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Abstract: Power management in cloud and edge computing platforms is challenging due to the need for domain-specific
knowledge to configure optimal settings. Additionally, the interfaces between application owners and resource
providers often lack user-friendliness, leaving efficiency potentials unrealized. This abstraction also hinders
the adoption of efficient power management practices, as users often deploy applications without optimization
considerations. Efficient energy management works best when user intentions are clearly specified. Without
this clarity, applications are treated as black boxes, complicating the process of setting appropriate throttling
limits. This paper presents an application intent-driven orchestration model that simplifies power management
by allowing users to specify their objectives. Based on these intentions, we have extended Kubernetes to
autonomously configure system settings and activate power management features, enhancing ease of use.
Our model demonstrates the potential to reduce power consumption in a server fleet within a range of ≈ 5-
55% for a sample AI application. When applied broadly, the research offers promising potential to address
both economic and environmental challenges. By adopting this model, applications can be more efficiently
orchestrated, utilizing advanced resource management techniques to mitigate the power usage surge that is in
part driven by applications such as AI and ML.

1 INTRODUCTION

Managing power efficiently in cloud and edge com-
puting is increasingly challenging due to the growing
power demands of applications such as AI and ML
based applications. As the need for environmentally
friendly deployments grows, understanding the roles
and motivations of different users/stakeholders – ap-
plication owners and resource providers – becomes
crucial. Current power management features often re-
quire domain-specific knowledge and platform-level
configurations, which are either not easily accessible
or deliberately restricted (e.g. for security reasons) to
application owners. This results in sub-optimal de-
ployments and inefficiencies in platform management
and leave untapped savings for the resource providers.
Overall, this hinders the adoption of the green edge-
cloud continuum.

Moreover, hardware features often automatically
boost to higher performance modes when detecting
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activity, leading to increased power draw. Without ad-
equate context, these boosts can be inefficient and un-
necessary. By providing context through application
intents, power management can become more precise
and efficient, aligning performance boosts with ac-
tual needs. Additionally, system-wide power config-
urations generally result in higher power draw com-
pared to fine-tuned, per-application configurations.
Resource providers should only flexibly perform per-
application tuning, and space and time shift them if
they understand the application intents. This aligns
with the concept of ”tell me what you want, not how to
do it”, demonstrating how resource providers benefit
more from understanding user intentions rather than
following a strict set of instructions.

This paper uses an Intent-Driven Orchestration
(IDO) model as a novel approach to address these
challenges. By allowing application owners to spec-
ify their intents through a set of objectives instead
of low-level resource requirements, intent-driven sys-
tems bridge the gap between user-friendly interfaces
and complex power management configurations. The
obtained experimental data indicates an enhanced ef-
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ficiency in the computing continuum.
Intent-driven systems ensure that applications are

not treated as black boxes but are managed based on
intentions, enabling more effective power optimiza-
tion. Key benefits include:

• Semantic Application Portability - Declaring
intents with targeted application objectives remain
consistent across platforms, unlike declaring spe-
cific resource requests, which can result in signif-
icantly different performance and power charac-
teristics depending on the platform context.

• Invariance - Intents allow resource providers to
dynamically modify system resource allocations
in response to changing contexts, such as avail-
able energy, optimizing overall system setup over
time as long as the intents can be met.

• Context - Intents provide context for resource
providers to maximize performance and energy
efficiency by understanding the application own-
ers’ objectives.

Throughout this paper, the implementation and
benefits of IDO models for various applications are
demonstrated. By leveraging Intel®’s IDO extension
for Kubernetes1, we enable autonomous configuration
of systems based on user-specified intents, simplify-
ing power management and enhancing ease of use.

The rest of the paper is structured as follows:
Section 2 introduces efficient power management for
feature-aware advanced users. Section 3 showcases
the benefits of an IDO model. Section 4 discusses the
results of providing intents to a orchestration stack,
followed by related work in Section 5 and conclusions
in Section 6.

2 PLATFORM LEVEL POWER
MANAGEMENT

Intel® Xeon® processors have an extensive set of
power management capabilities that were created to
automatically, or under user and systems administra-
tors preference, adjust the compute performance to
power consumption ratio dynamically in response to
the needs of the applications or the resource provider.

2.1 Core Sleep/Idle States (c-State)

The Advanced Configuration and Power Interface
(ACPI) specification2 defines the processor power

1https://github.com/intel/intent-driven-orchestration/
2https://uefi.org/htmlspecs/ACPI Spec 6 4 html/

state, known as its C-state. The C-state is sometimes
colloquially known as the processor “idle” state on a
per-core basis or on a CPU package basis. Core and
package C-states coordination is managed by the CPU
Power Control Unit. C-state values range from C0 to
Cn, where n is dependent on the specific processor.
When the core is active and executing instructions, it
is in the C0 state. Higher C-states indicate how deep
the CPU idle state is.

