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Abstract: To improve the efficiency of single-person, single-machine track bolt maintenance during railway skylight 
periods, we propose a collaborative task assignment control method using a multi-agent track bolt operation 
robot. A control decision model is developed with constraints on operation time and distance, aiming to 
optimize both total collaborative operation distance and completion time. By incorporating equations for 
robot speed and operation time, we derive the Pareto solution set for multi-agent task assignment. The 
method’s effectiveness is verified through an enhanced particle evolution technique within the multi-
objective particle swarm optimization (MOPSO) algorithm, and its performance is compared with that of 
standard MOPSO. Simulations in a real-world track bolt maintenance environment show that this approach 
produces a higher-quality Pareto solution set for task assignment. 

1 INTRODUCTION 

As railway construction in China accelerates, daily 
track maintenance has become increasingly essential. 
The condition of track bolts, a critical component of 
the track structure, directly impacts train safety and 
stability. However, the current single-person 
maintenance method during skylight periods is labor-
intensive, inefficient, and poses safety risks. Thus, 
developing an efficient Multi-Agent Track Bolt 
Operation Robot (MATBOR) is imperative. In 
alignment with the "Digital Railway Planning" 
initiative by China National Railway Group Co., Ltd., 
we aim to achieve comprehensive digitalization and 
intelligence in railway operations, thereby enhancing 
modernization efforts. Improving intelligent maintenance 
equipment for track bolts is crucial. 
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This article addresses the collaborative task 
assignment problem for Multi-Agent Track Bolt 
Operation Robots (MATBOR), a typical NP-hard 
challenge marked by high computational complexity 
and long processing times (Li et al., 2022). 

The Particle Swarm Optimization (PSO) 
algorithm is recognized for its high efficiency, 
simplicity, and quick convergence, making it ideal for 
solving single-objective optimization problems. 
However, it is not naturally suited for multi-objective 
optimization. Consequently, improving PSO for 
multi-objective tasks has become a significant 
research focus. Many researchers have extended the 
original algorithm and implemented various 
improvements to enhance the performance of the 
Multi-Objective Particle Swarm Optimization 
(MOPSO) algorithm (Figueiredo et al., 2016; Lv et 
al., 2016; Zhou et al., 2022; Sunet al., 2024; Wang and 
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Liu, 2016; Khan et al., 2016; Wang et al., 2021). 
For instance, Liu et al. proposed a co-evolutionary 

PSO algorithm that employs synthetic immune 
principles, dividing the population into elite and 
ordinary subpopulations, which co-evolve for 
improved convergence and global search abilities 
(Liu et al., 2013). Goh et al. introduced a 
collaborative evolution paradigm that combines 
competition and cooperation to simultaneously tackle 
static and dynamic multi-objective problems (Goh 
and Tan, 2009). Song et al. developed a collaborative 
evolutionary PSO algorithm based on a bottleneck 
objective instructional strategy, maintaining diversity 
through distributed collaboration across multiple 
populations (Song et al., 2020). Huang et al. proposed 
a dual-phase multi-task allocation approach utilizing 
Discrete Particle Swarm Optimization (TMA-DPSO), 
which iteratively updates particle positions and 
velocities to enhance solutions (Huang et al., 2022). 
Lastly, Li et al. proposed a gBest strategy, utilizing a 
newly defined virtual generation distance index, to 
enhance search efficiency (Li et al., 2023). 

Building on this foundation, This study introduces 
a method for task assignment in MATBOR, utilizing 
an optimized MOPSO algorithm. The key 
innovations of this study include: 

(1) A two-stage subsampling method is 
implemented to improve the algorithm's convergence 
speed and accuracy. 

(2) To address issues such as high computational 
complexity, limited diversity in Pareto optimal 
solutions, and challenges in handling complex 
constraints, this study employs a simple adaptive grid 
method to optimize the multi-objective particle 
swarm optimization algorithm, thereby enhancing its 
efficiency. 

