
Teaching Computational Thinking Through a Cross-Curricular
Approach Supported by Programming Patterns

Deller Ferreira a, Cássio Martins b, Samuel Costa c and Dirson Campos d
Institute of Informatics, Feredal University of Goiás, Campus Samambaia, Goiania, Brazil

Keywords: Computational Thinking, Cross-Curricular, Programming Patterns.

Abstract: Computational thinking means thinking or solving problems like computer scientists. It refers to the thought
processes needed to understand problems and formulate solutions, making it a crucial skill for success in
today’s world. Therefore, it is essential that schools provide students with the necessary skills to think
logically and solve problems. However, there is little knowledge among teachers about computational
thinking, and some misconceptions about it suggest a demand for the term to be better explored in the context
of initial teacher training. In this research, design-based research was used to develop teaching strategies and
tasks for elementary students, involving programming patterns to develop computational thinking skills cross-
curricularly. Six teachers positively evaluated a questionnaire analysing the strategies and tasks regarding
clarity, compatibility, productivity, technological role, scope, and student focus. The set of cross-curricular
teaching strategies involving programming patterns to develop thinking skills presented in this research
constitutes an innovative and effective approach to teaching computational thinking in a contextualized,
integrated, and systematic way.

1 INTRODUCTION

According to Hsu et al. (2018), research on
computational thinking (CT) has increased over the
last ten years. Teaching CT is a way to train students
to be more than just consumers of technology. CT can
be seen as a gathering of concepts and tools from
computer science that are applicable in solving real-
world problems. Integrating computational thinking
into the curriculum can help students develop 21st-
century skills such as creativity, critical thinking, and
problem-solving.

CT (Computational Thinking) means thinking or
solving problems like computer scientists. CT refers
to the thought processes required to understand
problems and formulate solutions. CT involves logic,
evaluation, decomposition, automation, and
generalization. According to Wing (2008),
computational thinking is a type of analytical
thinking. CT involves skills necessary to participate
in the digital world and can be applied in various

a https://orcid.org/0000-0002-4314-494X
b https://orcid.org/0009-0005-8967-7134
c https://orcid.org/0009-0009-4356-6710
d https://orcid.org/0000-0002-0878-8336

disciplines and contexts, including computer science,
mathematics, sciences, and the humanities (Wing,
2006). Overall, computational thinking is a problem-
solving process that emphasizes breaking down
complex problems into smaller parts, recognizing
patterns, developing algorithms, and using
automation to solve problems across multiple
domains.

CT is an interconnected set of skills and practices
for solving complex problems, a way to learn topics in
many disciplines, and a necessity for full participation
in a computational world (Yadav et al., 2017). CT is
seen as an important competency necessary for
adapting to the future. However, educators, especially
elementary school teachers and researchers, have not
clearly identified how to teach it (HSU et al., 2018).
Yadav et al. (2017) revealed that pre-service teachers
without prior exposure to CT have a superficial
understanding of computational thinking.

Despite several resources and tools being
available to help educators integrate computational

Ferreira, D., Martins, C., Costa, S. and Campos, D.
Teaching Computational Thinking Through a Cross-Curricular Approach Supported by Programming Patterns.
DOI: 10.5220/0013137700003932
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 17th International Conference on Computer Supported Education (CSEDU 2025) - Volume 2, pages 641-648
ISBN: 978-989-758-746-7; ISSN: 2184-5026
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

641

thinking into an interdisciplinary approach, there are
challenges and opportunities to be uncovered in
integrating it throughout elementary education, with
promising practices and strategies to be discovered
for moving computational thinking from concept to
deep integration across different disciplines.

As seen, the importance of CT extends beyond
computing, and it should be integrated into cross-
curricular approaches. Due to the importance of CT
in disciplines such as mathematics, social studies,
language, and sciences (Wing, 2006), involving its
underlying concepts, benefits, surrounding issues,
forms of assessment of students’ understanding of
these concepts, and approaches for applying this
concept in elementary education, as well as the great
interest of researchers and educators on the subject,
the motivation arose to develop a cross-curricular
teaching approach.

A promising approach is the use of programming
patterns as a cross-curricular strategy for teaching
computational thinking. In this research, we consider
a cross-curricular approach to be a teaching approach
that spans different areas of knowledge present in the
school curriculum. A programming pattern, simply
put, is a way of solving a recurring problem, that is, a
common solution for a particular problem (Proulx
2000).