Higher C-states consume less energy when resi-
dent in that state but require longer latency times to
transition into the active C0 state. The BIOS/UEFI
configuration can be configured to restrict how deeply
the cores and package can idle, e.g., it is possible to
restrict access to the deepest C-state.

In Linux, C-state management is implemented on
modern Intel® Xeon® processors with the intel idle
driver that is part of the CPU idle time management
subsystem. Linux categorizes a CPU core as being
idle if there are no tasks to run on it except for the
“idle” task. Note that C-state information is intro-
duced here for completeness and to draw a distinction
with P-State, however the experiments outlined in this
paper did not leverage C-state capabilities.

2.2 Core Frequency/Voltage State
(P-State)

Intel® Xeon® processors include the ability to alter
the processor operating frequency and voltage be-
tween high and low levels. The frequency and voltage
pairings are defined in the ACPI specifications as the
processor Performance State (P-state). P-states are
SKU-specific settings ranging from the low-end of the
operating frequency and voltage pairings with mini-
mums defined by Pn to the nominal operating con-
dition Base Frequency (P1), to the maximum single
core turbo (P01).

Intel® Xeon® processors with HW P-state Man-
agement (HWP) can manage P-state transitions auto-
matically with some tuning configuration provided to
it by the operating system. With the Linux operat-
ing system the CPU Performance Scaling Subsystem
(CPUFreq)3 is responsible for providing the OS-level
inputs to the processor P-State management capabil-
ity. The CPUFreq layer is composed of core foun-
dational capabilities, and scaling governors that con-
tain the algorithms for selecting P-States and scal-
ing drivers for communicating the desired P-States to
the processor. Users/administrators can configure the
CPU scaling with the sysfs filesystem and using utili-

3https://www.kernel.org/doc/html/v6.7/admin-guide/
pm/cpufreq.html
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ties such as the CPUFreq Governor4. Note, the Intel®

Xeon® processors’ internal logic will be the final ad-
judicator of what P-State the processor should be in.

The intel pstate driver5 is the CPU scaling driver
part of the CPUFreq subsystem for Intel® Xeon® pro-
cessors. When configured in the default active mode
with HWP enabled there are effectively two governor
modes exposed:

• A performance governor mode that promotes
maximum performance.

• A powersave governor mode that promotes maxi-
mum power savings with a reduction in peak per-
formance.

Intel® Xeon® processors can take as an input
to their P-state management an Energy Performance
Preference (EPP) setting. When in performance
mode, EPP is set to its maximum performance set-
ting (0). In powersave model, the EPP setting deter-
mines how aggressively the CPU pursues power sav-
ing configurations. Furthermore, uncore frequency
scaling is a power management mechanism in mod-
ern CPUs that adjusts the frequency of the uncore do-
main, which includes components like the memory
controller, last-level cache, and interconnects. Unlike
P-states and C-states, which operate on a per-core ba-
sis, uncore frequency scaling independently regulates
the performance of shared subsystems.

2.3 Power Manager for Kubernetes

The Intel® Power Manager for Kubernetes software6

is a Kubernetes Operator that has been developed to
provide Kubernetes cluster users with a mechanism
to dynamically request adjustment of worker node
power management settings applied to cores allocated
to the Pods running the applications. The power
management-related settings can be applied to indi-
vidual cores or to groups of cores, and each may have
different policies applied. It is not required that ev-
ery core in the system be explicitly managed by this
Kubernetes power manager. When the Power Man-
ager is used to specify core power related policies, it
overrides the default settings. The container deploy-
ment model in scope is for containers running on bare
metal (i.e., host OS) environments.

The Power Manager for Kubernetes software has
two main components, the Configuration Controller

4https://www.kernel.org/doc/Documentation/cpu-freq/
governors.txt

5https://www.kernel.org/doc/html/v5.15/admin-guide/
pm/intel pstate.html

6https://github.com/intel/kubernetes-power-manager

and the Power Node Agent, which in turn has a de-
pendency on the Intel® Power Optimization Library7

which in turn configures the intel pstate driver.
The Configuration Controller deploys, sets, and

maintains the configuration of the Power Node Agent.
By default, it applies four cluster-administrator or
user-modifiable PowerProfile settings to the Power
Node Agent. This enables Pods to select between
a performance, balance-performance, balance-power
profile, and a default profile, to be configured on cores
allocated to the Pod. Note, in the experiments in this
paper, Profiles A-D were defined as per 1.