(3) Applying a collaborative task assignment 
method to MATBOR to enhance maintenance 
efficiency during railway skylight periods. 

2 METHODOLOGY 

2.1 Collaborative Task Assignment 
Model for Multi-Agent Rail Bolt 
Operation Robot 

2.1.1 Problem Description 

The collaborative task assignment problem for a 
multi-agent rail bolt operation robot system can be 
described as follows: assuming there are m 
MATBORs operating during a specific skylight 
period, represented by the robot set 

1 2 3 4{ , , , , , }mR r r r r r=  . if the range of the rail bolt 
area to be serviced does not exceed maxL  and n bolts 
need to be maintained, the task set T can be 
represented as 1 2 3 4{ , , , , , }nT t t t t t=   . Here, ir
represents the task assignment for the ith robot, 

[1, ]i m∈  ; jt  represents the jth task to be assigned, 
[1, ]j n∈  . The working time during the skylight 

period must not exceed maxT . As shown in Figure 1, 
the central control center sends the specific areas and 
kilometers that require maintenance to the signal 
receiving station, which then relays these 
requirements to the monitoring operation screen used 
by the maintenance personnel and the MATBORs 
during the window period. Once the MATBORs 
begin working, they transmit the status of each 
completed task and equipment information to the 
signal receiving station in real-time. The maintenance 
work during the skylight period is considered 
successfully completed when all MATBORs have 
finished their assigned tasks simultaneously. 

 
Figure 1: Schematic Diagram of Task Assignment for 
MATBOR. 

2.1.2 Constraints 

The MATBOR collaborative task assign-ment model 
includes the following key constraints: 

(1) Task Coordination Constraints 

To ensure that no task is executed multiple times 
or left unexecuted, task coordination constraints are 
incorporated into the model. This requires that each 
task must be executed exactly once and can only be 
assigned to a sing-le robot, as expressed in equation 
(1). 

 
1

1
n

ij
i

x
=

=      j T∀ ∈  (1) 

ijx   represents the assignment of tasks; n 
represents total number of tasks. 
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(2) Robot Coordination Constraints 

To prevent errors in task execution, the model 
includes constraints for robot coordination. These 
constraints guarantee that each robot can undertake 
only one task at a t-ime during the assignment process, 
as illustrated in equation (2). 

 
1

1
m

ij
j

x
=

=       i R∀ ∈  (2) 

m represents total number of multi-agent systems. 

(3) Task Status 

The variable representing whether the task jt  is 
assigned to the robot ir  is defined as follows: if the 
task is assigned to the robot, then: 1ijx = ; if the task 
is not assigned to the robot, then: 0ijx = . As shown 
in equation (3). 
 {0,1}ijx ∈   i R∀ ∈ ，  j T∀ ∈  (3) 

(4) Homework 

All robots begin from the same starting point, and 
the bolts are sequentially numbered 1, 2, 3... n starting 
fro-m that origin. 

(5) Operation Time and Distance Constraints 

Given the time and distance limitations for 
maintenance work during the skylight period, the 
assigned MATBOR must not exceed the specified 
time, and the total distance traveled by a single robot 
must remain within the maximum allowable distance. 
These constraints are express-ed in equations (4) and 
(5). 

 
1

m

i max
i

T T
=

≤  (4) 

 i maxD L≤  (5) 

Were: ( ) ( )( )11 E SS
ij ijij

i j ij
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N NN
T t x

v v

 − + ⋅Δ+ ⋅Δ
 = +
 
 

 ,

1
i j

n

i r t ij
j

D P P x
=

= − ⋅  

Where, iT   represents robot ir   completes task 
assignment and running time; iD   represents robot 

ir   total travel distance; maxT   represents robot ir  
maximum running time; maxL  represents robot ir  

maximum driving distance; S
ijN  and E

ijN  represent 
complete the starting and ending bolt numbers of the 
task separately; sV   represents ground speed: 

2 /sV m s=  ; wV   represents operating speed: 

0.45 /wV m s= ; jt  represents task j execution time; 

ir
P   represents initial position: ( , )

i i ir r rP x y=  ;
jtP  

represents task element coordinates: ( , )
j j jt t tP x y= . 

