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Abstract: This paper explores the integration of cognitive agents powered by Large Language Models (LLMs) into
software project management within the Scaled Agile Framework (SAFe). We introduce the CogniSim frame-
work, an ecosystem where virtual agents operate in a simulated software environment to fulfill key roles in IT
project development. Emphasis is placed on the adaptability of these agents to the Scrum methodology, partic-
ularly in decision-making and problem-solving. By combining LLMs with Multi-Agent Systems (MAS), we
focus on improvements in project management, development processes, and Agile methodologies. Through
simulations and case studies, we demonstrate advancements in task delegation, communication, and project
lifecycle management, highlighting the potential of LLM-augmented MAS to manage software projects with
increased precision and intelligence. Our findings provide insights into essential components for an effective
cognitive multi-agent ecosystem, including Dynamic Context techniques and Theory of Mind for enhanced
agent collaboration, laying the groundwork for future research in this field.

1 INTRODUCTION

The complexity and scale of modern software sys-
tems necessitate advanced approaches to software en-
gineering. Agile methodologies like SAFe have be-
come standard practices, emphasizing iterative de-
velopment, customer collaboration, and flexibility
(Dingsøyr et al., 2012). However, effectively manag-
ing large-scale, complex projects within these frame-
works remains challenging (Perkusich et al., 2020).

Multi-Agent Systems offer a promising solution
to these challenges (Talebirad and Nadiri, 2023;
Chudziak and Wawer, 2024). MAS consist of
networks of autonomous agents that collaborate to
achieve defined objectives within their environment
(Cruz, 2024). In software engineering, each agent
can manage specific aspects of the development life-
cycle, such as requirements gathering, code gener-
ation, testing, or deployment. The characteristics
of MAS—reactivity, proactiveness, and social abili-
ties—make them well-suited for managing complex
and dynamic software engineering environments (Li
et al., 2023).

Simultaneously, Large Language Models, such as
GPT-4, have transformed natural language process-
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ing by generating human-like content across various
formats (Guo et al., 2023). In software engineer-
ing, LLMs can automate routine tasks like code com-
pletion, documentation, and debugging, reducing er-
rors and boosting productivity (Barua, 2024). In-
tegrating LLMs with MAS creates cognitive multi-
agent ecosystems that leverage the strengths of both
technologies (Singhal et al., 2023). For instance,
agents responsible for code generation can utilize
LLMs to remain aligned with the latest programming
paradigms and libraries, ensuring that the software re-
mains current and resilient (Guo et al., 2023).

Effective collaboration among agents is crucial in
these ecosystems. Orchestration and choreography
paradigms offer strategies for coordinating agent in-
teractions (Cruz, 2024), while frameworks like FIPA
(IEEE Foundation for Intelligent Physical Agents
(FIPA), 2012) provide specifications for agent com-
munication and interoperability. Techniques from
symbolic knowledge management, such as nonmono-
tonic logic and belief logics, enable agents to handle
incomplete and evolving information, enhancing their
decision-making capabilities.

PASSI (Process for Agent Societies Specification
and Implementation), shown in Figure 1, is a com-
prehensive methodology designed to guide the devel-
opment of FIPA-compliant multi-agent systems from
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Figure 1: The PASSI design process (IEEE Foundation for Intelligent Physical Agents (FIPA), 2012).

initial requirements to code implementation. It inte-
grates object-oriented software engineering principles
with agent-based system design, offering a structured
approach for building systems that involve peer-to-
peer agent interactions. By referencing PASSI, we
situate our framework within a lineage of method-
ologies that emphasize standardized communication
protocols and semantic interactions—ensuring inter-
operability, scalability, and adherence to established
best practices. Our approach extends these funda-
mentals by leveraging Large Language Models, en-
abling cognitive agents to augment traditional PASSI-
based design principles with enhanced adaptability,
richer context-awareness, and more flexible decision-
making capabilities within complex, evolving soft-
ware environments.