In this context, the objective of the present
research is to create teaching strategies for elementary
students, involving programming patterns to develop
computational thinking skills cross-curricularly.

2 LITERATURE REVIEW

Recent developments highlight the importance of
developing interdisciplinary work skills, where
students learn to meaningfully relate computational
concepts across different disciplines (Celepkolu et al.,
2020). The existing literature supports the inclusion
of computational thinking (CT) in elementary school
curricula across various subjects, starting from early
childhood education. This approach requires students
to learn how to use CT in ways that allow them to
apply what they have learned to different domains
(Chakarov et al., 2019).

From the student's perspective, despite its overall
effectiveness, the transfer of skills between different
subjects can be challenging, especially for younger
students. An open challenge for computer science
education researchers is to develop a deep
understanding of the student experience in integrating
CT across disciplines (Celepkolu et al., 2020). From
the teacher's perspective, teaching CT in a cross-

curricular manner can also be challenging. In Yadav
et al.'s (2017) study, 134 pre-service teachers were
asked about their views on computational thinking
and its role in teaching CT in elementary classrooms.
The goal of the research was to understand pre-
service teachers' perceptions of CT in their specific
areas and to assess how they would implement it in
their future classrooms. The results indicated that
elementary school teachers have only a superficial
understanding of computational thinking.

Carvalho and Braga (2022) corroborate this result
by noting that there is still little knowledge among
teachers about CT, and some inadequate
understandings suggest a need for the term to be
better explored in the context of initial teacher
education. Falcão and França (2021) also point out
the lack of training in CT, tied to the low level of
digital literacy among Brazilian teachers.

To meet these demands, the computer science
education community has long been investigating
best practices to prepare students for the essential
skills needed in a computer-dependent world. Barr
and Stephenson (2011) related computational
thinking (CT) to various fields, identifying and
exemplifying core CT concepts and strategies applied
across different disciplines. For example, problem
decomposition was mapped to science through
species classification and to language instruction
through outlining. The concept of abstraction was
applied to language by writing a branching story,
mapped to social studies by summarizing facts and
drawing conclusions, and contextualized in physics
by constructing a model of a physical entity.

In the research of Goldberg et al. (2012),
elementary and middle school students were
introduced to computational thinking and computer
science concepts, including algorithms, graph theory,
and simulations in interdisciplinary contexts,
reflecting how computing technologies are used in
research and industry. Computing was embedded into
courses students were already taking, including art,
biology, health education, mathematics, and social
studies.

Souza and Menezes (2023) developed
computational thinking strategies through a cross-
curricular pedagogical framework for fifth-grade
students, countering the skills of the National
Common Core Curriculum in the areas of languages,
natural sciences, and mathematics. For example, to
explore everyday phenomena that demonstrate
physical properties of materials, such as density,
thermal and electrical conductivity, responses to
magnetic forces, solubility, responses to mechanical
forces, among others, they proposed the creation of

CSEDU 2025 - 17th International Conference on Computer Supported Education

642

an algorithm to inquire about the material by asking:
What is the product's consistency? Is it malleable or
not? What is its resistance (is it degradable in a few
days, weeks, months)? Where is it used?

Güven and Gulbahar (2020) provided assistance
to social studies teachers regarding how CT can be
integrated into elementary school classrooms. For
example, to encourage students to think abstractly,
they suggest assigning tasks such as creating a model
of cultural changes, urbanization, and population
growth. Regarding decomposition, teachers can ask
students to identify the main reasons and
consequences for differences in population
distribution within and between countries. For
algorithmic thinking, teachers can ask students how a
certain bill became law. Students can study the steps
necessary for a proposed bill to become law and then
draw an algorithmic flowchart.

Ragonis and Shilo (2018) conducted a study
where the results showed that students' understanding
of argumentative texts improved after learning
programming logic and the teacher applied an
interdisciplinary learning facilitation technique
through analogies between the structure components
of an argument and commands in an algorithm.

A different way of thinking about CT is to move
beyond its abstract definitions toward a more
pragmatic conceptualization. Basawapatna et al.
(2011) applied CT to science teaching through
analogies between programming patterns and science
simulations. Students and teachers who participated
in a summer game development course were given a
CT questionnaire. This questionnaire tested the
participants' ability to recognize and understand
patterns in a science context. They found that most
participants were able to comprehend and recognize
the patterns in various contexts.

