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Abstract: In this paper, we consider the problem of point-forecasting of univariate time series with a focus on electricity
consumption forecasting. Most approaches, ranging from traditional statistical methods to recent learning-
based techniques with neural networks, directly operate on raw time series observations. The main focus of
this paper is to enhance forecasting accuracy by employing advanced deep learning models and integrating
topological attention mechanisms. Specifically, N-Beats and N-BeatsX models are utilized, incorporating var-
ious time and additional features to capture complex nonlinear relationships and highlight significant aspects
of the data. The incorporation of topological attention mechanisms enables the models to uncover intricate and
persistent relationships within the data, such as complex feature interactions and data structure patterns, which
are often missed by conventional deep learning methods. This approach highlights the potential of combining
deep learning techniques with topological analysis for more accurate and insightful time series forecasting in
the energy sector.

1 RELATED WORK

Accurate electricity consumption forecasting is es-
sential for energy management, pricing, and distribu-
tion. Traditional methods, including statistical mod-
els such as ARIMA (Box et al., 2015) and exponential
smoothing (Winters, 1960), have been widely used
but often struggle with the nonlinear and complex
nature of time series data. Recent advances in deep
learning, such as Long Short-Term Memory (LSTM)
(Sherstinsky, 2020), Gated Recurrent Units (GRU)
(Sherstinsky, 2020), and N-Beats (Oreshkin et al.,
2019), have shown promise in capturing these nonlin-
ear relationships. However, most methods rely solely
on raw time series data and fail to leverage the under-
lying topological structure of the data.

This paper proposes the integration of topolog-
ical attention mechanisms into deep learning mod-
els to improve forecasting accuracy. By incorporat-
ing persistent homology and related techniques from
topological data analysis (TDA), the models can cap-
ture complex interactions within the data, provid-
ing a more holistic approach to time series forecast-
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ing(Chazal and Michel, 2021).
Recent advancements in time series forecasting

have expanded beyond traditional statistical meth-
ods, integrating complex machine learning tech-
niques to handle the nonlinear and intricate nature of
data(Rebei et al., 2023; Rebei et al., 2024). In partic-
ular, integrating topological data analysis (TDA) into
forecasting models has garnered significant attention
for its potential to enhance performance.

The N-Beats model, introduced by Oreshkin et
al. (Oreshkin et al., 2019), has shown considerable
promise by addressing some of the limitations of con-
ventional methods. This model’s ability to decom-
pose time series data into trend and seasonal compo-
nents through a fully connected network represents a
significant step forward. Despite this progress, con-
ventional models, including N-Beats, often overlook
the underlying topological structures present in the
data.

To bridge this gap, Zhang et al. (Zeng et al., 2021)
pioneered the use of topological attention mecha-
nisms in forecasting models. Their work integrates
topological features, such as persistence diagrams, to
capture and leverage the persistent structures within
the data. This approach provides a more nuanced rep-
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resentation of the data’s complexity compared to tra-
ditional methods, which typically do not incorporate
such structural insights.

Further research by Chazal et al. (Chazal and
Michel, 2021) provides a comprehensive overview of
TDA techniques and their application to various do-
mains. Their work highlights the potential of persis-
tent homology in capturing the essential topological
features that influence time series behavior.

Although our approach is similar to that in (Li
et al., 2019) by utilizing self-attention, it diverges
in that the representations provided to the attention
mechanism are derived not from convolutions, but
from a topological analysis. This method inherently
captures the ”shape” of local time series segments
through its construction.

In summary, integrating TDA with deep learning
models represents a promising approach to overcom-
ing the limitations of traditional forecasting methods.
By leveraging topological features, these enhanced
models can provide deeper insights into data struc-
ture and improve predictive accuracy across a range
of applications.

2 METHODOLOGY

2.1 N-Beats and N-BeatsX Models

2.1.1 Overview of NBeats Model

The NBeats model, introduced by Oreshkin et al.
(2019) (Oreshkin et al., 2019), is a deep learning ar-
chitecture designed for time series forecasting. It op-
erates using a stack of fully connected layers orga-
nized into blocks. Each block performs two key op-
erations: backcasting (reconstructing the input) and
forecasting (predicting future values).

