify and show some biases present in the SARD
dataset, and; (ii) to create a new dataset derived from
the SARD dataset, which has been adjusted to elimi-
nate these biases. The main contributions of this work
are:

1. Specification of a list of existing biases in the
SARD dataset;

2. Development of an approach for processing data
available in SARD to remove the identified biases;

3. Execution of experiments comparing the train-
ing results of an LLM using the original SARD
dataset versus the bias-free version, showcasing
improvements in vulnerability detection; and

4. Provision of a bias-free SARD dataset 1.

The experiment conducted in this work utilizes the
Juliet C/C++ 1.3.1 project, available through SARD,
alongside the LLM CodeBERT (Feng et al., 2020)
to classify source code for the presence of vulnera-
bilities in C/C++ languages. The results show that
a model trained on the biased dataset performed sig-
nificantly worse when tested on the bias-free dataset,
achieving an accuracy of only 63.0%. In contrast,
the model trained on the bias-free dataset achieved a
much higher accuracy of 98.6% when tested on the
biased dataset, indicating that this model effectively
learned to detect vulnerabilities without relying on su-
perficial cues.

The remainder of this paper is organized as fol-
lows. Section 2 describes the proposed approach for
data preprocessing. Section 3 identifies the different

1https://github.com/lucasg1/sard_dataset_without_bias

biases found in the dataset, while Section 4 discusses
the experiment and results of the comparison between
biased and unbiased models. Section 5 reviews re-
lated work in the area. Finally, Section 6 concludes
the paper.

2 DATA PREPROCESSING
APPROACH

SARD, developed by the National Institute of Stan-
dards and Technology (NIST), is a vulnerability
dataset containing collections in C, C++, C#, Java,
and PHP. This work uses the Juliet C/C++ 1.3 dataset,
which includes 64,099 vulnerabilities and their fixes,
totaling 128,198 files. The dataset, available online2,
covers 116 types of Common Weakness Enumeration
(CWE) vulnerabilities in C and C++. It is perfectly
class-balanced, with half of the cases labeled as vul-
nerable and the other half as non-vulnerable.

This section outlines biases present in SARD that
may significantly impact vulnerability detection mod-
els and distort their results. The data processing work-
flow is illustrated in Figure 1.

Read the
vulnerability files

Insert the vulnerability
line delimiter

Use directives to
separate “good”

files from “bad” ones

Obtain symbolic
representations of biased
variables and functions

Clean up comments
and biases

Generate the
final result

Figure 1: Data preprocessing flowchart.

Read the Vulnerability Files. Each test case in the
dataset includes both an implementation containing
a vulnerability and the corresponding corrected ver-
sion, as depicted in Figure 1.

Insert the Vulnerability Line Delimiter. Code-
BERT’s 512-token context window limits its ability
to process longer files in a single inference. To ad-
dress this, files are divided into 512-token segments,
or “chunks.” As the dataset specifies the line contain-
ing the vulnerability, a delimiter is inserted to mark
its location. This approach enabled the identification
of the specific chunk that contains the vulnerability
when the code is divided.

2https://samate.nist.gov/SARD/test-suites/112

Evaluating Biased Synthetic Data Effects on Large Language Model-Based Software Vulnerability Detection

505



#ifndef OMITBAD

/* bad function declaration */
void CWE121_Stack_Based_Buffer_Overflow_dest_char

_alloca_cat_51b_badSink(char * data);

void CWE121_Stack_Based_Buffer_Overflow_dest_char
_alloca_cat_51_bad ()

{
char * data;
char * dataBadBuffer = (char *)ALLOCA(50*sizeof(char));
char * dataGoodBuffer = (char *)ALLOCA(100*sizeof(char)

);
/* FLAW: Set a pointer to a "small" buffer. This buffer

will be used in the sinks as a destination
* buffer in various memory copying functions using a "

large" source buffer. */
data = dataBadBuffer;
data[0] = '\0'; /* null terminate */
CWE121_Stack_Based_Buffer_Overflow_dest_char

