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Abstract: Computer systems consume huge amount of energy causing higher levels of carbon emissions thus polluting 
the environment. This study addresses the issue by developing machine learning algorithms to conserve 
resources across datacentres. The machine learning models have been developed to predict a higher level 
accuracy focusing job level scheduling. The Random Forest used for job scheduling may result in enhancing 
performance of green data centres by reducing the energy consumption. Our future research tries to improve 
the existing resource management solutions focusing on job level characteristics. 

1 INTRODUCTION 

It is mind-boggling in the way data centers are 
regularly linked to contemporary computing, they 
massively contribute to carbon footprint due to the 
enormous energy used in supporting servers, storage, 
as well as networking systems (Selin, 2024). This 
high electricity demand is generally produced from 
fossil fuels hence partnering large amounts of carbon 
dioxide ( CO2). Also, the devices that help to keep 
equipment at an appropriate temperature to operate, 
worsens energy utilization, thereby making the power 
of the facility high.  

Diesel generators that are used during black out 
also release CO2 further stressing the importance of 
clean up practices. The misuse of resources is viewed 
to worsen the environmental effects hence inefficient 
utilization of resources, energy and other resources 
get wasted.  

Flexible resource management will improve the 
use of resources, minimise any likelihood of resource 
wastage, and closely monitor energy consumption. 
Others are scope 3 emissions which include emissions 
from the following infrastructure, the equipment of 
data center and other related equipment. This research 
can be related to several Sustain- 
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able Development Goals, namely, SDG 3 on clean 
air quality, SDG 4 through integrating sustainability 
into education curricula and materials, SDG 7 for 
affordable and clean energy through green jobs and 
innovations in the Cloud technology, as well as SDG 
8 and 9 through creation of green jobs and 
technological innovations respectively. It also helps 
in achieving of sustainable development goal 11 
(Sustainable cities and communities), SDG12 
(Responsible consumption and production),SDG13 
(Climate action), SDG15( Life on land) through the 
efficiency of resources and minimizing emissions. In 
addition, SDG-17 (Partnerships for the Goals) 
implementation is backed by cooperation with 
industry and academia. It advances the work by 
utilizing XGBoost and Random Forest regression 
algorithms for efficient job allocation depending on 
rack sensor information. it aims at reducing energy 
consumption; reducing carbon footprint; and 
enhancing resource allocation efficiency in data 
center using machine learning methods. This strategy 
looks into several concerns in the environment and 
opens doors to improve the sustainability processes 
for cloud computing platforms. 
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2 LITERATURE SURVEY 

This survey focuses upon some of the current 
developments in green computing and many energy- 
efficient technologies in different areas with 
emphasis on innovative techniques for resource 
optimization and reduced environmental impact. The 
paper gives a thorough survey of fourteen-
cryptography-relevant studies dealing with the 
opportunities and challenges in the fields of data 
mining, cloud services, and high-performance 
computing. They point out that adaptable algorithms 
and frameworks are essential in meeting the varying 
demands of heterogeneous computer environments, 
which in themselves call for sustainability. 

2.1 Related Work 

Guo et al. (Guo et al., 2023) undertook initial research 
on HPC, which exploited sensor data from large-scale 
networks to analyze the workload distribution on 
energy efficiency, using two techniques- workload 
optimization and dynamic core allocation- to 
minimize energy and enhance system utilization. 
However, these methodologies have problems 
regarding multibody systems with diverse 
temperature and energy management requirements. 

Abbas et al. (Abbas et al., 2023), like Guo et al., 
propose an energy-efficient architecture that depends 
on renewable energy sources and consequently one 
that favors green computing. Their approach intends 
to optimize resource consumption and encourage 
sustainable energy use in computing environments. 
However, it was deemed, indeed, that creating robust 
algorithms that can adapt dynamically to diverse 
energy sources is essential for accomplishing 
sustainability as well as optimal performance. 

Ahmad et al. (Ahmad et al., 2021) carried out an 
encompassing literature review in order to find out 
the practices and challenges brought by adopting 
green cloud computing, but from a client-centric 
point. According to their findings, sustainable 
practices have to be incorporated in cloud computing 
to help lessen the impacts of energy consumption, 
environmental responsibility, and reliability of the 
services. The creation of complete frameworks 
considering the sustainability of hybrid cloud 
services, including qualitative studies to consider 
their environmental influence, together with 
validation of proposed green techniques, remains 
open. 