2.1.2 Input and Output of Each Block

For block i, the input is the residual from the previ-
ous block. Let x(i) denote the input to block i. The
block generates two outputs: the backcast b(i) and the
forecast f(i):

b(i) = gb
(

x(i);θ
(i)
b

)
, (1)

f(i) = g f
(

x(i);θ
(i)
f

)
, (2)

where gb(·) and g f (·) are fully connected networks
with parameters θ

(i)
b and θ

(i)
f , respectively. The input

to the next block is the residual, calculated as:

x(i+1) = x(i)−b(i). (3)

2.1.3 Input and Output of the Stack

Each stack in the NBeats model consists of multiple
blocks that work together to refine the residuals and
produce forecasts. The input to each stack s is the
residual from the previous stack, denoted as x(s). In-
side the stack, the blocks process the input sequen-
tially, generating both backcasts and forecasts. The
forecast output of each stack is the sum of the fore-
casts from all blocks within the stack:

ŷ(s) =
Ks

∑
i=1

f(s,i), (4)

where f(s,i) represents the forecast produced by block
i in stack s and Ks is the number of blocks in the stack
s. The input to the next stack is the residual after back-
casting, calculated as:

x(s+1) = x(s)−
Ks

∑
i=1

b(s,i). (5)

Thus, each stack progressively refines the residuals
from the previous stack and contributes to the overall
forecast.

2.1.4 Input and Output of the Entire Model

As illustrated in Figure 1, the NBeats model is com-
posed of multiple stacks, each responsible for captur-
ing different components of the time series, such as
trend and seasonality in the case of the interpretable
model. The final forecast of the entire model is ob-
tained by summing the forecasts from all stacks:

ŷ =
M

∑
s=1

ŷ(s) =
M

∑
s=1

Ks

∑
i=1

f(s,i), (6)

where M is the total number of stacks and ŷ(s) is the
forecast generated by stack s. This multi-stack archi-
tecture allows the model to learn hierarchical repre-
sentations of the time series, with each stack captur-
ing different temporal patterns or features.

In the interpretable model, the stacks are special-
ized to capture specific components such as trend and
seasonality. In contrast, the generic model allows the
stacks to learn more flexible and general representa-
tions of the time series data.

2.2 Overview of NBeatsX Model

In the following section, we explore the NBeatsX
model, an extension of the original NBeats model that
incorporates exogenous variables X. We discuss how
NBeatsX builds upon the NBeats architecture to han-
dle external influences and the implications of these
modifications for time series forecasting.
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Figure 1: Architecture of the NBeats model (Oreshkin et al.,
2019).

2.2.1 Input and Output of Each Block

The input and output structure of each block in
NBeatsX is similar to that of NBeats, with the key
difference being the inclusion of exogenous variables
X(i) in the input. For block i, the input now includes
both the residual from the previous block and the ex-
ogenous variables. The block generates two outputs:
the backcast b(i) and the forecast f(i):

b(i) = g
(

x(i),X(i);θ
(i)
b

)
, (7)

f(i) = h
(

x(i),X(i);θ
(i)
f

)
, (8)

where g(·) and h(·) are fully connected networks with
parameters θ

(i)
b and θ

(i)
f , respectively. The input to the

next block is the residual, calculated as:

x(i+1) = x(i)−b(i). (9)

2.2.2 Input and Output of Each Stack

The stacking structure in NBeatsX follows the same
principles as in NBeats, with each stack consisting
of multiple blocks that process the input sequentially.
The key difference lies in how the exogenous vari-
ables X(s) are integrated into each stack. In NBeatsX,
each stack takes both the residuals and the exogenous
variables as inputs:

ŷ(s) =
Ks

∑
i=1

f(s,i), (10)

where f(s,i) represents the forecast produced by block i
in stack s, and the exogenous variables X(s) contribute
to the forecasting process. The input to the next stack
is the residual after backcasting, calculated as:

x(s+1) = x(s)−
Ks

∑
i=1

b(s,i). (11)