The Power Manager for Kubernetes organizes
CPU cores into logical ”pools”, including a shared
pool, which represents the Kubernetes shared CPU
pool, and a default pool, a subset of system-reserved
cores within the shared pool. Cores in the default pool
are excluded from power setting configurations, while
those in the shared pool are assigned a power-saving
profile.

The Power Manager for Kubernetes also supports
the notion of an ”exclusive” pool. This pool is used
to group cores allocated to Guaranteed QoS class of
Kubernetes Pods. When cores are allocated to Guar-
anteed Pods, they are moved from the Power Manager
Shared Pool into the Power Manager Exclusive Pool.
This mechanism supports the model where cores that
are not expected to be pinned to applications can be
configured to run in a low power model.

Note, per-core power management works in as-
sociation with CPU pinning deployment semantics.
The Kubernetes Resource Orchestration for 4th Gen
Intel® Xeon® Scalable Processors8 technology guide
provides a more detailed discussion on this and other
resource allocation considerations.

2.4 Observability

One of the fundamental premises of improving on a
current state is the ability to measure it. This is partic-
ularly true for activities aiming to support more sus-
tainable computing at the edge & cloud.

The observability in focus in the context of this
paper is on telemetry aspects related to power con-
sumption at the full system (node) level as well as
at the application level. There are several tools and
techniques to measure power at both of these levels.
This paper does not aim to identify what might be the
best approach, merely use some of the tools and ap-
proaches consistently throughout the experiments and

7https://github.com/intel/power-optimization-library
8https://networkbuilders.intel.com/solutionslibrary/

kubernetes-resource-orchestration-for-4th-gen-intel-xeon-
scalable-processors-technology-guide
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focus on the differential impact that the proposed ap-
proach has on power consumed in the environment.

For infrastructure, processor-specific and in-depth
data collection, tools such as telegraf9 are available.
Telegraf has a plugin model that supports data col-
lection from many sources, including from Power-
stat10. Telegraf can subsequently be used to distribute
telemetry data from the node to data sinks.

Prometheus11 is a Time Series Database with
systems monitoring and alerting capabilities.
Prometheus can be configured to pull data from
telemetry collection tools such as Telegraf via a
Telegraf Prometheus exporter plugin.

Grafana12 is a monitoring and data visualiza-
tion tool. When the above tools are combined with
Grafana, a pipeline can be established to assess and
visualize the node-level power consumption.

In addition to node-level power consumption, un-
derstanding the per-application power consumption
can add to the understanding of how effective power
efficient strategies are being from the application per-
spective. Scaphandre13 is one tool that is focused on
per-app energy consumption metrics.

3 INTENT-DRIVEN
ORCHESTRATION

To switch to intent-driven systems, Intel®’s IDO ex-
tension for the Kubernetes control plane is key, en-
abling it to understand and process application-level
intents through Custom Resource Definitions (CRDs)
as discussed in (Metsch et al., 2023). By enabling
Kubernetes CRDs, the intents can be defined as ob-
jects through the Kubernetes API. This allows appli-
cation owners to specify their intents through a set
of objectives rather than low-level resource require-
ments, simplifying the interface and enhancing user-
friendliness.

By allowing users to express their Intent with a set
of objectives and associated Key Performance Indica-
tors (KPIs), the IDO extensions automate the trans-
lation of these intents into actionable configurations,
facilitating more efficient power management. The
KPIProfile enable users to define how the orchestra-
tion stack can observe their application’s behavior.
Fig. 1 shows the object model that details how in-
tents, objectives and KPIs relate. Objectives in the

9https://github.com/influxdata/telegraf
10https://manpages.org/powerstat/8
11https://prometheus.io/
12https://grafana.com/
13https://github.com/hubblo-org/scaphandre

Figure 1: Object model detailing relationship between in-
tents, objectives and KPIs.

IDO model are unit-less objects categorized by a type
such as latency, throughput, availability, and power,
enabling their specification across a wide range of ap-
plications, such as - but not limited to - AI applica-
tions, video processing, micro-services, web services,
and High-Throughput Computing (HTC).

The Kubernetes extension integrates a planning
component within Kubernetes, this planner is respon-
sible for continuously determining the necessary con-
figurations and setup needed to meet the specified in-
tents. It hence determine what & how to optimally
manage the overall system. It works in tandem with
the scheduler, which manages when & where to place
applications. By leveraging the insights provided by
the planner, the scheduler can make more informed
decisions, optimizing cluster level resource alloca-
tion and workload distribution. This collaboration
between the planner and scheduler ensures that the
system setup aligns with applications owners and re-
source provider’s objectives, trading of both perfor-
mance and efficiency.