Within the field of mobile cloud computing, 
Skourletopoulos et al. (Skourletopoulos et al., 2018) 
introduce a model of elasticity debt analytics that 

aims to optimize resource provisioning, employing a 
game- theoretic approach to reduce elasticity debt. 
These techniques remain a real challenge in adapting 
the model to changing conditions and integrating ML 
technologies for enhanced resource utilization. 

Raja (Raja, 2021) explains how green computing 
can reduce energy waste in the IT sector and further 
other approaches to minimize carbon footprints, such 
as through energy-efficient data centers and 
renewable energy sources. He discusses the potential 
of greening initiatives with respect to environmental 
sustainability for the IT sector, while flexible 
management and control over varied energy demands 
will specifically require adaptive solutions. 

Qiu et al. (Qiu et al., 2018) discuses on 
exploration of how Cloud Service Brokers might 
provide new avenues toward energy efficiency and 
quality of service through optimized demand 
allocation and pricing strategies. While the work by 
these authors shows some improvement over that by 
others, they still face challenges with real-world 
deployment and scalability issues. 

Qiu et al. (Qiu et al., 2015) also give an insight 
into PCM optimization in Green Cloud Computing 
using genetic algorithms aimed at improving memory 
usage and efficient resource allocation. 

Tuli et al. (Beloglazov and Buyya, 2014) 
proposed an energy-aware combinatorial virtual 
machine allocation model for minimizing the power 
consumption in data centers. This model works well 
in static circumstances but the architecture is hemmed 
in by open issues regarding the management of 
workloads for real-time contexts and requires 
adaptive algorithms to scale up with emerging 
technologies such as edge computing and IoT. 

Alarifi et al. (Xiao and Li, 2018) suggest an 
Energy-Effective Hybrid framework for cloud data 
centers that differently consolidate and utilize servers. 
However, optimization of migration algorithms and 
transition to sustainable energy sources are some 
open issues still facing researchers in this area. 

Chiaraviglio et al. (Chiaraviglio et al., 2014) put 
forth a dynamic methodology for online power and 
load computation, whereby the server’s power states 
can be dynamically altered. This will result in a very 
high saving in energy needs. However, many open 
problems relating to scalability and multi-objective 
optimization remain open. 

Kulkarni et al. (Kulkarni et al., 2024) continue 
with innovation and creation of cloud-based mood-
driven music recommendation system combining 
personalized recommendations from user profiles, 
collaborative filtering, and machine learning. The 
system, with its scalable architecture is an apt 
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recommendation-on-demand, where contextual 
information and listening habits are indigenously 
considered while making recommendations. Future 
research will focus on enhancing the system’s 
responsiveness to evolving user preferences and fine-
tuning recommendation algorithms for different user 
categories. 

Reddy et al. (Reddy et al., 2023) present the 
challenge of predicting flight delays, especially those 
induced by bad weather. Having trained various 
machine learning algorithms on an integrated dataset 
of weather and flight results from JFK airport, they 
determined that XGBoost performed best, achieving 
an RMSE with a severity of 0.81. The current 
obstacles remain improving the model’s 
responsiveness to real-time data and addressing other 
factors influencing flight delays. 

Pecheti et al. (Pecheti et al., 2024) present the 
Drug Information and Recommendation System that 
draws on Amazon Web Services (AWS) to support 
drug review opinions. Their work shows a design 
approach involving data collection, preprocessing, 
and prediction on drugs ultimately leading to the 
deployment of the Sentiment AI platform. The system 
ensures both scalability and software security by 
utilizing services provided by AWS such as EC2 and 
S3 and IAM. Future improvements are intended to 
lead an expansion of data sources regarding the 
system and improvement of analytical capacity 
within the real-world environment. 