2.2.3 Input and Output of the Entire Model

As illustrated in Figure 2, the NBeatsX model is com-
posed of multiple stacks, each responsible for captur-
ing different components of the time series, while also
considering the influence of exogenous variables. The
final forecast of the entire model is obtained by sum-
ming the forecasts from all stacks:

ŷ =
M

∑
s=1

ŷ(s) =
M

∑
s=1

Ks

∑
i=1

f(s,i), (12)

where M is the total number of stacks, Ks is the num-
ber of blocks in stack s, and ŷ(s) is the forecast gener-
ated by stack s. The inclusion of exogenous variables
allows the NBeatsX model to capture additional tem-
poral patterns and external influences, enhancing its
forecasting accuracy.

In the interpretable version of NBeatsX, the stacks
can be specialized to capture specific components of
the time series, such as trend and seasonality, while
also accounting for the effects of exogenous variables.
The generic model version allows for more flexible
representations of the time series data, adapting to
various external factors.

Figure 2: Architecture of the NBeatsX model (Olivares
et al., 2023).

3 TOPOLOGICAL ATTENTION

In this section, we explore the integration of topolog-
ical attention into deep learning models, focusing on
persistent homology and its vectorization for use in
Transformer architectures.

3.1 Persistent Homology and Barcode
Calculation

Persistent homology is computed from time series
data segmented into overlapping windows. Each win-
dow is converted into a point cloud using time-delay

Topological Attention and Deep Learning Integration for Electricity Consumption Forecasting

17



embedding (Seversky et al., 2016). The point cloud is
defined as:

yt =
(
xt ,xt+τ,xt+2τ, . . . ,xt+(d−1)τ

)
(13)

where τ is the delay and d is the embedding di-
mension. Persistent homology is computed using
the Ripser algorithm (Bauer, 2021), yielding bar-
codes that summarize topological features such as
connected components and loops.

Figure 3: Process of calculating persistent homology for
time series data.

3.2 Barcode Vectorization

Many approaches have been proposed to alleviate this
issue, including fixed mappings into a vector space
(Adams et al., 2017), Kernel techniques (Reininghaus
et al., 2015), and learnable vectorization schemes, the
latter of which we have employed as it integrates well
into the regime of neural networks (Carrière et al.,
2020).

Persistence barcodes are mapped into a vector
space using differentiable functions. The vectoriza-
tion involves several steps:

1. Barcode Coordinate Function: Transform each
pair (bi,di) using functions such as Gaussian ker-
nel:

sθ(bi,di) = exp
(
− (di −bi)

2

2θ2

)
(14)

and Linear weighting:

sθ(bi,di) = θ(di −bi) (15)

2. Summing over Barcode: Aggregate the trans-
formed values:

Vθ(B) =
N

∑
i=1

sθ(bi,di) (16)

3. Multiple Parameters: Compute vectorization for
multiple θ values:

V(B) = (Vθ1(B),Vθ2(B), . . . ,Vθm(B)) (17)

where θ ∈ {0.1,0.2,0.25,0.3,0.5,0.6,0.75,0.85,
0.9,1.0}, representing the 10 distinct values of θ

used in this study.

4. Combining Multiple Functions: Concatenate
results from different functions:

Vfinal(B) =
(
V f1(B),V f2(B), . . . ,V fk(B)

)
(18)

Thus, the persistence barcode is transformed into
a high-dimensional vector by applying different pa-
rameterized mappings, each of which emphasizes dis-
tinct features of the topological data.

3.3 Integration with Attention
Mechanism

The vectorized barcodes are integrated into a
Transformer-based architecture, specifically using the
encoder part of the Transformer model (Vaswani,
2017). The Transformer Encoder Layer processes the
input through multi-head self-attention and a feed-
forward network to capture the complex patterns in
the data.

Figure 4: Transformer Encoder Layer.