To make informed decisions, the planner utilizes
an A* planning algorithm which leverages a set of
heuristics and utility functions that evaluate different
actions based on their potential impact on the speci-
fied KPIs. These utility functions allow the planner to
incorporate the intentions of resource providers into
its decision-making. The planner can support var-
ious actions, including vertical and horizontal scal-
ing, and the configuration of platform features such as
Intel® Resource Director Technology (Intel® RDT) 14

and Intel® Speed Select Technology (Intel® SST)15.
This ensures that the system can be dynamically ad-
justed to meet a set of performance and power man-
agement goals leveraging platform features under the
hood, catering for the needs of cloud-native applica-

14https://www.intel.com/content/www/us/en/
architecture-and-technology/resource-director-technology.
html

15https://www.intel.com/content/www/us/en/support/
articles/000095518/processors.html
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Figure 2: System overview of Kubernetes extensions en-
abling intent-driven orchestration.

tions. The A* planning algorithm may be replaced by
other algorithms and is a subject for further study.

A key feature of the IDO model is its pluggable ar-
chitecture, which employs plugins known as actuators
as shown in Fig. 2. Each actuator is responsible for a
specific function within the system and can use either
static lookup tables or more complex AI/ML mod-
els to determine the best orchestration actions based
on current conditions and user intents. This flexi-
ble architecture allows the system to adapt to varying
workloads and objectives, continually optimizing for
performance and power consumption. The actuators’
ability to dynamically adjust configurations based on
near-real-time data ensures that the system remains
efficient and responsive to changing demands. This
system operates in the orchestration time-domain, i.e.
the nature of how quickly the control loop may be
closed is a function of the orchestration software that
underpins the system. Timeliness should be consid-
ered with seconds/minutes/hours granularity.

For addressing efficient power management, a
new actuator has been developed. This actuator can
adjust power settings based on power and perfor-
mance objectives, optimizing power usage while bal-
ancing it with application performance. Additionally,
it can be configured to prioritize power or carbon re-
duction intents, aligning with broader environmental
goals. Next to this power management actuator a CPU
rightsizing actuator has been used in tandem. The fol-
lowing sub-sections describe the key models used to
enable the concepts introduced in this paper.

3.1 Dynamic CPU Rightsizing

Dynamic CPU allocation rightsizing is a key in en-
ergy management, aiming to dynamically adjust CPU
resources allocated to applications. The primary goal
is to optimize energy usage while trading perfor-
mance by reducing the resources allocated at run-
time. This approach contrasts with static alloca-
tion methods, which often lead to resource over-
provisioning and consequently energy wastage. By
tailoring CPU allocation to current application needs,

dynamic rightsizing conserves energy while avoiding
resource overuse. Maximizing the utilization of avail-
able resources and ensuring that those resources asso-
ciated with an application are setup according to the
intents.

To enable the dynamic resource allocations,
a curve fitting model that predicts resource
requirements-based performance metrics is used.
The equation 1 showcases the model used for
latency-related metrics. Whereby the goal is to learn
the values of the parameters p0, p1, p2 that describe
the characteristics of the application in the current
context. This model, applicable to a wide range of
applications across various domains and allows the
planner to anticipate CPU needs and adjust resources
accordingly. Our approach leverages pre-training,
on-the-fly learning, and proactive adaptation to
continuously refine the model. Pre-training with
historical data establishes a baseline understanding
of application behaviors, while on-the-fly learning
incorporates near-real-time performance data to
ensure the model remains accurate as applications
evolve.

latency = p0 ∗ e−p1∗cpuunits + p2 (1)

Despite the gains of these techniques, the training
process is lightweight, ensuring that the energy sav-
ings from dynamic CPU rightsizing are not offset by
the costs of model maintenance. By dynamically ad-
justing CPU resources based on predictive modeling
and adaptive learning, our approach achieves energy
savings while maintaining application performance as
will be discussed in section 4.1.

3.2 Dynamic Power Management

Associating the most efficient power profile with
an application is crucial for effective energy man-
agement. The power profile selection must con-
sider both the application’s intents and the current
system status, including the available energy sup-
ply. This approach facilitates optimal energy use, ad-
dressing both economic and environmental concerns.
For instance, during periods of high sustainably-
sourced energy availability, a performance-oriented
power profile might be appropriate, whereas during
constrained sustainably-sourced energy availability, a
power-saving profile can be adopted to conserve en-
ergy (Intel Network Builders, 2024).