_alloca_cat_51b_badSink (data);
}

#endif /* OMITBAD */

#ifndef OMITGOOD

/* good function declarations */
void CWE121_Stack_Based_Buffer_Overflow_dest_char

_alloca_cat_51b_goodG2BSink (char * data);

/* goodG2B uses the GoodSource with the BadSink */
static void goodG2B()
{

char * data;
char * dataBadBuffer = (char *)ALLOCA(50*sizeof(char));
char * dataGoodBuffer = (char *)ALLOCA(100*sizeof(char)

);
/* FIX: Set a pointer to a "large" buffer , thus

avoiding buffer overflows in the sinks. */
data = dataGoodBuffer;
data[0] = '\0'; /* null terminate */
CWE121_Stack_Based_Buffer_Overflow__dest_char

_alloca_cat_51b_goodG2BSink(data);
}

void CWE121_Stack_Based_Buffer_Overflow__dest_char
_alloca_cat_51_good()

{
goodG2B();

}

#endif /* OMITGOOD */

Listing 1: Example of original code from the Juliet dataset, with excerpts taken from the same file.

Use Directives to Separate “Good” Files from
“Bad” Files. SARD data uses directives to differ-
entiate between “good” (non-vulnerable) and “bad”
(vulnerable) files. Listing 1 shows examples of these
directives, which indicate where code is vulnerable
and where it is fixed. Such directives are used to cre-
ate two files for each test case: one containing the vul-
nerability, marked with #ifndef OMITBAD, and an-
other without it, marked with #ifndef OMITGOOD.

Obtain Symbolic Representations of Biased Vari-
ables and Functions. Biased variables and func-
tions are code elements with names that provide un-
intended clues, potentially skewing the learning pro-
cess. In the SARD dataset, as shown in Listing 1,
names like “good”, “bad”, and “cwe” indicate vulner-
ability presence or absence. For example, “cwe” may
appear in variables named after their CWE classifica-
tion, offering hints about vulnerabilities in the code.

To address this, biased functions and variables
are renamed using the formats FUN# and VAR#, re-
spectively, while the rest of the code remains un-
changed. The renaming process was automated using
the Python library clang.

Clean up Comments and Biases. The comments
are removed because they explicitly indicate where
the vulnerabilities exist, as shown in Listing 1. Fur-
thermore, this work detected several patterns that pre-
vious works overlooked. These patterns introduce bi-
ases that interfere with the learning process of models
that use this dataset. The first pattern involves using
static void functions, which appear in 99.7% of
non-vulnerable files but only 8.3% of vulnerable ones.

An example of this pattern is shown in Listing 2. The
second observed pattern becomes more apparent only
after the symbolic representation is performed. This
pattern, referred to as “cascade” for ease of reference
in this work, is illustrated in red in Listing 3. As
previously defined, the FUN# functions are symbolic
representations of previously biased functions, mean-
ing they contain information regarding the presence
or absence of vulnerabilities within the files.

/* bad function declaration */
void CWE121_Buffer_Overflow_badSink(char* data);
void CWE121_Stack_Based_Buffer_Overflow_bad()

/* good function declarations */
void CWE121_Buffer_Overflow_goodSink(char* data);
/* goodG2B uses the GoodSource with the BadSink */
static void goodG2B()

Listing 2: Examples of biased function names and com-
ments.

...
}
printLine(dest);

}
}
void FUN2(){

FUN0();
FUN1();

}

Listing 3: “Cascade” pattern, in red, detected in files with-
out vulnerability.

This pattern occurs in 99.6% of non-vulnerable
files but only 0.01% of vulnerable ones. As a result,
the model can rely on this pattern to identify 99.6% of
non-vulnerable cases and 99.9% of vulnerable cases.
However, in real-world scenarios, the model may fail

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

506



to detect the actual code responsible for the vulnera-
bility.