2.1.3 Objective Function 

To more effectively evaluate the task assignment 
results for the rail bolt robot, this model uses two 
objective functions: MATBOR task duration and 
overall travel distance.  

Task completion time refers to the duration 
required to complete the final task in the maintenance 
process, while total travel distance refers to the sum 
of all distances traveled by the track bolt robots 
during the skylight period. The corresponding 
calculation formulas are given in equations (6) and 
(7). 

 
1

m

1 i
i

F max T
=

=   (6) 

 2
1

m

i
i

F D
=

=  (7) 

In equations (6) and (7), 1F   indicates the total 
time needed to finish the final task in the complete 
maintenance process, which corresponds to the 
maximum task completion time. 2F   represents the 
sum of the travel distances of all participating rail bolt 
robots across all systems. Since the goal is for the rail 
bolt robots to complete tasks as quickly as possible 
while minimizing resource consumption during task 
assignment, the model put forward in this paper 
considers both optimization objectives: minimizing 

1F   and 2F   simultaneously. Based on these two 
objectives, the optimal objective function for 
MATBOR collaborative task assignment is 
formulated in equation (8). 
 1[ , ]2z min F F=  (8) 

The MATBOR collaborative task assignment 
model involves both discrete and continuous 
variables, which complicates the solution space and 
makes it more difficult to search effectively. 
Additionally, the model includes multiple complex 
constraints, such as inequality and equality 
constraints, further increasing the irregularity of the 
solution space and the difficulty in finding feasible 
solutions. To tackle the challenges of multi-objective 
and multi-constraint collaborative task assignment in 
MATBOR, this paper introduces MOPSO algorithm 
that incorporates a quadratic sampling adaptive grid 
to address the multi-MATBOR collaborative task 
assignment challenge. 

ICESCE 2024 - The International Conference on Environmental Science and Civil Engineering

250



 

 

2.2 Multi-Objective PSO Based on 
Quadratic Sampling Adaptive Grid 

2.2.1 Pareto Optimal Solution 

Given the multiplicity and complexity of different 
objective functions, it is usually impossible for all 
objectives to reach their maximum or minimum 
values simultaneously. As a result, multi-objective 
optimization problems rarely have a single optimal 
solution. However, practical problems require 
decision-making to identify the best possible solution. 
To address this, Pareto optimal solutions are utilized 
to assess and balance conflicting objectives. 

In multi-objective optimization, several 
objectives are optimized simultaneously. A solution is 
considered Pareto optimal if no objective can be 
enhanced without negatively impacting another (Lu 
et al., 2024). For two decision vectors x  and y ，if 
x  dominates y , denoted as x y , this means that 
x   is no worse than y   in all objectives, and 
enhanced in at least one objective. 

A decision vector x   is considered a Pareto 
optimal solution if no other vector in the objective 
space can dominate it. The group of all these solutions 
constitutes the Pareto optimal set (PS), while its 
graphical depiction is referred to as the Pareto optimal 
frontier (PF). According to the definition, enhancing 
one objective in a Pareto optimal solution necessarily 
diminishes at least one other. In multi-objective 
optimization, this collection is commonly known as 
the non-dominated solution set. The algorithm 
proposed in this paper aims to identify the Pareto 
optimal solution set, thereby enhancing the efficiency 
and balance of MATBOR task assignment. 

2.2.2 Secondary Sampling 

The more particle samples selected in the state space, 
the higher the approximation accuracy becomes (Liu, 
2017). To address the issue where the weights of 
certain particles may reduce the effective sample 
space after multiple iterations, thereby affecting 
estimation accuracy, the quadratic sampling method 
has been introduced (Douc and Cappe, 2005). During 
the resampling process, particles with higher weights 
are duplicated, while those with lower weights are 
discarded, ensuring the particle count remains 
constant. Various subsampling methods exis (Li et al., 
2015). 