Reinforcement learning further improves agent
collaboration by allowing agents to learn optimal be-
haviors through trial and error (Sutton and Barto,
1998), helping them adapt to new challenges and opti-
mize interactions in dynamic, unpredictable environ-
ments (Du et al., 2023). Dynamic Context techniques
enhance the capabilities of LLM-augmented MAS by
allowing agents to adapt their behavior based on real-
time data (Du et al., 2024), while incorporating the
Theory of Mind (Li et al., 2023; Kosinski, 2024) en-
ables agents to predict and understand the actions and
intentions of others, improving overall cooperation
(Kim et al., 2024).

In this paper, we introduce the CogniSim frame-
work, where cognitive agents powered by LLMs col-
laborate within a simulated software environment, as-
suming key Agile roles in product management, ar-
chitecture, development, and testing. The frame-
work aligns with Agile methodologies, focusing on
the Scaled Agile Framework (Scaled Agile, Inc.,
2024) and emphasizing the adaptability of agents to
Scrum. By simulating complex workflows and envi-
ronments, including potential integration with LeSS

(LeSS Company B.V., 2024), DaD (Project Man-
agement Institute, 2024), and Nexus (Scrum.org,
2024), CogniSim enables efficient decision-making
and context-aware actions. Through simulations and
case studies, we highlight how the integration of
LLMs and MAS could improve task delegation, com-
munication, and lifecycle management, illustrating
the potential to manage software projects with in-
creased precision and intelligence.

2 FRAMEWORK OVERVIEW

Managing modern software projects requires inno-
vative solutions that address the growing demands
for adaptability, coordination, and efficiency. The
CogniSim framework provides such a solution, in-
tegrating cognitive agents powered by Large Lan-
guage Models within a Multi-Agent System to opti-
mize project management processes in Agile method-
ologies like Scrum and SAFe.

2.1 Concept of CogniSim

CogniSim could operate within a multi-layered sys-
tem architecture that integrates both internal and
external software ecosystems, forming a cohesive
bridge between them. As shown in Figure 2, Cog-
niSim interacts with external systems through various
APIs, ensuring the cognitive agents can access real-
time data and make informed decisions.

Within the internal environment, agents are struc-
tured into distinct roles, each reflecting critical re-
sponsibilities commonly found in Agile software
management. Product Owners manage backlog prior-
itization, DevOps Engineers oversee CI/CD pipelines,
and the Development Team implements features
based on user stories. By augmenting these roles with
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LLM-driven capabilities, CogniSim automates rou-
tine tasks and optimizes efficiency.

Figure 2: Multilayer concept showing how system is work-
ing with external environment.

2.2 Design of CogniSim

CogniSim integrates cognitive agents, driven by
LLMs, to emulate human-like decision-making, au-
tomate tasks, and streamline workflows through in-
telligent collaboration. Each agent learns and adapts
based on environmental interactions, improving over
time via machine learning techniques. By simulating
human team dynamics, these agents enhance commu-
nication, coordination, and overall project efficiency
(Li et al., 2023).

2.3 Components of the CogniSim
Framework

Key components include:

• Cognitive Agents. AI-driven entities capable of
processing natural language, learning from data,
and interacting with other agents and stakehold-
ers.

• Communication Protocols. Standardized proto-
cols for message exchange and coordination.

• Decision-Making. Agents select optimal ac-
tions using rule-based, data-driven, or hybrid ap-
proaches.

• Collaboration Tools. Interfaces that facilitate in-
teraction among agents and between agents and
human team members.

2.4 Integration with Agile
Methodologies

CogniSim enhances Agile practices by automating
routine tasks and offering data-driven insights. In a
SAFe context, CogniSim coordinates multiple teams,
manages dependencies, and aligns work with the
project vision. Figures 3 and 4 show how agents col-
laborate with human stakeholders during Program In-
crement (PI) preparation and Scrum iterations. Cog-
nitive agents, representing roles traditionally held by
humans, assist in backlog refinement, sprint planning,
code implementation, and quality assurance. Over
time, agents improve their performance by actively
learning from feedback loops provided during the de-
velopment process.

2.5 Roles and Responsibilities of Agents

Figure 3: Role of cognitive agents in the preparation phase
for Program Increment (PI).

In CogniSim, cognitive agents simulate roles such as:
• Project Manager: Manages communication with

clients, ensuring requirements are captured and
prioritized.

• DevOps Engineer: Maintains CI/CD pipelines,
deployment processes, and collaborates with QA.