Yadav et al. (2017) argue that there is a set of CT
concepts that allow introducing CT concepts into
other areas of knowledge; these concepts include data
collection, data analysis, and data representation.
According to the authors, a social studies teacher can
use data, such as the most used words in presidential
inaugural speeches over a period of time, and students
can analyze the differences between speeches across
time periods or between presidents of different
parties. The ability to make sense of a dataset to solve
a problem is a fundamental CT skill.

Lee et al. (2011) argued that CT shares elements
with several other types of thinking, and one of these,
according to the authors, is mathematical thinking. In
their mapping, Barr and Stephenson (2011)
associated CT with processes used in solving
mathematical problems, such as performing long

division or factorization, where each step can be
guided by a logical and well-defined reasoning. The
authors also associated certain skills that are practiced
and developed through CT education and can be
applied in mathematics, such as problem
decomposition. For example, applying an order of
operations in solving an expression.

CT has been offered as an interdisciplinary set of
mental skills derived from the discipline of computer
science. However, the approaches found in the
literature lack an explicit correlation of other areas
with computing and an interconnection between the
different domains. The use of programming patterns
allows for an integrated view of CT across different
disciplines, thus facilitating the transfer of CT skills
to distinct contexts.

Using patterns during the teaching and learning
process allows students to accelerate the development
of skills such as abstraction, problem decomposition,
and identifying a recurring problem (Proulx, 2000),
which are fundamental skills related to computational
thinking. Besides these concepts, the research
addresses cross-curricular integration, relating CT not
only to computing but in an integrated manner.

A cross-curricular approach seeks to go beyond
the existing space of each discipline in order to
produce knowledge and learning, connecting learning
to people's lives. Programming patterns can be
instantiated in different disciplines, from the most
common ones like mathematics to even physical
education (Leal & Ferreira, 2016), thus allowing a
single computational solution to be viewed from
different perspectives. In other words, students can
apply the same solution and think computationally
across different disciplines in a uniform way.

There is little work on the teaching of
programming patterns, and in the specialized
literature, as far as we know, no work addresses the
teaching of programming patterns combined with the
teaching of computational thinking in a cross-
curricular manner. Thus, this research represents a
relevant and original contribution to CT education.

3 METHODOLOGY

This research used a qualitative research
methodology based on the design-based research
(DBR) method. The basic process of DBR involves
developing solutions to problems. There are different
ways to describe DBR found in the literature. In this
work, the model chosen was that of Romero-Ariza
(2014). The approach proposed by Romero-Ariza
involves three main phases: a preliminary

Teaching Computational Thinking Through a Cross-Curricular Approach Supported by Programming Patterns

643

investigation phase where the needs and the problem
are clarified, a development and implementation
phase, involving progressive improvement in
iterative cycles of prototypes aimed at achieving the
research objective, and a final evaluation phase to
validate whether the result obtained is consistent with
the defined objective.

3.1 Methodological Steps

For this research, DBR was applied to develop a set
of strategies for teaching computational thinking in a
cross-curricular manner in elementary education. The
structure of the phases and steps of the research,
aiming to meet the characteristics of the DBR
approach according to the model proposed by
Romero-Ariza, are described as follows:

Phase 1: Preliminary Investigation
Literature review on cross-curricular approaches to
CT. Application of questionnaires to analyze
teachers' familiarity with CT and cross-curricular
approaches.

Phase 2: Development and Implementation
Initial development of a set of strategies using cross-
curricular programming patterns. Definition of a
context for cross-curricular application of the
strategies. Initial development of tasks to implement
the developed strategies. Application of a
questionnaire to evaluate the tasks by teachers
regarding efficiency and effectiveness.
Reformulation of tasks in a participatory manner with
teachers.

Phase 3: Final Evaluation
Application of a questionnaire to analyze the
strategies and tasks by teachers in terms of their
clarity, compatibility, productivity, technological
role, scope, and student focus (Kimmons et al., 2020).