 
 
 

2.2.3 Improved Multi-Objective Particle 
Swarm Optimization Algorithm 

The PSO algorithm, developed by Kennedy and 
Eberhart in 1995, is a swarm intelligence technique 
modeled after birds' food-searching behavior. It is 
especially adept at addressing complex, nonlinear 
continuous optimization challenges (Kennedy and 
Eberhart, 1995). Over time, PSO has been enhanced 
and adapted to tackle discrete problems as well. These 
improvements have expanded its applicability, 
enabling it to effectively address NP-hard problems, 
combinatorial optimization, and multi-objective 
optimization challenges, while also incorporating 
global guidance techniques (Yan et al., 2015; Gao et 
al., 2023; Lu et al., 2023). In PSO, particles adjust 
their direction and velocity for the next iteration by 
considering both their individual flight history and 
shared information from the swarm, demonstrating 
collective intelligence. The particle update equations 
are provided in (9) and (10). 
 1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i iv t v t c r p t x t c r g t x tω+ = + − + −  (9) 

 ( 1) ( 1) ( 1)i i ix t x t v t+ = + + +  (10) 

Equation (9) represents the velocity update 
formula, while equation(10) is the position update 
formula. In these equations: ( 1)iv t +  is the new 
velocity of particle i at time t+1; ( )iv t  is the velocity 
of particle i at time t; ω  is the inertia weight, which 
controls the influence of the particle's previous 
velocity on its current velocity; 1c   and 2c   are 
acceleration constants, representing the weights of 
individual cognition and group cognition, 
respectively; 1r  and 2r  are random numbers in the 
range [0,1], used to maintain randomness; ( )g t   is 
the global best position, representing the optimal 
position found by the entire particle swarm; ( )ix t  is 
the current position of particle i at time t and ( 1)ix t +  
is the new position of particle i at time t+1. 

This paper introduces a two-stage subsampling 
method to address the challenges of low solution 
accuracy and slow search speed during the middle 
and later phases of the PSO algorithm. In the first 
stage, particles are sampled from the search space, 
where those farther from the non-dominated solutions 
are discarded, and those closer are retained and 
replicated, enhancing convergence speed and 
accuracy. However, this may reduce particle diversity. 
To counter this, the second-stage sampling focuses on 
non-dominated particles, discarding high-density 
particles and replicating low-density ones to preserve 
diversity. Since the grid is updated only when extreme 
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boundary particles appear in the storage set, the mesh 
size can sometimes grow too large during evolution, 
affecting performance. In the second stage, the target 
area is segmented into smaller regions via a grid, and 
particle density in each region is used for estimation. 
The grid size is adjusted adaptively based on particle 
evolution. This leads to the development of MOPSO 
algorithm that incorporates quadratic sampling and an 
adaptive grid (QSAGMOPSO), as depicted in the 
flowchart in Figure 2. 

 
Figure 2: Flowchart of the Algorithm. 

Step 1: Initialize the particle position data by 
dividing each dimension evenly, using these divisions 
as the initial coordinates in the decision space. To 
expand the distribution range, each dimension is 
divided according to its value range.  

Step 2: Utilize the layered sampling method for 
secondary sampling. In the first stage, particles with 
higher weights are duplicated, while those with lower 
weights are discarded, maintaining a constant number 
of particles throughout the resampling process. 

Step 3: Apply the secondary sampling method 
using a layered approach. In the initial stage, particles 
with greater weights are duplicated, while those with 
lesser weights are removed. The overall number of 
particles stays constant during the resampling process. 

Step 4: Non-dominated solutions that meet the 
criteria are stored in an external file. When the file 
reaches its maximum capacity, new qualifying 
particles are added by screening the existing ones, 
ensuring the particle count remains constant. 

Step 5: Determine the Pareto optimal solution set 
by assessing the fitness value of each particle for 
every objective. Analyze the dominance relationships 

between the particles, and collect all non-dominated 
solutions to form the current Pareto optimal set. 