• QA/Test Engineer: Defines test cases, automates
tests, and ensures product quality.

• Development Team: Implements features, coor-
dinates with UX and system teams, and integrates
feedback.

• UX Designer: Designs user interfaces, working
with development to ensure usability.
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• System Team: Maintains build/testing environ-
ments, ensuring integration efforts run smoothly.

• Customer Representatives: Provide continuous
feedback throughout development.

This automation frees human teams to focus on
strategic activities, while agents handle routine tasks
and offer real-time insights.

2.6 Benefits of CogniSim

Integrating cognitive agents yields several benefits:

• Enhanced Decision-Making: Data-driven in-
sights improve choices throughout the project life-
cycle.

• Increased Efficiency: Automating routine tasks
frees humans for more strategic work.

• Improved Collaboration: Natural language pro-
cessing and role simulation improve communica-
tion.

• Scalability: Coordinating multiple teams and
managing dependencies supports large-scale Ag-
ile implementations.

2.7 Use Case Illustration

In a virtual environment, cognitive agents manage
project management, DevOps, QA, and development
roles. These agents automate code generation, testing,
and deployment while adhering to Agile practices like
Scrum and SAFe, optimizing workflows and reduc-
ing time to market. Figure 4 shows cognitive agents’
roles during a Scrum iteration, ensuring continuous
integration, feedback, and quality deliverables.

Figure 4: Cognitive agents’ roles during Scrum iteration ex-
ecution.

3 METHODOLOGY

This section outlines the methodology employed to
integrate cognitive agents powered by Large Lan-
guage Models into Agile software project manage-
ment using CogniSim. We describe the agent-based
system design, the development environment, and
how virtual agents simulate key roles within SAFe.

3.1 Structure of a Single Virtual Agent

Each virtual agent in CogniSim represents a self-
contained unit powered by an AI-driven LLM core.
Figure 5 illustrates the structure of a typical agent.

Figure 5: Structure and functionalities of a single virtual
agent in CogniSim.

Agents perform:

• Task Management: Organizing and prioritizing
tasks based on requirements.

• Decision Making: Using LLM capabilities to
evaluate solutions and provide data-driven deci-
sions.

• Quality Assurance: Automated checks ensuring
outputs meet quality standards.

• Review and Feedback: Offering insights on per-
formance and outcomes for continuous improve-
ment.

This modular approach supports scalability, flexi-
bility, and improved efficiency throughout the project
lifecycle.
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Figure 6: CogniSim MAS powered by LLMs (Cinkusz and
Chudziak, 2024).

3.2 Agent-Based System Design

The CogniSim framework, as shown in Figure 6,
employs agents driven by advanced LLMs to simu-
late human-like interactions and decisions, automat-
ing tasks traditionally handled by humans (Huang
et al., 2024). These agents operate autonomously, col-
laborating within a MAS to address all phases of the
software lifecycle, from backlog refinement to risk as-
sessment. Figure 7 illustrates how the MAS powered
by LLMs processes tasks through agent interactions.

Figure 7: Multi-Agent System powered by LLMs contain-
ing simple tasks from a client and a supervisor agent outside
the MAS for checking compatibility.

3.3 Development Platform and Tools

CogniSim is implemented in Python, using Ope-
nAI’s GPT-4 and GPT-3.5 models, and LangChain
(LangChain, 2023) for LLM integration. Agents
are defined using JSON, ensuring flexibility. Tools
like Visual Studio Code and libraries such as tqdm,
pandas, and openai support development and test-
ing.

Each agent’s behavior within CogniSim is mod-
eled through a layered architecture combining LLM-
driven reasoning and structured interaction con-

tracts. Agents are instantiated from JSON con-
figurations that define roles, instructions, and con-
straints; once initialized, they utilize GPT-3.5 or GPT-
4 via LangChain to parse input contexts, generate re-
sponses, and reason about tasks. For instance, a Prod-
uct Management agent might process backlog refine-
ment instructions and produce prioritized user stories,
while a System Architect agent could leverage LLM
outputs for architectural decisions, referencing code
snippets or design patterns.