Reddy et al. (Reddy et al., 2024), proposed a 
sentiment analysis model based on Long Short-Term 
Memory (LSTM) and natural language processing 
algorithms for evaluating user reactions to YouTube 
content. Trained on the IMDB dataset alongside 
AWS, the model provides an avenue for further 
enhancements to widen the dataset for better 
generalization whilst working on the interactive 
dashboard to aid forward an even deeper user insight. 

Selvi, S. et al. (Selvi and Manimegalai, 2024) 
Proposed new optimization techniques [Multiverse 
Optimization (MVO)], which enhances the efficiency 
for task scheduling taking advantage of neighborhood 
structures. This approach brings several benefits, 
including significantly reduced energy consumption 
and degradation of makespan as it can be verified 
through laboratory testbed results with improved 
performance metrics in contrast to other scheduling 
approaches, which we have outlined above. This 
study demonstrates that the proposed scheduler will 
be able, through experimental evaluation, to schedule 
tasks appropriately resulting in minimization of 
operational costs for a green cloud computing 
environment. Although the results are impressive, 

more research is needed to solve these scalability 
challenges. There is much more work to do in this 
area and there are no clear answers yet on how 
effective resource management should be for the 
future of cloud computing. 

2.2 Research Gap 

An integrated approach shows a huge research gap in 
pressure, temperature, and water flow sensors’ 
behavior among racks in data centers while they are 
in operation. Even though behavior of individual 
sensors is researched on its own, the application of 
machine learning models in supporting prediction and 
understanding of the collective behavior of multi-
sensor usage in dynamic and intense workload 
environments is not clear. Also, another question to 
be answered is the training of machine learning 
algorithms for analyzing anomalies or inefficiencies 
across different sensors, which are revealed through 
discrepancies from normal behavior. Of course, these 
projects will make data center operations better, 
resource usage optimization, and real-time 
monitoring more accurate. 

3 METHODOLOGY 

This paper presents a clear framework for the 
systematic creation of predictive models from sensor 
data. It is the data transformation, developing 
machine learning models, benchmarking and fine 
tuning of the models and the solutions ready for 
implementation. It goes through the steps of data 
acquisition, data preparation, data transformation and 
feature extraction, model building, model assessment 
and, model refinement, and concerns of model 
deployment. Here’s a detailed breakdown of the steps 
involved.  

3.1 Data Acquisition and Analysis 

The raw data consists of data measured by sensors, 
and includes data from 20 racks where each rack had 
seventy-two servers. In every server employed, job 
execution finds 24 cores at its behest. The dataset 
includes readings from eleven sensors for each rack, 
monitoring various parameters: The following is a list 
of links status, rackcdu liquid level, rackcdu pressure, 
facility pressure, facility water flow, rackcdu leak 
detection, heat load (sampling rate of 60s),facility 
water temperature supply, facility water temperature 
return, server liquid temperature supply, and server 
liquid temperature return. Some of the recognized 
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attributes include; Device, Sensor, Time, Value, and 
Units where measurements include pressure, 
temperature, and Water flow parameters. 

3.2 Preprocessing 

This means that preprocessing helps with the quality 
of the data that will be fed into a machine learning 
algorithm as well as how consistent that data is. The 
units are normalized against each other in accordance 
with each sensor’s specific type, where each type is 
assigned its index. It is in this normalization that 
uniformities as well as accurate training models are 
made possible. The case when a have missing or 
inconsistent values of data points is a typical problem 
of preprocessing; such methods as interpolation or 
data imputation are applied to complete the gaps as 
well as to manage outliers, thus preparing a suitable 
data set for the model.  

3.3 Feature Selection 

Feature engineering is more important, where all 
these features are chosen and structured or formatted 
in such a way that would take good results on the 
predictive models. In this regard, the analysis of the 
sensor data leads to the mapping of the values to 
particular labels including the facility water flow or 
server liquid temperature of the system which serves 
as the features in the training model phase. 
Feature selection is performed according to the 
measures’ importance and relevance to the target 
variable, for example, for heat load or water 
temperature prediction. There is no doubt that having 
domain knowledge is very important in selecting the 
most significant features. Furthermore, there could be 
literals conducted to achieve new features that are 
more suitable for revealing the interdependencies 
inside the data to improve the model’s predictability. 
In this study, two features were selected. They are: 
• Units: The Type of Measurement of sensors in the 
datacentres for a particular period of time. 
• Value: The Result of measurement of sensors in the 
datacentres for a particular period of time. 