To facilitate this dynamic power management,
a RandomForestRegressor model as described in
(Geurts et al., 2006) is used. This model is trained
to learn the relationships between selecting different
performance power profiles, allocated resources, as
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well as the power consumption associated with each
profile. By leveraging historical data coming from
the observability stack, the model learns how various
workload and system conditions impact power usage
and performance. Based on this model the planner
can make informed decisions about which power pro-
file to apply, optimizing both performance and power
efficiency. The use of a RandomForestRegressor is
particularly advantageous due to its robustness and
ability to provide insights.

The implementation currently relies on pre-
trained models. These models are initially trained in
a controlled development environment where exper-
iments with the applications are carried out to deter-
mine the effect power profile selections have to gather
comprehensive training data. Once the models have
achieved satisfactory accuracy and reliability, they are
deployed to the production environment. This trans-
fer ensures that the models can operate in various sce-
narios with minimal adjustments, providing accurate
and efficient power management. By selecting power
profiles on a per-application basis rather than system-
wide, the power management strategy can be tailored
to the specific needs of each application. This granu-
larity allows for further energy savings and efficiency
gains, as each application can operate under the most
suitable power conditions for its intents as will be dis-
cussed in section 4.2.

4 EXPERIMENTAL RESULTS

The experiments utilized a system featuring an Intel®

Xeon® Processor. These processors are designed for
cloud & edge deployments, although the methodolo-
gies outlined in this paper are also applicable to other
deployment scenarios. The system ran on Ubuntu
22.04 LTS, with Kubernetes 1.27 deployed to man-
age the extensions described in Section 2. The con-
figured power profiles are detailed in Table 1, cho-
sen based on the CPU’s characteristics and power
curve behavior. Profiles A and B were selected for
their power-saving capabilities, while profiles C and
D were chosen for their performance attributes. To
enable a power saving mentality all cores are put in
Profile A by default. Notably the profiles were se-
lected and configured with the CPUs characteristics
in mind by the resources owner, relieving the appli-
cation owners of the need to have (domain) specific
knowledge about their setup & power ratings.

To demonstrate the methodologies, various appli-
cations were employed to validate the effectiveness of
the features. The following applications were used:

Table 1: Power profiles configurations.

Name Min Max EPP
profile A 800Mhz 1600Mhz power
profile B 800Mhz 1800Mhz balance power

profile C 800Mhz 2400Mhz balance
performance

profile D 800Mhz 3500Mhz performance

• FaaS (Function-as-a-Service) This application
performs mathematical calculations triggered by
HTTP events. Performance-related KPIs were in-
strumented using the Linkerd16 service mesh, pro-
viding P99, P95, and P50 latencies. The key ob-
jective used for these experiments was the P99 la-
tency.

• OVMS (OpenVINO® Model Server)17 This
application performs object detection on video
frames, representing a typical edge use case aimed
at conserving network bandwidth by processing
data locally. The application was modified to ex-
pose the processing time per video frame as a his-
togram via a Prometheus client18. The key objec-
tive for these experiments was the P99 latency.

• AI Mistral LLM This application functions as an
AI chatbot responding to incoming requests using
a Mistral 7B LLM19. It uses a Prometheus client
to expose the time required to generate a token.
The key objective for these experiments was the
average token creation time, as the first response
token typically takes longer to generate, affecting
higher percentile latencies.

The aim of the selected application was to mimic
a scenario in which multiple applications from poten-
tially different tenants are run on the node. In this
environment it is the goal to optimize the power us-
age of each node, with the overarching goal to achieve
cluster level power optimization. All values were nor-
malized for comparison purposes, ranging from 0 to
the maximum observed value of a data series. This
normalization facilitates easier data interpretation and
demonstrates that the methodology can be applied
across a diverse set of use cases and scenarios.

4.1 Dynamic CPU Rightsizing

Fig. 3 illustrates the resulting models for the three ap-
plications when applying the methodology described
in Section 3.1. While the FaaS application can oper-

16https://linkerd.io/
17https://docs.openvino.ai/2023.3/ovms what is

openvino model server.html
18https://prometheus.io/docs/instrumenting/clientlibs/
19https://mistral.ai/news/announcing-mistral-7b/
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ate with fewer CPU cores, the AI Mistral LLM and
OVMS applications require a minimum number of
cores to function.

The resource allocation curves for each applica-
tion vary due to their unique implementations and
characteristics. However, the planner can utilize these
models to efficiently allocate the appropriate number
of resources for each application in a specific context.