Generate the Final Result. Listing 4 shows an ex-
ample of a comparison between a vulnerable sample
and a non-vulnerable sample after data sanitization. It
is not possible to perceive any pattern that would bias
the model’s learning other than the presence or ab-
sence of vulnerability. It is worth noting that the vul-
nerability delimiters in the code shown in Listing 4,
indicated by the markers < START > and < END >,
are used solely to label the code segments and are re-
moved in the step before model training.

After this treatment was applied, 128,198 samples
were obtained in the C/C++ language, comprising an
equal number of 64,099 samples with and without
vulnerabilities.

3 IDENTIFIED BIASES IN THE
DATASET

Comments and variable names influence the model’s
judgment, as it may rely on keywords such as “bad”
to classify code as vulnerable within this particular
dataset. However, additional biases, such as the static
function and cascade patterns, discussed in the previ-
ous section, may not be as easily identifiable.

These patterns originate from the algorithms used
by specialists to build the test cases. Since SARD
is a synthetic dataset, these biases were likely intro-
duced unintentionally, resulting in patterns that can
mislead the model during training. This study demon-
strates that models trained on biased datasets strug-
gle to generalize effectively, while those trained on
bias-free datasets consistently identify vulnerabilities
across scenarios. In summary, the following biases
must be addressed and removed from SARD before
training:

1. Biased function and variable names, such as those
containing the words “good” and “bad;”

2. Comments that explicitly indicate a vulnerability;

3. Overrepresentation of specific function types,
such as “static void”, in non-vulnerable files; and

4. the cascade pattern as shown in Listing 3.

Previous studies utilizing the SARD dataset, as
detailed in Section 5, have primarily focused on ad-
dressing only the first two items. The static func-
tions and cascade pattern issues, to our knowledge,
have never been identified or mitigated in any previ-
ous work.

Although other biases may exist in the dataset,
our manual investigation did not reveal any evidence
of their presence. This process involved a side-by-
side comparison of sanitized vulnerable and non-
vulnerable samples, as illustrated in Listing 4.

4 EXPERIMENTS AND RESULTS

The LLM CodeBERT was selected for vulnerability
detection in the sanitized dataset due to its extensive
training on a large programming language corpus. As
an encoder-only model, it excels at tasks requiring a
deep understanding of input, making it ideal for vul-
nerability classification.

Following dataset sanitization, CodeBERT’s tok-
enizer was fine-tuned on the SARD dataset, produc-
ing a dictionary of approximately 4,100 tokens. With
a context window limited to 512 tokens, code sam-
ples were divided into chunks of this size. To mini-
mize context loss between adjacent chunks, a sliding
window of 384 tokens was employed, ensuring 128
tokens of overlapping context.

Before discussing quantitative results, it is help-
ful to illustrate CodeBERT’s capabilities with exam-
ples. Listing 4 compares a vulnerable sample (left)
and its non-vulnerable counterpart (right), both cor-
rectly classified by CodeBERT. The vulnerable code
contains a buffer overflow caused by using a smaller
buffer of size 50 and attempting to access the 100th
memory slot, leading to improper memory handling.
In contrast, the non-vulnerable version allocates a
buffer of size 100, avoiding overflow. This exam-
ple highlights how the model, trained on a bias-free
dataset, accurately differentiates between vulnerable
and non-vulnerable code based on meaningful pat-
terns.

Figure 2 illustrates the training and inference
workflow for detecting software vulnerabilities using
biased and bias-free datasets. Two datasets were de-
rived from SARD: a fully sanitized, bias-free dataset
(green) and a biased dataset (red) that retained only
the static function and cascade patterns. This was
done intentionally to simulate related work that does
not remove the biases, which have been highlighted
in this work.