3.4 Model Training and Evaluation 

For the predictive modeling step, the machine 
learning algorithms are used, such as regression 
models: Random Forest and XGBoost. Both 
algorithms are a kind of learning algorithms that are 
used to forecast target variable based on the input of 
characteristic sensors. Hyperparameter tuning is then 
done in each model for better results, all of them have 

been trained on the pre-processed and the features 
that were engineered. 
Before defining the hyperparameters, they have to be 
tuned properly by using the grid search or randomized 
search, which ensures higher accuracy and model 
generalization. Case of Random Forest, other 
parameters like number of estimators and tree depth 
are tuned while for XGBoost the boosting parameters 
such as learning rate and maximum tree depth are 
tuned. 
The effectiveness of the models is estimated using 
Mean Squared Error (MSE), Root Mean Squared 
  

 
Figure 1: Model Architecture 

Error (RMSE), Mean Absolute Error (MAE), and the 
Coefficient of Determination (R2). These are 
information on the performance of the model and it 
capability in predicting on unseen data. 
Cross-validation is used to overcome the problem of 
overfitting so that inherited property prediction is 
made with high reliability. It attempts to divide the 
data into the training and the validation part many 
times, with each new model acting on a different 
division. This approach offers a complete evaluation 
of the different model performance on different data 
samples and the necessary adjustments are made. 
Optimization of a model goes further from the given 
training to improve the prediction capability and 
reduce computation time. Algorithm-specific 
optimizations are the following ones: for example, in 
case of Random Forest, the importance of features is 
used to prune less important features. In the case of 
XGBoost, there are tuning parameters like the 
number of iterations boosting the model, learning 
rate, and maximum depth are set in detail to optimize 
the model’s efficiency. 

 3.5 Overview 

The below Fig. 1 outlines a comprehensive machine 
learning workflow, starting with Data Acquisition to 
gather relevant data, followed by Filtering Data to 
clean and preprocess it. The process continues with 
Data Splitting to create training and testing sets, then 
moves to Training and Evaluation of models, often 
incorporating Cross-Validation to optimize 
performance. After training, Visualization of Results 
provides insights through graphical representation, 
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followed by Model Comparison to identify the best-
performing model. The results are then Saved and 
Exported, and the workflow concludes with 
Deployment, where the refined model is implemented 
for real-world use. 

4 RESULTS AND ANALYSIS 

Table 1 also demonstrates the performance of the 
model Random Forest Regressor using Mean 
Absolute Error (MAE),Mean Squared Error (MSE) 
Root Mean Squared Error (RMSE) and R-squared 
(R2) of twenty different racks.  Both 70/30 and 80/20 
splits are provided also with/without cross-validation. 
This is demonstrating how cross-validation affects 
the prediction by having some cases with increased 
R2 than others with a worse performance when cross- 
validation is applied. Rear observations are high R2 
values-the values literally near or more than 0.95 for 
most racks without cross validating and cross 
validating has shown much less values that can be 
good indicators of overfitting racks. Moreover, 
improvements are noticed when cross-validation is 
incorporated in some racks especially Rack 16 whose 
R2 rises to as high as 0.445 in the loop. 

Table 1: Rack Wise Results for RF Regressor only for 
Numeric Values 

Rack 
no. 

Split CV MAE MSE R2 

 
Rack 1 

70/30 No 58.621 64189.336 0.996 
70/30 Yes 2917.325 2756325.59 -0.836
80/20 No 58.472 64661.218 0.996 
80/20 Yes 2917.325 2756325.59 -0.836

 
Rack 2 

70/30 No 56.3 48833.29 0.994 
70/30 Yes 560.939 1273912.904 0.948 
80/20 No 56.39 49663.522 0.993 
80/20 Yes 560.939 1273912.904 0.948 

 
Rack 3 

70/30 No 35.682 25434.312 0.989 
70/30 Yes 699.939 3608070.746 0.69 
80/20 No 34.947 23347.428 0.99 
80/20 Yes 699.939 3608070.746 0.69 