Step 6: Update each particle's velocity and 
position by applying the corresponding update 
formulas. 

Step 7: Input the particle coordinates into each 
objective function and compute the corresponding 
function values. 

Step 8: Utilize the adaptive grid method to 
compute the density of each particle in the Pareto 
optimal solution set. The search space is divided into 
smaller regions, with higher particle density 
indicating a greater number of particles within a grid. 
Low-density particles are replicated to preserve 
diversity.  

Step 9: Using the historical data of each particle, 
identify the personal best particle (pbest) and the 
global best particle (gbest) based on their past fitness 
levels. 

3 RESULTS 

3.1 Experimental Comparison 

To assess the feasibility and effectiveness of the 
QSAGMOPSO algorithm, benchmark problems 
ZDT1, ZDT2, and ZDT3 were selected for testing, 
with the details provided in Table 1. The population 
size was set to 400, with 200 generations of iterations 
and a file set size of 200. Each test was run 20 times, 
as shown in Figure 3. In the figure, red dots represent 
the true Pareto frontier, while green dots indicate the 
Pareto frontier identified by the QSAGMOPSO 
algorithm. A summary of the comparison results, 
including the mean and standard deviation for the 
ZDT functions, is provided in Table 1. 

In the Table 1, variable range: 0 1ix≤ ≤  ,
1,2,3, ,i m=  , 30m = . 
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Table 1: Benchmark Test Table. 

Test 
questions Objective Function 

ZDT1 

1 1f x=  

1
2 1 ff g

g
 

= −  
 

 

2
1 9

1
m i
i

xg
m=

= +
−  

ZDT2 

1 1f x=  

( ) ( )
( )

2

1
2 1

f x
f g x

g x

  
 = −      

 

2

91
1

m
ii

g x
m =

= +
−   

ZDT3 

1 1f x=  

( )1
2 1 11 / sin 10ff g f g f

g
π

 
= − −  

 
 

2
1 9

1
m i
i

xg
m=

= +
−  

As shown in Table 2, while various indicators can 
be used to assess two Pareto frontiers, no single 
measure is completely reliable. To address this, the 
paper employs two additional quality indicators, HI  
and I∈+ , to compare algorithm performance. These 
indicators evaluate how closely the solutions align 
with the true Pareto front. Both HI  and I∈+ , range 
from 0 to 1, where higher HI  (or lower I∈+ ) values 
indicate a better alignment with the true Pareto front. 
The results suggest that the proposed QSAGMOPSO 
algorithm outperforms the MOPSO algorithm. 

Table 2: Performance Comparison Results of MOPSO and 
QSAGMOPSO on Benchmark Functions. 

Problem MOPSO QSAGMOPSO
HI  I∈+  HI  I∈+  

ZDT1 Mean 0.8907 0.1564 0.9093 0.1471
Std. 0.0971 0.2790 0.0400 0.1806

ZDT2 Mean 0.6683 0.6500 0.8694 0.4520
Std. 0.4927 0.2472 0.2668 0.2286

ZDT3 Mean 0.7420 0.3695 0.8122 0.1222
Std. 0.8101 0.4553 0.8534 0.1813

 
a 

 
b 

 
c 

Figure 3: Pareto front of ZDT1, ZDT2, ZDT3. 

3.2 Task Assignment Coding 

Since the particle swarm optimization algorithm uses 
real number encoding, it cannot be directly applied to 
the discrete task assignment problem in MATBOR. 
Therefore, this paper adopts a method of truncating 
decimal places and retaining integer digits to decode 
the results obtained by the algorithm, effectively 
transforming the problem from a continuous domain 
into a discrete one. Assuming there are m rail bolt 
robots that need to perform n tasks during the skylight 
period, the assignment plan is expressed as an n-bit 
array 1 2 3[ , , , , ]nt t t t  . Each jt   in the array is a 
randomly generated number falling within the range 
[1, ]m ,and the integer part of jt  represents the id of 
the robot assigned to perform the jth task. Tasks with 
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the same integer part are executed by the same rail 
bolt robot, while the decimal part is rounded during 
the encoding process. 