3.4 Utilizing Virtual Agents in Software
Management

Virtual agents simulate key roles—analysts, design-
ers, programmers, testers, project managers—each
equipped with prompts that initiate interactions. For
instance, Figure 8 shows a prompt for a Business An-
alyst during PI Planning, guiding their tasks in align-
ment with Agile processes.

4 EXPERIMENTS AND RESULTS

A series of simulations were conducted to assess the
effectiveness of the CogniSim framework in replicat-
ing Agile processes within SAFe. The setup included
key phases such as Program Increment (PI) Planning
and Iteration Execution, with cognitive agents rep-
resenting roles like Release Train Engineer, Prod-
uct Management, and System Architect. Their in-
teractions were facilitated through a dialogue system,
aligning objectives, prioritizing features, and refining
backlogs.

The research questions centered on evaluating
agent capabilities in communication, coordination,
and decision-making. The multi-agent simulations
emphasized communication between agents, reflect-
ing the collaboration required in Agile development.
During PI Planning, agents aligned objectives, as-
sessed technical feasibility, and identified dependen-
cies, closely mirroring real-world Agile practices.

Results showed that the cognitive agents success-
fully replicated communication and decision-making
processes inherent in Agile methodologies. They co-
ordinated effectively, shared information efficiently,
and aligned their objectives for better planning and
execution. The agents provided data-driven insights
for feature prioritization and risk mitigation, improv-
ing decision-making quality.

Comparisons between agent outputs and human
analysts indicated that agents performed at a high
level, often matching or exceeding human-like anal-
ysis in feature evaluation and risk assessment. These
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As a Business Analyst, your role during the PI Planning event is to collaborate
with Product Owners to ensure that features are broken down into clear user
stories with well-defined acceptance criteria. You work closely with Development
Teams to clarify details and answer questions as they estimate and commit to
user stories for the Program Increment. Your focus is on ensuring that requirements
are understood, dependencies are identified, and that the stories are ready for
implementation. Please follow these steps:

1. Analyze the Program Increment goals and break down features into user stories.
2. Define acceptance criteria for each user story.
3. Identify dependencies and potential risks.
4. Communicate with Development Teams to clarify any uncertainties.
5. Update documentation and ensure everything is ready for implementation.

Figure 8: Natural language prompt demonstrating the role of a Business Analyst during PI Planning.

findings suggest that LLM-augmented agents can en-
hance software project management, enabling more
efficient data-driven decisions.

The simulations confirmed that agents adhered to
their respective Agile roles, ensuring consistent goal
alignment. This supports the system’s potential for
improving productivity and quality in complex soft-
ware projects, meeting the study’s success criteria.

4.1 Output Quality Analysis

A comprehensive evaluation of the quality and effec-
tiveness of agent-generated content can be achieved
through the application of diverse measurement algo-
rithms. Techniques such as cosine similarity, code il-
lustrated in Figure 9, are instrumental in detecting re-
dundant or overlapping information, thereby inform-
ing strategies for generating outputs that are more var-
ied and contextually appropriate. Metrics examin-
ing lexical and syntactic diversity further ensure that
the system avoids producing uniform or overly pre-
dictable outputs. Goal achievement metrics, which in-
corporate keyword matching and semantic similarity,
provide a mechanism for determining the alignment
of content with predefined objectives.

5 DISCUSSION AND FUTURE
WORK

This study explored integrating cognitive agents pow-
ered by LLMs into Multi-Agent Systems to enhance
Agile software project management frameworks like
Scrum and SAFe. The CogniSim framework demon-
strated how such technologies can automate complex
tasks, improve decision-making, and boost overall
productivity by simulating key software development

roles.
Future research should focus on scaling CogniSim

for larger teams and more intricate projects, evaluat-
ing performance using metrics like sprint completion
times, defect rates, and adherence to deadlines. En-
suring interoperability with existing CI/CD pipelines
and issue trackers will enhance practical applicability
(Horling and Lesser, 2004).