The common characteristic from the charts in Fig.
3 is that from the perspective of the KPI being as-
sessed, there is a point beyond which adding ad-
ditional CPU cores provides limited improvements
in the KPI, i.e. the curve levels off. This point
varies by application but is dynamically determined
by the learning algorithms in the IDO implementa-
tion. While the underlying curve-fitting model is rel-
atively simple, it accommodates a wide range of ap-
plications. Notably, although these curves correspond
to a specific power profile, their shapes remain largely
consistent across profiles, differing primarily in am-
plitude.

4.2 Dynamic Power Management

Fig. 4 presents the resulting models after applying the
methodologies described in Section 3.2. It highlights
the impact of power profile selection on the perfor-
mance of each application. Where 1.0 is shown in
these graphs represents the worst performing latency.
The best performing latency is closest to zero. The
Function and OVMS applications require a certain
amount of CPU resource to be allocated to achieve
lower latency objectives. This is also true for the AI
Mistral LLM application, however here the selection
of the power profile plays a bigger role. To achieve
lower latencies at least the profiles C or D need to
be selected. This variation is due to the specific im-
plementation and hardware utilization of each appli-
cation, demonstrating that different applications have
unique characteristics that can be efficiently learned.
Notably, we found that AI applications are highly
flexible and can be efficiently managed within the
context of power and energy constraints.

4.3 Enhancing Usability

The following paragraphs describe how the models
shown in section 4.1 and 4.2 can be used by the
IDO planner as described in section 3. Overall, this
demonstrates the ease of use of platform features for
the application owners – as they only work with their
intents and associated targeted objectives – while pro-
viding the resource providers with additional context
to efficiently manage their compute platform.

Making Decision Based on Performance Related
Objectives. Fig. 7 shows a screenshot of the dash-
board for the IDO planner. The table shows the event
timestamps, the current state of the application (de-
fined by its objectives), the desired state, and the re-
sulting plan. In this example, the FaaS application is
under control of the planner, targeting a P99 objec-
tive. When the target objective shifts from 100ms to
200ms, the system efficiently frees up resources and
selects a more efficient power profile.

Making Decision Based on Power Related Objec-
tives. Fig. 8 shows a screenshot of the dashboard
for the IDO planner when applying power objectives.
In this example, the system is purely driven by power
objectives. When the target objective shifts from an
average of 10W to 5W while running the application,
the system selects a more power-efficient profile. This
capability is a crucial step toward enabling carbon-
based objectives in the future.

4.4 Experimental Gains

Power profile selection impacts not only the perfor-
mance of individual applications but also the power
consumption estimations as shown in the previous
section 4.3. Fig. 5 demonstrate how the model de-
scribed in section 3.2 can also be used predict the
power draw for a given application based on its power
profile and CPU resource allocation.

For applications that fully utilize compute re-
sources, high power draw is observed when more
cores are allocated, which are allowed to operate at
higher frequencies. Next to the core frequencies that
can be adjusted using the P-states and C-states, the
uncore components (e.g., the memory controller, in-
terconnects, etc.) can also be managed independently.
Since uncore components are shared by all applica-
tions, their activity significantly impacts each appli-
cation’s overall power draw estimation.

Current power estimation models attribute power
usage based primarily on utilization of the cores asso-
ciated by the processes. However, the power draw of
shared components can result in elevated power draw
irrespective of which application is responsible, a fac-
tor not adequately captured in most power estimation
tools. Consequently, further research is required to
refine power estimation for improved accuracy. Also,
more fine-grained per sub-component frequency scal-
ing methodologies will enable further gains. For ap-
plications that fully utilize compute resources and are
memory-bound—such as the AI Mistral LLM evalu-
ated here (as can be confirmed by analyzing the In-
structions per Cycle (IPC) and memory bandwidth us-
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(a) Function as a Service App (b) OVMS App (c) AI Mistral LLM App

Figure 3: The CPU rightsizing models illustrate the impact of CPU resource allocations on latency-related objectives for
various applications, including: a) P99 tail latency for a FaaS-style deployment, b) P99 compute latency for processing video
frames, and c) average token creation time for an AI LLM model. The forecast based on the curve-fitting are shown in blue
for the performance profile D.

(a) Function as a Service App (b) OVMS App (c) AI Mistral LLM App

Figure 4: The selection of the right performance profile has an effect on the performance of the application.: a) P99 tail latency
for a FaaS-style deployment, b) P99 compute latency for processing video frames, and c) average token creation time for an
AI LLM model. Note, a value of 1.0 is the normalized worst (highest) latency reading measured.

age nearing the CPUs’ theoretical maximums) – the
current power model is effective and allows for intent-
driven orchestration using power objectives.