4 RESULTS

4.1 Strategies for Using Programming
Patterns in a Cross-Curricular
Manner

The main contribution of the research is the
development, with the participation of teachers, of a
set of strategies and tasks for teaching computational
thinking (CT). From these strategies, a set of
activities is created using a systematized and
integrated approach to teach CT in a cross-curricular
way. These activities consist of tasks developed for

different subjects beyond computer science. The
patterns used in this work can be found on the
Elementary Patterns Home Page (Wallingford, 2001).
As an example of a programming pattern, we have
sequential choice. Sequential choice addresses a
situation where exactly one of several possible
actions must be chosen, but the action does not
depend on the value of a single expression. Instead,
suppose each action depends on a separate testable
condition. All the subjects involved are addressed in
a cross-curricular, integrated, and systematized
manner. This integration occurs by contextualizing a
real-world theme and its problematization in the
subjects, as well as by using a common approach
across subjects through programming patterns.
Problematization is systematically presented through
the application of strategies that have a common
denominator, which is the programming pattern. This
systematized integration allows students to visualize
a cross-curricular application of CT, making the
learning process more meaningful. The strategies are
presented below.

4.1.1 Understanding Programming Patterns

In the understanding strategy, the activity begins in
the computer lab and later continues in other subjects.
In this work, the Scratch programming language was
used. Understanding tasks are divided into two
subtypes: tasks involving the use of patterns and tasks
linked to anti-patterns. Here, anti-patterns are
considered as common erroneous solutions that have
a correct part.

By applying patterns in other subjects, students
expand their understanding of a concept through
analogies with other constructs. This strategy is
related to overcoming and visualizing concepts and
ideas in a broader way. Seeing an idea in different
contexts and also seeing ideas in a larger scenario is a
way to overcome conceptual barriers. Considering
ideas in new contexts is a way of perceiving other
possible uses and meanings. This type of task is
related to the flexibility of divergent thinking.

The use of anti-patterns takes advantage of the
way bad ideas become beneficial deviations for good
ideas. Students do not only reflect on positive
impacts, relevant implications, or good
characteristics but also reflect on why a failure
occurred, on the impacts, characteristics, and negative
implications. They do not just eliminate the wrong
paths but reflect and take advantage of them. Students
transform ideas and concepts into new interpretations,
also thinking about mistakes. Furthermore, anti-
patterns can reflect partially correct solutions that are

CSEDU 2025 - 17th International Conference on Computer Supported Education

644

associated with more simplistic thinking, making
them easier for students to understand. From the
student's understanding of the anti-pattern, the
teacher moves on to a second explanation of how to
correct it.

4.1.2 Recognizing Programming Patterns

The recognition strategy can be adopted in any
subject and involves tasks in which students must
identify one or more previously addressed patterns
within a presented solution. The goal is for students
to exercise the ability to identify situations where a
pattern can be applied to solve a problem more
quickly or improve a solution. In this type of task,
analogical reasoning is applied to problem-solving.

Analogical reasoning is one of the most important
problem-solving heuristics. It is related to transferring
solutions from previously known problems to new
ones and the ability to abstract similarities and apply
productive past experiences to new situations. When
students examine problems similar to familiar
structures, they gain more robust conceptual
knowledge about the problems, building a stronger
problem schema.

4.1.3 Adapting Programming Patterns

The goal of the adaptation strategy is for students,
having been introduced to content in previous classes,
to deepen or enhance their knowledge of that content.
In these classes, students will be challenged to adapt
some activity, creating something different and new
from what they have already seen and discussed. The
adaptations can be minor or major. The adaptation
strategy can be used in any subject.

This strategy is related to the divergent thinking
skills of elaboration and fluency. Elaboration and
fluency are two fundamental components of the
creative process. The teacher can encourage students
to improve these skills by making explicit what is
already there but hidden, as well as dealing with the
elements of who, what, why, and how of solution
ideas. Students uncover opportunities by searching
for attributes and relationships between concepts and
new ideas, and they try to organize and reorganize the
information.

4.1.4 Combining Programming Patterns

The combination strategy can be applied in any
subject. In the combination strategy, the goal is for
students to apply more than one pattern within a
single solution. The way students can organize these

patterns can be done sequentially or with one pattern
as part of another.

This strategy is also related to the fluency skill,
just like the adaptation strategy. Additionally, it is
related to the problem-solving processes of
decomposition and the "divide and conquer"
paradigm. Simply put, problem decomposition aims
to separate or divide a complex problem into smaller
problems, making each problem's solution easier.
Hence, the idea of "divide and conquer" comes into
play. It is a paradigm that breaks a complex problem
into small subproblems, and after solving each
subproblem, the solutions are combined to solve the
initial problem.