These datasets were used to train two distinct
CodeBERT-based models. The “biased” model was
trained on the biased dataset, while the “bias-free”
model was trained on the bias-free dataset. Once
trained, each model performs inference not only on
the dataset it was trained on but also on the opposite
dataset. This cross-inference demonstrates the mod-
els’ ability (or inability) to generalize beyond the spe-

Evaluating Biased Synthetic Data Effects on Large Language Model-Based Software Vulnerability Detection

507



void FUN0(char * data);
void FUN1()
{

char * data;
char * VAR0 = (char *)ALLOCA(50*sizeof(char));
char * VAR1 = (char *)ALLOCA(100*sizeof(char));
data = VAR0;
data[0] = '\0';
FUN0(data);

}
void FUN0(char * data)
{

{
char source [100];
memset(source , 'C', 100-1);
source[100-1] = '\0';

<START >
strcat(data , source);

<END>
printLine(data);

}
}

void FUN0(char * data);
void FUN1()
{

char * data;
char * VAR0 = (char *)ALLOCA(50*sizeof(char));
char * VAR1 = (char *)ALLOCA(100*sizeof(char));
data = VAR1;
data[0] = '\0';
FUN0(data);

}
void FUN0(char * data)
{

{
char source [100];
memset(source , 'C', 100-1);
source[100-1] = '\0';
strcat(data , source);
printLine(data);

}
}

Listing 4: Example of sanitized samples: the vulnerable sample is displayed on the left, while the non-vulnerable sample is
shown on the right.

cific biases found in their respective training datasets,
providing insight into the impact of data biases on
model performance.

Figure 2: Training and inference workflow.

In this study, the performance metrics reported are
calculated as simple averages due to the balanced na-
ture of the dataset, which includes an equal number
of vulnerable and non-vulnerable samples. However,
since a holdout validation strategy is employed with-
out guaranteed stratification, class distribution varia-
tions in the validation set may introduce minor differ-
ences in performance metrics. To complement these

averages, a detailed confusion matrix is provided for
deeper analysis, offering a more granular view of the
model’s performance across classes.

Table 1 presents the performance results of the
models on the bias-free dataset. The bias-free model
was validated using the holdout technique, where in-
ference was performed on 20% of the dataset after
training on the remaining 80%. In contrast, the biased
model, having been trained on the biased dataset, did
not require a cross-validation approach and was vali-
dated using the entire bias-free dataset.

Table 1: Results of accuracy (Acc), precision (Prec), f1-
score (F1), and recall (Rec) metrics from both bias-free and
biased models on the bias-free dataset. All reported metrics
are calculated as simple averages, given that the dataset is
perfectly balanced.

Bias-free dataset
Model Acc Prec F1 Rec

Bias-free 98.5 % 98.2 % 98.3 % 98.4 %
Biased 63.0 % 54.7 % 70.6 % 99.6 %

For the biased model, inferring on the unbiased
dataset, it can be seen in Table 1 that this is the only
case where good metrics were not obtained, with the
only good result being a recall of 99.6%, which may
be misleading. To explain this result, it is necessary to
revisit the statistics reported in Section 2, where it was
made clear that the biased patterns found only occur
in files without vulnerabilities. When the model per-
forms the inference on a file that does not have these
patterns, such as in the unbiased dataset, it infers that
most files have vulnerabilities, since it does not find
the patterns for which it was trained. Since the recall
formula is given by Recall = V P

V P+FN , it measures how
many of all the positive class situations (vulnerability)
as the expected results are correct. Thus, it is possi-
ble to see that the biased model predominantly infers
as though the majority of files contain vulnerabilities,

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

508



achieving an almost perfect recall, but at the expense
of all other metrics.

This behavior is further illustrated by the confu-
sion matrix in Figure 3, which highlights the exces-
sive false positives generated by the model. The ma-
trix shows the model’s tendency to classify a signif-
icant number of non-vulnerable files as vulnerable,
inflating the recall but severely degrading other per-
formance metrics.

Figure 3: Confusion matrix of the biased model’s inference
on the bias-free dataset.

Similarly, Table 2 presents the performance re-
sults of the models on the biased dataset. Just like the
bias-free model, the holdout technique was performed
to train and validate the biased model in the biased
dataset. The inference of the bias-free model on the
biased dataset was done using the entire dataset.