The multi-head attention mechanism is defined as:

Attention(Q,K,V ) = softmax
(

QK⊤
√

dk

)
V (19)

and extends to:

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O

(20)

Transformer Encoder Parameters

Key parameters include:

• Number of layers (num layers = 4)

• Model dimensionality (d model = 128)

• Number of attention heads (num heads = 8)

• Feed-forward network size (dff = 256)
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Figure 5: Multi-head Attention Mechanism.

3.4 Integrating Topological Attention
into Forecasting Models

The integration of topological attention into models
like NBeats enhances their ability to capture complex
temporal patterns by leveraging topological features.
As shown in Figure 6, we enrich the input signal to
each block by concatenating the topological attention
vector:

x(i)aug =
[
x(i),ν(i)

]
,

where x(i)aug is the augmented input to block i, and
ν(i) is the topological attention vector. The topologi-
cal features, illustrated by the yellow arrows, provide
additional structural information, improving forecast-
ing accuracy.

Figure 6: Integration of topological attention into the
NBeats model.

4 DATA

4.1 INP Grenoble Dataset

4.1.1 Data Description

The INP Grenoble dataset is a private dataset from
a lab at the Grenoble Institute of Technology (INP
Grenoble) (A.P.I., ; Martin Nascimento et al., 2023).
It contains electricity consumption data recorded

from January 1, 2016, to May 10, 2022, with sam-
ples taken at one-hour intervals. This dataset provides
valuable insights into electricity usage patterns, which
can be useful for various energy-related applications.

4.1.2 Data Preprocessing

The INP Grenoble dataset, sourced from a single
building, contains inherent noise due to various un-
controllable factors like sensor accuracy and external
influences on electricity consumption. This higher
level of noise makes the dataset more challenging to
work with compared to others. Significant prepro-
cessing steps were taken to handle missing data, out-
liers, and inconsistencies.

4.2 AEMO Australian Dataset

4.2.1 Data Description

The Australian Energy Market Operator (AEMO)
oversees Australia’s electricity and gas markets. It
provides public datasets containing electricity con-
sumption and price data for different regions across
Australia. One key dataset includes electricity de-
mand, recorded at 30-minute intervals, starting from
1998 (Australian Energy Market Operator, 2024).
This dataset is rich in historical data and offers a
broad view of national consumption trends (Operator,
2024).

4.2.2 Data Preprocessing

The AEMO dataset provides electricity consump-
tion data known as TOTAL DEMAND, measured in
megawatts (MW). Compared to the INP Grenoble
dataset, this dataset is much cleaner, as it spans a
larger population and features fewer inconsistencies.
Minimal preprocessing was required, primarily fo-
cused on handling missing values.

4.3 Exogenous Variables

The following exogenous variables were incorporated
into the N-BeatsX model to enhance its predictive
performance by leveraging external factors influenc-
ing electricity consumption.

4.3.1 Weather Features

For both datasets, weather-related features were col-
lected using the Open-Meteo API (Open-Meteo,
2024), with data covering the period from January 1,
2016, to December 31, 2019. To retrieve the weather
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data, the geographical location was passed as input to
the API.

For the INP Grenoble Dataset, the exact loca-
tion of the building was used to obtain precise weather
data, while for the AEMO Victoria Dataset, only the
general location of the city was considered.

Using the geographical coordinates of the respec-
tive regions, hourly weather data was obtained, in-
cluding variables such as temperature, humidity, pre-
cipitation, snow depth, cloud cover, and wind speed.

To improve predictive performance, an initial set
of features was refined through a correlation study us-
ing correlation matrices. This allowed us to identify
and remove features with weak correlations to elec-
tricity consumption or high intercorrelation with other
variables.

• INP Grenoble Dataset: The final set of selected
weather features includes temperature at 2 meters,
relative humidity at 2 meters, precipitation, and
wind speed at 10 meters.

• AEMO Victoria Dataset: The refined weather
features include temperature at 2 meters, precipi-
tation, and wind speed at 10 meters.

This feature selection process aimed to ensure that
only the most relevant and non-redundant predictors
were used in the model, despite their relatively low
direct correlations with electricity consumption.

4.3.2 Time Features

In addition to weather data, temporal attributes were
derived from time columns to capture seasonality and
time-dependent patterns. These features include:

• Day of the Week: Indicates the day (e.g., Monday
to Sunday).