4.2 Tasks Based on Strategies for Using
Programming Patterns in a
Cross-Curricular Manner

The chosen context for cross-curricular application of
the strategies was COVID-19. The theme of COVID-
19 was used to outline various problems for students
to solve in different subjects. 24 tasks were developed
as practices for applying patterns in a cross-curricular
way, four for each involved subject, which were
computer science, science, physical education, social
studies, languages, and mathematics. Below are six
sample tasks.

The moving average is a tool that helps to
understand how COVID is behaving. It is calculated
by summing the number of cases from the last 7 days,
and after summing, it is necessary to divide this
amount by 7. As an example, see Table 1.

Table 1: Evolution of COVID-19 Case Numbers.
Day of
the
Week

Mond
ay Tuesday Wednesday Thursday Friday Saturday Sunday

Number
of cases 10 20 25 30 38 45 56

In this presented scenario, the moving average for
Sunday is the sum of the number of cases from the
last 7 days:

S = 10 + 20 + 25 + 30 + 38 + 45 + 56
S = 224

Division of the sum by 7:
M=224/7
M = 32

The teacher should clarify what the moving average
is by discussing questions such as:

• Why should we sum all the values?
• Why should we divide by 7?

Teaching Computational Thinking Through a Cross-Curricular Approach Supported by Programming Patterns

645

The teacher should discuss questions that make
sense of the formula used to calculate the moving
average.

After introducing and discussing the concept and
formula of the moving average, ask the students to
write a sequence of instructions to calculate the
moving average of the number of COVID cases over
the last 7 days. The accumulator pattern should be
adapted and combined with the sequential pattern
when writing the instructions.

After constructing the sequence, students should
execute it and discuss its operation.

4.3 Interaction with Teachers

Six elementary school teachers from the subjects of
informatics, mathematics, sciences, social studies,
physical education, and languages participated in the
research.

4.3.1 Precedents and Context Analysis

41.7% of teachers know or have used programming
or computational thinking (CT) terms. 41.7% know
or have used these terms to a limited extent. 16.6% do
not know or have not used programming or CT terms.

41.7% were familiar with CT or programming
terms, 41.7% had little knowledge of them, and
16.6% were unfamiliar with the terms.

Even though 58.3% had at least some knowledge
of the terms, only 41.7% had experience with
programming and CT in class. Of these, only those in
the informatics discipline had more solid and
significant experiences with CT and programming in
teaching, using educational software to teach basic
computer principles. Still, all teachers, even briefly
introduced to CT, showed interest in working with the
concept in their subjects.

For CT integration to occur effectively, the
teacher must be motivated and engaged in using
computational thinking in their elementary school
subject. The results presented a predisposition to seek
new pedagogical strategies using CT that can enrich
student learning.

In the set of practices proposed for this research,
one concept used to make CT understanding and
learning more meaningful is transversality. 60.8% of
teachers had experiences with transversal teaching
approaches, while 33.2% had not. 60.8% of teachers
were interested in applying transversal approaches,
and 16.6% were not.

The teachers reported what they knew and their
experiences with transversal teaching approaches. Of
the total participants, 60.8% had experiences with

transversal teaching approaches, but not all had
positive experiences. Some reported that in their
experiences, they participated in groups with students
from different grade levels, and the disparity between
knowledge levels limited teamwork.

Regarding interest in working with transversal
approaches, 83.4% declared interest. 16.6% did not
state whether they were interested or not, as they were
unfamiliar and had no experience with transversal
approaches. The results showed that teachers are
motivated to promote more integrated learning that
connects different areas of knowledge and allows
students to have a broader and more complex
understanding of the content.

4.3.2 Formative Evaluation of Activities

A formative evaluation of the set of tasks for teaching
CT was conducted. Based on the data collected from
the precedents and context analysis, researchers and
teachers proposed a set of requirements to guide the
evaluation of the activities. This set of requirements
is presented in Table 2.

Table 2: Transversality Precedents.

Regarding the set of tasks Regarding individual
tasks

- Does it teach and
encourage the practice of
CT?

- Does it address CT?