These findings align with those presented in
(Pereira et al., 2017) and in general call for more
efficient software. While the results are specific to
the platform and applications used, an intent-driven
model enhances semantic application portability and
can learn and adapt to different contexts.

Finally, Fig. 6 shows the experimental gains for
the AI Mistral LLM application in more detail. In this
set of charts, the effects that two of the system-wide
CPU frequency scaling governors have when applied
to the processor for this application is contrasted to an
per-application intent-driven model. The normaliza-
tion point was chosen as that produced by the default
system-wide lower power consuming configuration in
the powersave governor. For these experiments, the
node level utilization was observed to be ≈ 35% as

multiple applications were deployed.
The effects of the two system-wide configurations

are broadly aligned with their monikers. I.e., the per-
formance CPU frequency governor delivers the best
application KPI which is the lowest average token
creation time while consuming the most node-level
and application-level power. The powersave CPU fre-
quency governor offered a considerably lower power
draw by the node and the application, but with a worse
(i.e. higher) average token creation time.

The system-wide configuration choice implied by
selecting between the two native CPU frequency
governors has a significant implication for the re-
source provider and the application owner. Purchas-
ing a high-performance processor and configuring it
to run with the powersave CPU frequency governor is
shown in the experiment with the AI LLM application
to considerably limit the KPI potential. Such a config-
uration could result in the application owner to require
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Figure 5: The selection of the right performance profile has
an effect on the power estimation per-application - e.g. for
an AI LLM model. Note, a value of 1.0 represents the nor-
malized highest power consumption measured.

actions such as invoking earlier scale-out strategies to
make up the performance short fall thereby undermin-
ing the intention of restricting the power draw of the
node. Nonetheless it is a simple, effective mechanism
to limit power consumption.

The behavior of the power profiles when applied
to the application is broadly aligned with expecta-
tions. Profile A offered the worst KPI performance
(highest latency) and best power consumption (lowest
power draw), with Profile D the opposite. The follow-
ing points are particularly interesting:

• At one end of the scale a considerably better (≈
55%) overall power consumption (lowest power
draw) could be achieved with Profile A when
compared to the system wide powersave CPU fre-
quency governor.

• At the other end of the scale an equivalent appli-
cation KPI, the best average token creation time
(lowest time) was achieved with Profile D as with
using the performance governor while also having
a slightly lower (≈ 5%) power draw.

• Profile C offers a ≈ 30% performance gain and
Profile D a gain of ≈ 40% compared to a system-
wide powersave, while both outperforming the
latter. Both profiles offer a better power efficiency,
with ≈ 5% and ≈ 15% power savings respec-
tively. Notably the difference between their per-
formance characteristic is just ≈ 5% while the
power savings are within the range of ≈ 10%, of-
fering options for trading-off efficiency gains.

• Through an IDO model – leveraging an per-
application power management capability – simi-
lar performance can be achieved, while this model
enable showcase power efficiency gains contrast-

ing it to system-wide configuration options across
the board.

Similar to the results observed with the AI Mistral
LLM application, both the Function and OVMS appli-
cations demonstrate potential power savings of up to
≈ 50%. This level of efficiency is largely attributed
to their smaller CPU footprint, which allows most of
the system to remain in a power-saving mode.

This observation underscores the importance of
consolidating applications with compatible power
profiles (based on their intents) on servers to optimize
power efficiency for resource providers. It is impor-
tant to note, however, that these results may vary de-
pending on the specific system configuration and ap-
plications utilized.

The experiment shows that IDO offers an alter-
native approach that absolves a system administrator
from having to choose between two system-wide set-
tings that either prioritizes power savings while lim-
iting performance or drives performance while forc-
ing a high-power consumption configuration. The
dynamic nature by which IDO selects different pro-
files for the application allows for application intent
to drive the minimum power consumed based on re-
specting a KPI. When the application has a lower KPI
requirement or is simply not busy enough to cause it
to miss a KPI, IDO can be used to ensure the minimal
power needed to meet the KPI is consumed.

5 RELATED WORK

The European Telecommunications Standards Insti-
tute (ETSI) has highlighted the necessity for declar-
ative management in evolving telecommunications
networks, emphasizing the definition of desired out-
comes without specifying declarative resource asks.
This approach simplifies network operations, reduces
operational costs, and accelerates service deployment,
making intent-driven applications crucial for modern
management (Cai et al., 2023). This aligns with the
goals of the IDO model as presented in this paper.