• Month and Season: Captures monthly and sea-
sonal variations.

• Day of the Year: Represents the position of the
day within the year.

• Weekend and Working Day Flags: Differentiates
between weekends and weekdays.

• Holiday Flags: Highlights specific holidays based
on predefined lists for France and Australia.

These features were instrumental in enabling the
model to account for periodic trends and variations
specific to each dataset.

Comparison: While both datasets offer valuable
insights into electricity consumption, the INP Greno-
ble dataset exhibits significantly more noise due to the
granularity and the single-building source, making it
more challenging to analyze compared to the AEMO
dataset, which is more stable and consistent.

5 RESULTS AND EVALUATION

5.1 Evaluation Metrics

We assess model performance using Root Mean
Squared Error (RMSE), Mean Absolute Error
(MAE), Symmetric Mean Absolute Percentage Error
(SMAPE), Correlation, and R-squared (R²). These
metrics offer a comprehensive evaluation of accuracy
and model fit. RMSE and MAE focus on error mag-
nitudes, while SMAPE provides percentage-based er-
ror. Correlation measures the linear relationship be-
tween predictions and actual values, and R² assesses
the proportion of variance explained by the model.

5.2 Training and Hyperparameter
Tuning

Hyperparameter tuning plays a crucial role in opti-
mizing the performance of deep learning models. For
this paper, we employed the Hyperband tuning algo-
rithm (Li et al., 2018) to find the best set of hyper-
parameters for the interpretable NBeats and NBeatsX
models.

In our training process, we focused on predict-
ing electricity consumption 24 hours ahead, aiming
to provide accurate forecasts for this short-term hori-
zon. Additionally, we conducted a search for the op-
timal lookback window and determined that a 7-day
lookback window is the ideal choice. This window
effectively captures the temporal patterns and season-
ality in the data, enhancing the models’ forecasting
performance.

5.3 Models Performance on AEMO
Dataset

Table 1 illustrates the performance of six different
models evaluated on the AEMO Australian dataset.

Table 1: Performance Metrics for Different Models on
AEMO Australian Dataset for 24-hour Forecasting.

Model MAE RMSE SMAPE Correlation R2

GRU 519.06 703.97 10.86 0.46 0.14
LSTM 648.23 861.77 13.64 0.31 0.11
1D-CNN 303.24 466.54 6.27 0.78 0.62
LSTM-Attention 626.58 784.82 13.12 0.05 0.06
NBEATS+TopoAttn 328.85 428.32 6.81 0.82 0.67
NBEATSX+TopoAttn 161.72 217.88 2.96 0.93 0.89

The NBEATSX+TopoAttn model exhibits the
best overall performance, achieving the lowest MAE
of 161.72, the lowest RMSE of 217.88, and the lowest
SMAPE of 2.96%. This model also shows the highest
correlation of 0.93 and the highest R2 score of 0.89,
indicating a strong fit to the data and high acc uracy
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in predictions. Notably, NBEATSX+TopoAttn out-
performs the NBEATS+TopoAttn model, highlight-
ing the benefit of incorporating exogenous variables
into the model. In comparison, the 1D-CNN model
also performs well but does not achieve the same level
of accuracy as the NBEATSX+TopoAttn model. The
LSTM and LSTM-Attention models show higher er-
rors and lower R2 scores, reflecting their compara-
tively weaker performance.

Figure 7: Actual vs. Forecasted Electricity Demand on
AEMO Dataset.

Figure 7 illustrates the actual total demand (blue
line) and the forecasted values (red dashed line) for
the AEMO Australian dataset over a period in August.
The black dashed vertical line represents the point
where the model starts generating forecasts. The close
alignment between the forecasted and actual values,
demonstrates the effectiveness of the model in cap-
turing the trends and variations in electricity demand.
Notably, the model performs well in predicting both
the peaks and troughs

5.4 Models Performance on INPG
Dataset

The same evaluation metrics used for the AEMO
Australian dataset are applied on the INP Grenoble
Dataset to compare the models’ accuracy and effec-
tiveness on this more challenging dataset. Table 2
shows how the different models performed on the INP
Grenoble dataset.