- Is it transversal? - Does it address patterns
and/or anti-patterns?

- Were the types of tasks
explored?

- Does it explain the
concepts it will cover?

- Does it track the
continuous and cumulative
evolution of student
performance?

- Does it engage with the
cognitive capacity of
elementary school
students?

After the teachers studied and analyzed the set of
activities, they identified which requirements were
met and which still needed to be achieved. After this
evaluation, the researchers improved the set to meet
the unmet requirements, and then a new evaluation
was conducted. This cycle was repeated twice until
all the requirements were fulfilled for the set of
activities.

4.3.3 Final Evaluation of the Strategies and
Activities

Once the refinement cycles of the proposed set of
practices were completed, all participating teachers
were invited to answer a questionnaire for the final
evaluation of the activities. 83.4% of the teachers
considered the strategies for applying computational

CSEDU 2025 - 17th International Conference on Computer Supported Education

646

thinking (CT) in their discipline sufficiently simple.
100% considered the strategies for applying CT in
their discipline clear. 83.4% did not consider that the
strategies for applying CT in their discipline had
hidden complexities. 100% considered that the
strategies for applying CT in their discipline
complement valuable existing educational practices.
100% considered that the strategies for applying CT
in their discipline support valuable existing
educational practices. 100% considered that the
strategies for applying CT in their discipline foster
productive thoughts as teachers struggle with
technology integration issues. 83.4% considered that
the strategies for transversal application of CT reduce
technology integration issues in their discipline.
83.4% did not consider that the strategies for
transversal application of CT in their discipline were
an end in themselves. 83.4% considered the strategies
for transversal application of CT sufficiently
parsimonious to ignore irrelevant aspects of
technology integration. 83.4% considered the
strategies for transversal application of CT in their
discipline sufficiently comprehensive to guide their
practice. 100% considered that the strategies for
transversal application of CT in their discipline
emphasize active student participation. 100%
considered that the strategies for transversal
application of CT could improve student outcomes in
their discipline. 100% could visualize the patterns in
other problems and contextualized situations in their
discipline beyond those presented.

Based on the data presented, it can be concluded
that the evaluation was positive in terms of clarity,
compatibility, productivity, technological role, scope,
student focus, and replicability.

5 CONCLUSIONS

Due to the importance of CT in subjects such as
mathematics, social studies, language, and physical
education in primary education, as well as the great
interest of researchers and educators in the topic, it
is essential to integrate transversal approaches to
teach CT.

In this research, teaching strategies were
developed for primary school students, involving
programming patterns to develop computational
thinking skills in a transversal way. This contribution
is a relevant and original one in teaching CT, as it
involves strategies and tasks that allow its application
in an integrated and systematic way across different
subjects.

The methodology used for developing the
research was Design-Based Research (DBR). DBR
offers a set of methods and methodological steps
when building educational artifacts.

Questionnaires were used to evaluate the
strategies by six teachers, one from each discipline
covered: computer science, mathematics, languages,
social studies, science, and physical education.

The results of the questionnaires showed that most
participating teachers considered the strategies for
applying CT in their discipline sufficiently simple,
clear, and complementary to existing educational
practices. Additionally, most believe that the
strategies for transversal application of CT foster
productive thoughts and can improve student
outcomes in their discipline. Most also consider the
strategies sufficiently parsimonious and
comprehensive to guide their practice, emphasizing
active student participation. However, a minority
believes that the strategies have hidden complexities
and are not an end in themselves. Furthermore, some
indicated that the strategies for transversal application
of CT may not reduce all technology integration
issues in their discipline. Finally, all teachers can
visualize the patterns in other problems and
contextualized situations in their discipline beyond
those presented.

The set of transversal teaching strategies
involving programming patterns to develop CT skills
presented in this research represents an innovative
and effective approach to teaching CT skills in a
practical and contextualized manner.