CogniSim’s agent architecture employs a modu-
lar design, where cognitive agents integrate LLM-
driven reasoning layers with domain-specific knowl-
edge modules and standardized interfaces. These
agents communicate using established protocols (like
FIPA ACL) and optional extensions tailored to Agile
processes, ensuring smooth collaboration and inter-
operability. Although certain workflows (e.g., contin-
uous integration and testing) operate through largely
stable pipelines, CogniSim supports dynamic adjust-
ments, allowing agents to reconfigure their pipelines
based on feedback, evolving requirements, or per-
formance metrics, thereby enhancing resilience and
adaptability throughout the software lifecycle.

Improving human-agent collaboration through in-
tuitive interfaces and adaptive MAS architectures will
further align the system with various Agile practices
(Guo et al., 2024). Incorporating adaptive learning
capabilities may help agents respond more effectively
to individual team member styles, enhancing overall
team efficiency. Recent advances explore the synergy
of logical reasoning, long-term memory, and collab-
orative intelligence within multi-agent LLM ecosys-
tems (Kostka and Chudziak, 2024).

Unlike existing multi-agent Agile management
frameworks such as PASSI (IEEE Foundation for
Intelligent Physical Agents (FIPA), 2012), which
rely on predefined coordination rules and heuristic
decision-making, CogniSim integrates Large Lan-
guage Model-driven cognitive capabilities. This inte-
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from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def compute_cosine_similarity(messages):
corpus = [msg['message'] for msg in messages]
vectorizer = TfidfVectorizer(stop_words='english')
tfidf_matrix = vectorizer.fit_transform(corpus)
similarities = []
for i in range(1, tfidf_matrix.shape[0]):

sim = cosine_similarity(tfidf_matrix[i-1], tfidf_matrix[i])[0][0]
similarities.append(sim)

return similarities

# Example call
similarities = compute_cosine_similarity([{'message': 'Hello world'}, {'message':

'Hello there!'}])↪→

Figure 9: Code snippet for computing content similarity between messages using cosine similarity.

gration enhances adaptability, linguistic understand-
ing, and decision quality while aligning more closely
with widely adopted Agile practices. Maintaining
transparency in decision-making and trust remains a
priority, along with ensuring ongoing updates to ad-
here to ethical standards (Tariverdi, 2024).

Implementing CogniSim in real-world case stud-
ies will provide insights into its impact on productiv-
ity, quality, and team dynamics, while testing it across
diverse projects will assess scalability and effective-
ness (Chudziak and Cinkusz, 2024). Embedding pre-
dictive analytics within MAS could anticipate delays
or issues, enabling proactive corrective actions in dy-
namic environments (Lin et al., 2024).

6 CONCLUSION

Integrating cognitive agents powered by Large Lan-
guage Models within Multi-Agent Systems presents
a significant step forward in Agile software project
management. The CogniSim framework demon-
strated that these technologies automate routine tasks,
enhance decision-making, and improve collaboration
among virtual team members, increasing efficiency
and adaptability (Dignum, 2009).

By simulating roles such as project managers, de-
velopers, and QA engineers, cognitive agents man-
age complex tasks traditionally handled by humans,
allowing human teams to focus on strategic activities
requiring creativity. Experiments showed that cogni-
tive agents effectively replicated communication and
decision-making processes integral to Agile method-
ologies, often matching or exceeding human perfor-
mance in certain tasks (Konar, 2000).

Challenges remain in scaling the framework for
larger projects, improving adaptability to unexpected
changes, and ensuring seamless human-agent collab-
oration. Addressing ethical considerations—data pri-
vacy, security, and transparency—is also critical as
these technologies become more integrated into de-
velopment processes (Müller, 2020).

Future work will refine the framework, validate
it in real-world scenarios, and ensure responsible in-
tegration, aiming to achieve benefits like improved
decision-making and reduced operational costs (Rose,
2020). The advancements in MAS and LLMs within
Agile frameworks hold promise for more intelligent,
responsive project management practices, enabling
teams to adapt swiftly to evolving requirements and
deliver higher-quality software products.

By incorporating LLM-powered cognitive agents
into multi-agent systems, this research introduces
an approach for optimizing Agile software devel-
opment processes. It combines the adaptability of
cognitive computing with coordination strategies in-
herent to agent-based systems. The study’s pri-
mary contributions include demonstrating enhanced
decision-making capabilities, the automation of repet-
itive tasks, and improved communication within dy-
namic and complex project environments.
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