Table 2: Performance Metrics for Different Models on INP
Grenoble Dataset for 24-hour Forecasting.

Model MAE RMSE SMAPE Correlation R2

GRU 0.79 1.14 127.29 0.793 0.56
LSTM 1.013 1.35 92.68 0.632 0.37
1D-CNN 0.81 1.17 122.30 0.776 0.54
LSTM-Attention 0.83 1.20 124.07 0.766 0.52
HyDCNN 0.88 1.26 123.93 0.752 0.62
NBEATS+TopoAttn 0.42 0.77 23.98 0.784 0.70
NBEATSX+TopoAttn 0.79 1.12 83.98 0.781 0.57

The GRU model shows the best correlation of
0.793 on the INP Grenoble dataset, indicating it cap-
tures the relationships in the data most effectively.

However, the NBEATS+TopoAttn model achieves
the lowest MAE of 0.42, the smallest RMSE of 0.77,
and the lowest SMAPE of 23.98%. This model also
exhibits a high correlation of 0.784 and the best R2

score of 0.70, indicating a very good fit and high ac-
curacy in its predictions.

In comparison, the NBEATSX+TopoAttn model
also performs well, but has a higher MAE of 0.79,
RMSE of 1.12, and SMAPE of 83.98%. Its correla-
tion of 0.781 and R2 of 0.57 are slightly lower, sug-
gesting that while this model is effective, it does not
perform as well as the NBEATS+TopoAttn model.

Other models such as GRU, 1D-CNN, LSTM,
LSTM-Attention, and HyDCNN show higher error
metrics and lower R2 scores, indicating their relative
inferiority in performance.

Overall, the NBEATS+TopoAttn model stands
out as the most effective for this dataset, providing
the most accurate forecasts and illustrating the bene-
fits of combining NBEATS with topological attention
techniques.

Performance Comparison: NBEATS
+TopoAttn vs. NBEATSX + TopoAttn

This section provides an in-depth analysis of why
the NBEATS+TopoAttn model outperforms the
NBEATSX+TopoAttn model on the INP Grenoble
dataset, despite the latter’s ability to capture specific
periods such as weekends and holidays.

Figure 8: NBEATS+TopoAttn model predictions on INP
Grenoble dataset. The green circles highlight the periods
where the model fails to capture weekends and holidays.

The NBEATS+TopoAttn model demonstrates su-
perior performance on the INP Grenoble dataset, with
the best metrics across all key indicators, as shown in
Table 2. However, a deeper examination of the pre-
dictions reveals some critical insights.

As shown in Figure 8, the NBEATS+TopoAttn
model tends to miss predictions during weekends and
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Figure 9: NBEATSX+TopoAttn model predictions on INP
Grenoble dataset.

holidays (highlighted with green circles), which con-
tributes to lower accuracy in these specific periods.
On the other hand, Figure 9 demonstrates that the
NBEATSX+TopoAttn model, which integrates time
and weather features, better captures these periods.
However, this comes at the cost of introducing more
noise throughout the entire dataset, which increases
the overall error metrics.

This trade-off explains why the NBEATS +
TopoAttn model outperforms the NBEATSX +
TopoAttn model in terms of MAE, RMSE, and
SMAPE, even though the latter model shows slightly
better performance in capturing the weekend and hol-
iday effects. The increased noise in the NBEATSX +
TopoAttn model diminishes its effectiveness in other
areas, resulting in a lower R2 score and higher overall
error metrics.

6 ABLATION STUDY

An ablation study is a method used to evaluate the im-
portance of individual components within a complex
system. It involves systematically removing or deac-
tivating these components and observing the resulting
impact on the system’s overall performance.

In this section, we conduct an ablation study
on both the AEMO Australian dataset and the INP
Grenoble dataset. The study involves isolating and
analyzing the effect of topological attention and other
key features integrated into the NBeats and NBeatsX
models.