Table 2: Results of Acc, Prec, f1-score, and Rec metrics
from both bias-free and biased models on the biased dataset.

Biased dataset
Model Acc Prec F1 Rec

Bias-free 98.6 % 98.4 % 98.5 % 98.5 %
Biased 99.6 % 99.5 % 99.5 % 99.5 %

For the bias-free model, inferring on the biased
dataset, excellent metrics are obtained, such as an ac-
curacy of 98.6% and a f1-score of 98.5%. This shows
that, in this case, the model has effectively learned to
identify the vulnerabilities instead of relying on the
superficial patterns presented in the data.

5 RELATED WORK

This section covers relevant studies in two areas: de-
biasing vulnerability datasets and vulnerability detec-
tion using SARD. However, existing works primarily
focus on improving model performance through dif-
ferent machine learning techniques, with little atten-
tion given to debiasing synthetic datasets.

Debiasing Vulnerability Datasets. A search was
conducted to identify any existing works specifically
focused on addressing and removing bias from the
SARD dataset. While some studies have performed
a degree of bias removal, such as deleting comments
and applying symbolic representations to variables
and functions, no prior research was found that thor-
oughly examines other subtle patterns that may skew
model training, such as the static pattern or the cas-
cade pattern, as discussed in this study. This gap in the
literature suggests that current approaches may over-
look important factors that could compromise model
performance.

Vulnerability Detection Using SARD. Several
studies have utilized the SARD Juliet dataset for
vulnerability detection to classify vulnerabilities in
C/C++ source code, with varying degrees of success.

(Jeon and Kim, 2021) used SARD and National
Vulnerability Database (NVD) datasets to train Re-
current Neural Networks (RNNs) such as LSTM,
GRU, BLSTM, and BGRU. The best results were
achieved with BGRU, with an f1-score of 96.11%.
Program slicing and symbolic representation were
employed to reduce noise in the input data. However,
the study did not explore other potential biases in code
structures that could influence model learning, a gap
this paper addresses.

(Lin et al., 2022) compared pre-trained con-
textualized models (e.g., CodeBERT) and non-
contextualized models trained on synthetic SARD
and real-world samples. Fine-tuning was performed
using synthetic data, achieving precisions up to 86%
and recalls up to 60%. Similar to (Jeon and Kim,
2021), symbolic representation was applied, but the
authors did not address potential biases introduced by
specific code patterns or structures.

The work by (Zeng et al., 2023) encapsulated
CodeBERT with transfer learning to detect vulnera-
bilities in C code. Due to the scarcity of real-world
data, the authors relied on combining synthetic SARD
samples and real-world data to balance classes. De-
spite reporting an overall accuracy of 57%, the study
lacked details on data preprocessing, including the re-
moval of biased patterns or symbolic representations.

(Li et al., 2018) automated feature extraction us-
ing code gadgets, evaluating their system on synthetic
and real-world datasets. Symbolic representation and
comment removal were performed, but the study fo-
cused on only two CWE types without addressing
broader structural biases.

(Li et al., 2022) proposed an approach inspired by
region proposal techniques in image processing, ex-
tracting syntactic and semantic features for vulnera-

Evaluating Biased Synthetic Data Effects on Large Language Model-Based Software Vulnerability Detection

509



Table 3: Summary of related work.

Work Symbolic Representation Real Data Synthetic Data Addressed Code Biases
(Jeon and Kim, 2021) ✓ ✓ ✓ ✗

(Lin et al., 2022) ✓ ✓ ✓ ✗
(Zeng et al., 2023) ✗ ✓ ✓ ✗

(Li et al., 2018) ✓ ✓ ✓ ✗
(Li et al., 2022) ✓ ✓ ✓ ✗

(Cheng et al., 2021) ✓ ✓ ✓ ✗
(Li et al., 2021) ✓ ✗ ✓ ✗

bility detection. The study achieved an accuracy of
96% using BGRU but, like previous works, did not
investigate the impact of code biases, such as those
highlighted in this paper.