For example, if there are three track bolt robots 
tasked with performing 300 jobs during the skylight 
period, the task assignment code arrangement is 
shown in Table 3. 

Table 3: Example of Task Assignment Scheme. 

Particle number 1 66 67 230 231 300
Robot coding 3 2 1

In this task assignment scheme, bolts numbered 1 
to 66 are executed by Robot 3, bolts numbered 67 to 
230 are handled by Robot 2, and bolts numbered 231 
to 300 are assigned to Robot 1. 

3.3 Example Simulation 

A simulation was conducted in Matlab to address the 
task assignment problem for multi-agent rail bolt 
operation robots. The resulting comparison of the 
algorithm's performance is illustrated in Figure 4 and 
Figure 5. 

From Figure 4 and Figure 5, it can be observed 
that both algorithms were run 20 times across 
different task quantity scenarios. Two multi-objective 
optimization algorithms were used to record all 
Pareto frontiers obtained in each instance. To further 
evaluate the Pareto solution sets, two metrics were 
introduced: Average Ratio (AR) and Spacing Metric 
(SP). The results of these evaluations are presented in 
Tables 4 and 5. 

Table 4: Comparison of AR Values for Pareto Solution Sets 
of Two Algorithms. 

Number of 
tasks 

Number of 
robots MOPSO QSAGMOPS

O

300 
3 0.15 0.63
5 0.37 0.77
10 0.69 0.83

400 
3 0.35 0.71
5 0.57 0.85
10 0.79 0.97

Table 5: Comparison of SP Values for Pareto Solution Sets 
of Two Algorithms. 

Number of 
tasks 

Number of 
robots MOPSO QSAGMOPS

O

300 
3 313.41 236.94
5 302.43 259.13
10 222.92 209.24

400 
3 378.59 357.91
5 347.45 323.25
10 328.21 305.59

According to Tables 4 and 5, Table 4 compares the 
AR values of the two algorithms. In the instance tests, 
the AR values for the proposed QSAGMOPSO 
algorithm were consistently higher than those for the 
MOPSO algorithm, indicating that the 
QSAGMOPSO algorithm produces higher-quality 
solutions. Table 5 presents the average SP values for 
each scenario. Across all scenarios, the proposed 
QSAGMOPSO algorithm consistently achieved the 
lowest average SP values, reflecting better 
distribution and uniformity of solutions along the 
Pareto front. 

 
a 

 
b 

 
c 

Figure 4: Comparison chart showing the completion of the 
same task(300 pieces) by different numbers of robots. a:3 
robots; b:5 robots; c:10 robots. 
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Figure 5: Comparison chart showing the completion of the 
same task(400 pieces) by different numbers of robots. a:3 
robots; b:5 robots; c:10 robots. 

4 CONCLUSION 

In this article, we address a previously unexplored 
problem in multi-robot task assignment: the 
collaborative task assignment of multi-agent rail bolt 
operation robots. By introducing the concept of 
collaborative control from multi-agent systems into 
railway engineering, we redefine the fully automated 
rail bolt robot as an intelligent agent capable of 
independent decision-making. With a single 
instruction from a staff member, the robot can 
efficiently complete the heavy maintenance and 

engineering tasks of track bolts during the skylight 
period. 

We further improved the classical multi-objective 
particle swarm optimization (MOPSO) algorithm by 
integrating quadratic sampling and a straightforward 
adaptive grid partitioning method. These 
enhancements tackle the problems of slow 
convergence and getting stuck in local optima during 
the later stages of the traditional PSO algorithm. The 
simulation results demonstrate that the task 
assignment method proposed in this paper greatly 
enhances task efficiency. 

In future research, we will refine the constraints 
based on real-world engineering requirements and 
further develop the task assignment model to meet 
broader practical needs. 
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