6.1 Ablation Study on AEMO Dataset

The ablation study on the AEMO dataset (see Table 3)
reveals key insights into the N-Beats and N-BeatsX
models. The baseline N-Beats model, without at-

Table 3: Ablation Study Results on AEMO Australian
Dataset.

Model Correlation R2 RMSE MAE SMAPE
N-Beats 0.78 0.60 492.31 338.16 6.98
N-Beats+Attn 0.82 0.67 417.99 321.90 6.60
N-Beats + topoAttn 0.82 0.67 428.32 328.85 6.81
N-BeatsX 0.91 0.90 257.85 181.47 3.64
N-BeatsX + topoAttn 0.93 0.89 217.88 161.72 2.96

tention mechanisms or topological features, shows
poor performance (correlation: 0.78, RMSE: 492.31,
MAE: 338.16). Adding standard attention (N-Beats
+ Attn) improves results significantly (correlation:
0.82, RMSE: 417.99, MAE: 321.90). Topological at-
tention (N-Beats + topoAttn) provides only marginal
gains. The N-BeatsX model, which includes exoge-
nous variables, performs better (correlation: 0.91,
RMSE: 257.85, MAE: 181.47). The best results come
from N-BeatsX + topoAttn, which achieves the low-
est errors and highlights the benefits of combining ex-
ogenous variables with topological attention.

6.2 Ablation Study on INP Grenoble
Dataset

Table 4: Ablation Study Results on INP Grenoble Dataset.
Model Correlation R2 RMSE MAE SMAPE
N-Beats 0.656 0.41 1.31 0.94 103.76
N-Beats+Attn 0.713 0.69 0.79 0.43 127.64
N-Beats + topoAttn 0.784 0.70 0.77 0.42 23.98
N-BeatsX 0.356 0.11 1.69 1.20 118.24
N-BeatsX + topoAttn 0.781 0.57 1.12 0.79 83.98

The ablation study on the INP Grenoble dataset
(see Table 4) reveals key findings about model com-
ponents. The baseline N-Beats model, without at-
tention or topological features, has moderate perfor-
mance (correlation: 0.656, RMSE: 1.31) but a high
SMAPE of 103.76%.

Adding standard attention (N-Beats + Attn) im-
proves RMSE to 0.79 and MAE to 0.43, with a cor-
relation of 0.713, though SMAPE rises to 127.64%,
indicating some instability.

Topological attention (N-Beats + topoAttn)
achieves the best results among N-Beats variants (cor-
relation: 0.784, RMSE: 0.77, MAE: 0.42, SMAPE:
23.98%), demonstrating effective use of topological
features.

The N-BeatsX model, with exogenous variables
but no attention, performs poorly (correlation: 0.356,
RMSE: 1.698, MAE: 1.20, SMAPE: 118.24%).
Adding topological attention (N-BeatsX + topoAttn)
improves correlation to 0.781, but RMSE (1.12) and
MAE (0.79) remain below the N-Beats + topoAttn
model, with SMAPE at 83.98%.

Overall, N-Beats + topoAttn outperforms N-
BeatsX + topoAttn, highlighting the N-Beats
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model’s superior ability to leverage topological fea-
tures for better performance on the INP Grenoble
dataset.

7 CONCLUSION

This paper focused on enhancing electricity consump-
tion forecasts using deep learning models with topo-
logical attention. We used N-Beats and N-BeatsX
models with topological attention on the AEMO Aus-
tralian and INP Grenoble datasets to test their robust-
ness.

On the AEMO dataset, N-BeatsX with exoge-
nous variables and topological attention outperformed
baseline models in MAE, RMSE, and SMAPE by
capturing complex patterns and external factors like
weather. For the noisier INP Grenoble dataset, a sim-
pler N-Beats model with topological attention proved
more effective, highlighting that added complexity
isn’t always beneficial in noisy conditions.

Our ablation studies demonstrated that topologi-
cal attention significantly improves performance, es-
pecially when combined with exogenous variables.

Future work could refine topological features, ex-
plore advanced denoising techniques, and apply these
methods to other fields like finance or healthcare for
broader impact.
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