Graph Neural Networks (GNNs) have also been
applied to vulnerability detection, as demonstrated
by (Cheng et al., 2021). Their system achieved f1-
scores between 94.0% and 98.8% using SARD and
real-world data, employing slicing and symbolic rep-
resentation. However, preprocessing steps, such as
comment removal, were not explicitly detailed.

Finally, (Li et al., 2021) used Hybrid Neural Net-
works trained solely on synthetic SARD data, report-
ing a high f1-score of 98.6%. While they used slicing
and symbolic representation, no steps were taken to
address structural biases in the code.

Table 3 summarizes related work in vulnerabil-
ity detection, highlighting key aspects such as sym-
bolic representation, using real and synthetic data,
and whether code biases identified in this paper were
addressed. While many studies utilized symbolic
representation and combined real and synthetic data,
none tackled the specific code biases this work iden-
tifies, highlighting a critical gap in existing research
and underscoring the originality of this approach.

In comparison to previous studies, our method
achieved highly accurate performance on the SARD
dataset, with an f1-score of 98.3%. This underscores
the effectiveness of the bias-free dataset preprocess-
ing, which enhances the model’s ability to generalize
and detect vulnerabilities more accurately. However,
it is important to acknowledge that detecting vulner-
abilities in synthetic datasets like SARD is inherently
easier than in real-world scenarios. Synthetic datasets
often contain patterns and structures that simplify the
learning process, whereas real-world data presents
greater variability and complexity, lacking such con-
sistent patterns. This disparity suggests that while our
model performs exceptionally well on SARD, further
validation and refinement are necessary for real-world
applicability.

The main contribution of this study, beyond its
strong performance in detecting vulnerabilities as ev-
idenced by the obtained metrics, lies in the fact that

this is the only one to identify and remove these pat-
terns that can skew a model’s generalization capabili-
ties. Rather than depending on superficial patterns or
cues, the pre-processing steps enhance model perfor-
mance by allowing the model to focus on learning the
underlying logic and structure of vulnerabilities.

6 CONCLUSIONS

This study assessed the importance of proper
data processing when using synthetic vulnerability
datasets such as SARD’s Juliet. To achieve this, the
performance of the CodeBERT model was compared,
using a properly processed dataset and another that
exhibited clear class-related biases.

The results demonstrated that a model trained on
an unbiased dataset achieved consistently high perfor-
mance, with an F1-score of 98.3% across all tested
scenarios. In contrast, the biased model performed
significantly worse, with an F1-score of only 70.6%.
These findings underline the detrimental impact of bi-
ases on model training, showing that if datasets like
SARD are not sanitized, the resulting models may
learn to exploit superficial patterns rather than accu-
rately detect vulnerabilities. Additionally, dataset bi-
ases can mask the true performance of trained models,
as these patterns are easier for models to learn than the
vulnerabilities themselves. Given SARD’s extensive
size compared to real-world datasets, biases in SARD
could also distort the performance metrics of models
trained on combined datasets, especially since most
studies do not report individual dataset results.

This study emphasizes the importance of not re-
lying solely on synthetic datasets for training, as
the algorithms generating these datasets may unin-
tentionally introduce learnable patterns that skew the
model’s predictions. To mitigate this risk, combin-
ing synthetic datasets with real-world data is recom-
mended. This approach ensures that models learn to
generalize effectively, reducing the risk of overfitting
to artificial biases and improving their performance in
real-world applications.

ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence

510



Limitations. While the debiasing approach in this
work significantly improved model performance us-
ing the Juliet C/C++ 1.3 dataset, it is tailored specif-
ically to this dataset. The identified biases, such as
the static function and cascade patterns, are unique to
the synthetic nature of SARD’s Juliet project. Con-
sequently, this method may not generalize to other
datasets with different biases. Moreover, the process
of identifying these patterns is manual and highly de-
pendent on the dataset being analyzed, limiting its
scalability.