REFERENCES

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C.,
& Marshall, K. S. (2011). Recognizing computational
thinking patterns. In Proceedings of the 42nd ACM
technical symposium on Computer science education
(pp. 245-250). https://doi.org/10.1145/1953163.
1953280

Barr, D., Harrison, J., & Conery, L. (2011). Computational
thinking: A digital age skill for everyone. Learning &
Leading with Technology, 38(6), 20-23. https://doi.
org/10.1002/LLQT.20078

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: What is involved and what is the role
of the computer science education community? ACM
Inroads, 2(1), 48-54. https://doi.org/10.1145/1929887.
1929905

Carvalho, F., & Braga, M. (2022). Pensamento
computacional na educação brasileira: Um olhar
segundo artigos do Congresso Brasileiro de Informática
na Educação. Revista Brasileira de Informática na

Teaching Computational Thinking Through a Cross-Curricular Approach Supported by Programming Patterns

647

Educação, 30, 237-261. https://doi.org/10.5753/
rbie.2022.2649

Chakarov, A. G., Recker, M., Jacobs, J., Van Horne, K., &
Sumner, T. (2019). Designing a middle school science
curriculum that integrates computational thinking and
sensor technology. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education
- SIGCSE '19 (pp. 818-824). https://doi.org/10.
1145/3287324.3287476

Celepkolu, M., Fussell, D. A., Galdo, A. C., Boyer, K. E.,
Wiebe, E. N., Mott, B. W., & Lester, J. C. (2020).
Exploring middle school students' reflections on the
infusion of CS into science classrooms. In Proceedings
of the 51st ACM Technical Symposium on Computer
Science Education (SIGCSE '20) (pp. 671-677).
https://doi.org/10.1145/3328778.3366871

Pontual Falcão, T., & França, R. S. de. (2021).
Computational thinking goes to school: Implications
for teacher education in Brazil. Revista Brasileira de
Informática na Educação, 29, 1158-1177.
https://doi.org/10.5753/rbie.2021.2121

Goldberg, D. S., Grunwald, D., Lewis, C., Feld, J. A., &
Hug, S. (2012). Engaging computer science in
traditional education: The ECSITE project. In
Proceedings of the 17th ACM Annual Conference on
Innovation and Technology in Computer Science
Education (ITiCSE '12) (pp. 351-356).
https://doi.org/10.1145/2325296.2325377

Güven, I., & Gulbahar, Y. (2020). Integrating
computational thinking into social studies. The Social
Studies, 111(5), 234-248. https://doi.org/10.1080/
00377996.2020.1749017

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to
learn and how to teach computational thinking:
Suggestions based on a review of the literature.
Computers & Education, 126, 296-310. https://doi.org/
10.1016/j.compedu.2018.07.007

Kimmons, R., Graham, C. R., & West, R. E. (2020). The
Picrat model for technology integration in teacher
preparation. Contemporary Issues in Technology and
Teacher Education, 20(1), 176-198. https://doi.org/10.
30957/icitte20(1)rgw03

Leal, A. V., & Ferreira, D. J. (2016). Learning
programming patterns using games. International
Journal of Information and Communication
Technology Education (IJICTE), 12(2), 23-34.
https://doi.org/10.4018/IJICTE.2016040103

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., Malyn-Smith, J., & Werner, L. (2011).
Computational thinking for youth in practice. ACM
Inroads, 2(1), 32-37. https://doi.org/10.1145/
1929887.1929902

Proulx, V. K. (2000). Programming patterns and design
patterns in the introductory computer science course.
ACM SIGCSE Bulletin, 32(1), 80-84. https://doi.
org/10.1145/331383.331432

Ragonis, N., & Shilo, G. (2018). Analogies between logic
programming and linguistics for developing students’
understanding of argumentation texts. Journal of

Information Technology Education: Research, 17(1),
549-575. https://doi.org/10.28945/3971

Romero-Ariza, M. (2014). Uniendo investigación, política
y práctica educativas: DBR, desafíos y oportunidades.
Magis, Revista Internacional de Investigación en
Educación, 7(14), 159-176.

Souza, P. M., & Meneses, C. S. (2023). Uma arquitetura
pedagógica para o desenvolvimento do pensamento
computacional em contexto interdisciplinar. RENOTE,
20(2), 290-300. https://doi.org/10.22456/1679-1916.
129185

Yadav, A., Stephenson, C., & Hong, H. (2017).
Computational thinking for teacher education.
Communications of the ACM, 60(4), 55-62.
https://doi.org/10.1145/2994581

Wallingford, E. (2001). The elementary patterns home page.
https://www.cs.uni.edu/~wallingf/patterns/elementary/

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35.
https://doi.org/10.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717-3733.

CSEDU 2025 - 17th International Conference on Computer Supported Education

648