The increasing demand for compute capacity,
driven in part by the rapid growth of AI/ML appli-
cations, necessitates rethinking of power and energy
management strategies (Lin et al., 2024). The growth
in use of these applications may place significant
stress on power grids, emphasizing the need for user-
friendly energy management solutions. The method-
ology proposed in this paper is a pivotal piece of this
puzzle, enabling users to embrace hardware abstrac-
tion while seamlessly utilize platform-level power
management features.
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(a) Average token creation time (b) Node level power draw (c) Application power estimation
Figure 6: Effect of intent-driven power management on an AI LLM application.

Power capping and frequency management have
proven effective in controlling the power draw of AI-
intensive applications (Patel et al., 2024). The utiliza-
tion of platform features has generally been demon-
strated to enhance performance and power efficiency
across a wide range of applications (Veitch et al.,
2024). This paper builds on that foundation by sim-
plifying the adoption of these features. The hetero-
geneous nature of edge locations adds complexity to
managing the cloud-edge continuum, calling for more
autonomous management and abstraction. Research
has shown that abstracting the complexity of edge in-
frastructure and using service-level objectives to de-
fine service requirements yields significant benefits
(Guim et al., 2022). These findings form the foun-
dation for the follow-up work presented here.

Efficient orchestration and resource management
has been tackled from multiple angles (Metsch et al.,
2015). Previous work has addressed individual prob-
lems such as auto-scaling (Roy et al., 2011), place-
ment (Bobroff et al., 2007), and overbooking to max-
imize utilization (Tomás and Tordsson, 2013). How-
ever, these solutions focus primarily on efficient re-
source usage rather than ease of use for energy effi-
ciency. The work presented is complementary, poten-
tially enhancing the methodology proposed here.

Coordination between compute demand in data
centers and (local) power grids capacities has shown
to be effective in improving carbon emissions (Lin
and Chien, 2023). These techniques require resource
providers to plan their capacity ahead and commu-
nicate this to the power grid. Efficient planning is
crucial, necessitating an understanding of the inten-
tions and priorities of application owners. The intent-
driven approach discussed in this paper provides the
necessary context to resource providers.

6 CONCLUSIONS

This paper presents an IDO model that simplifies
power management for application owners while pro-
viding resource providers with essential context for
efficient energy and resource optimization. By en-
abling the configuration of power profiles on a per-
application basis based on user intents, this approach
offers significant benefits towards greener solutions.
Making power-saving modes the default in data cen-
ters and at the edge is an essential step forward. Con-
textual information provided by the intents is criti-
cal, as hardware cannot effectively throttle and op-
timize without it, leaving significant efficiency gains
untapped. By accepting minor performance trade-offs
can result in substantial power savings.

Our experimental results demonstrate that when
intents and their objectives allow for it, power sav-
ings of ≈ 5-55% for this sample AI application can
be achieved compared to baseline settings. We ex-
pect these gains to only increase given higher core
count systems entering the market. The IDO model
facilitates allocating and configuring the necessary re-
sources for an application to meet the intents while
maintaining greater power efficiency compared to
configuring the system as a whole.

The intent-driven model benefits application own-
ers by simplifying the use of power management fea-
tures, reducing the need for deep domain-specific
knowledge. This approach bridges the gap be-
tween application owners’ needs and what resource
providers can offer, as platform features are often not
exposed to application owners. Simultaneously, it
benefits resource providers by enabling more efficient
resource optimization as the intents provide context,
resulting in better overall system performance and en-
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ergy savings.
Future work is planned to address per-application

power estimation, as current solutions lack the de-
sired accuracy. Additionally, we aim to explore car-
bon objectives built on top of power objectives. One
limitation of the current solution is the need for core
pinning, which could be replaced with a more flexi-
ble model in the future. Better-informed resource al-
location can help the scheduler make more efficient
decisions based on inputs from the planner, enhanc-
ing fleet-wide performance and energy efficiency. For
example, consolidating workloads with similar power
profile needs can be more efficient, avoiding single
application’s high-performance demands increase the
overall power draw of a node.

By integrating these advancements, the IDO
model provides a step towards managing the increas-
ing compute demands driven by AI and ML appli-
cations, ensuring that power and energy management
strategies remain effective and user-friendly.
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APPENDIX

The Figs. 7 and 8 present screenshots of the dashboard for the IDO planner. The tables in the screenshots display
the timestamps, the current state and desired state (as defined by their objectives), and the actions taken. As time
progresses, the outcomes of the decisions are reflected in the upper rows of the table.

Figure 7: Dashboard showcasing the intent-driven orchestration planner’s decisions based on performance related objectives.

Figure 8: Dashboard showcasing the intent-driven orchestration planner’s decisions based on power related objectives.
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