One other limitation of this work is the poten-
tial for overfitting to the bias-free dataset. While the
model performs exceptionally well on the sanitized
version of the SARD dataset, there is a risk that it
has learned to recognize specific patterns or cues in-
herent to the cleaned synthetic data rather than de-
veloping a broader understanding of vulnerability de-
tection. Given that SARD is a synthetic dataset, it
might still have nuances or hidden clues that human
researchers might overlook, but that the model could
use to forecast outcomes. This could result in an over-
estimation of the model’s actual capability, as real-
world datasets lack the artificial patterns introduced
by test case generation algorithms, presenting a more
complex and noisy environment for vulnerability de-
tection.

Future Work. Future research should focus on au-
tomating the detection of biases in synthetic datasets
or ensuring greater care in dataset creation to reduce
the introduction of skewed patterns. Additionally,
models trained on synthetic datasets should be rig-
orously evaluated on real-world datasets to better as-
sess their generalization capabilities. While synthetic
datasets like Juliet provide extensive test cases, real-
world data introduces greater complexity and diver-
sity in vulnerabilities, making it essential for robust
and practical model evaluation.

REFERENCES

Barbierato, E., Vedova, M. L. D., Tessera, D., Toti, D., and
Vanoli, N. (2022). A methodology for controlling bias
and fairness in synthetic data generation. Applied Sci-
ences, 12(9).

Cheng, X., Wang, H., Hua, J., Xu, G., and Sui, Y. (2021).
Deepwukong: Statically detecting software vulnera-
bilities using deep graph neural network. ACM Trans.
Softw. Eng. Methodol., 30(3).

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., and Zhou,
M. (2020). CodeBERT: A pre-trained model for pro-
gramming and natural languages. In Findings of the

Association for Computational Linguistics: EMNLP
2020, pages 1536–1547. Association for Computa-
tional Linguistics.

Huang, W., Lin, S., and Li, C. (2022). Bbvd: A bert-
based method for vulnerability detection. Interna-
tional Journal of Advanced Computer Science and Ap-
plications, 13(12):890–898.

Jeon, S. and Kim, H. K. (2021). Autovas: An automated
vulnerability analysis system with a deep learning ap-
proach. Computers & Security, 106:102308.

Li, X., Wang, L., Xin, Y., Yang, Y., Tang, Q., and Chen, Y.
(2021). Automated software vulnerability detection
based on hybrid neural network. Applied Sciences.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., and Chen, Z. (2022).
Sysevr: A framework for using deep learning to detect
software vulnerabilities. IEEE Transactions on De-
pendable and Secure Computing, 19(4):2244–2258.

Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng,
Z., and Zhong, Y. (2018). Vuldeepecker: A deep
learning-based system for vulnerability detection. In
Proceedings 2018 Network and Distributed System
Security Symposium, NDSS 2018, San Diego, CA,
USA. Internet Society.

Lin, G., Jia, H., and Wu, D. (2022). Distilled and con-
textualized neural models benchmarked for vulnerable
function detection. Mathematics, 10(23):1–24.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and
Galstyan, A. (2021). A survey on bias and fairness in
machine learning. ACM Comput. Surv., 54(6).

NIST (2021). Software assurance reference dataset. https:
//samate.nist.gov/SARD/. Accessed: 2024-06-28.

Nong, Y., Aldeen, M., Cheng, L., Hu, H., Chen, F., and
Cai, H. (2024). Chain-of-thought prompting of large
language models for discovering and fixing software
vulnerabilities.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, page 6000–6010,
Red Hook, NY, USA. Curran Associates Inc.

Zeng, P., Lin, G., Zhang, J., and Zhang, Y. (2023). In-
telligent detection of vulnerable functions in soft-
ware through neural embedding-based code analy-
sis. International Journal of Network Management,
33(3):e2198.

Evaluating Biased Synthetic Data Effects on Large Language Model-Based Software Vulnerability Detection

511