 
Rack 4 

70/30 No 65.503 111249.705 0.973 
70/30 Yes 865.975 4039189.745 0.73 
80/20 No 62.672 110123.774 0.974 
80/20 Yes 865.975 4039189.745 0.73 

 
Rack 5 

70/30 No 150.078 439327.808 0.875 
70/30 Yes 1656.948 18500900.81 -0.16 
80/20 No 49.89 42524.393 0.997 
80/20 Yes 1656.948 18500900.81 -0.16 

 
Rack 6 

70/30 No 49.423 38197.812 0.992 
70/30 Yes 1371.369 5677594.478 -0.143
80/20 No 49.065 38118.672 0.992 
80/20 Yes 1371.369 5677594.478 -0.143
70/30 No 33.622 39029.145 0.952 

 
Rack 7 

70/30 Yes 1394.243 7975824.019 0.018 
80/20 No 34.002 16941.352 0.998 
80/20 Yes 1394.243 7975824.019 0.018 

 
Rack 8 

70/30 No 35.233 20647.193 0.997 
70/30 Yes 1394.243 7975824.019 0.018 
80/20 No 34.002 16941.352 0.998 
80/20 Yes 1394.243 7975824.019 0.018 

 
Rack 9 

70/30 No 113.636 260977.59 0.982 
70/30 Yes 1611.013 17412938.19 -0.18 
80/20 No 114.719 268206.437 0.982 
80/20 Yes 1611.013 17412938.19 -0.18 

 
Rack 10

70/30 No 190.414 433605.361 0.943 
70/30 Yes 1719.228 8069397.218 -0.141
80/20 No 185.795 423796.024 0.878 
80/20 Yes 1719.228 8069397.218 -0.141

 
Table 2 illustrates the performance of the XG-Boost 
Regressor model on 20 different racks with numeric 
test data based on MAE, MSE, RMSE, and R2. We 
report results for four splits 70/30 and 80/20 with and 
without CV. In general, the R2 values are high (above 
0.9) though it does not apply cross-validation but 
when applying cross-validation, the vast racks such 
as Rack 1 that originally had an R2 of 0.147, 
drastically drop hugely to an R2 if -1.643. Even more, 
some racks, namely Rack 5 and Rack 6, also 
demonstrate the decrease in the value of R2 after the 
cross validation, which also points to the overtraining 
of models. However, some racks, for instance, Rack 
16 have a positive R2 of 0.992 without cross-
validation but a negative value with cross-validation. 
The results emerge in terms of the inconsistency of 
utilising cross-validation in the XGBoost model, 
where the variation of R2 values and errors is large 
among different racks. 

Table 2: Rack Wise Results using XGBoost Regressor for 
Numeric Values Test Data 10 Racks 

Rack 
No. 

Split CV MAE MSE R2 

 
Rack 1 

70/30 No 66.783 82676.425 0.994 
70/30 Yes 3536.528 39687716.82 -1.643 
80/20 No 66.891 86840.584 0.994 
80/20 Yes 3536.528 39687716.82 -1.643

 
Rack 2 

70/30 No 70.161 102338.714 0.995 
70/30 Yes 576.594 1422092.694 0.943 
80/20 No 69.154 98179.045 0.995 
80/20 Yes 576.594 1422092.694 0.943 

 
Rack 3 

70/30 No 63.298 106335.139 0.991 
70/30 Yes 698.085 3545491.34 0.691 
80/20 No 62.871 107386.452 0.991 
80/20 Yes 698.085 3545491.34 0.691 

 
Rack 4 

70/30 No 70.562 157762.494 0.99 
70/30 Yes 890.744 14535632.96 -0.607
80/20 No 127.833 1638371.263 0.928 
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80/20 Yes 1530.762 2014891.83 -0.212

 
Rack 5 

70/30 No 72.424 104194.679 0.993 
70/30 Yes 1655.008 18499826.64 -0.16 
80/20 No 71.682 102993.421 0.994 
80/20 Yes 1655.008 18499826.64 -0.16 

 
Rack 6 

70/30 No 60.03 75719.105 0.985 
70/30 Yes 1705.83 8809078.817 0.069 
80/20 No 257.811 414063.18 0.93 
80/20 Yes 1653.531 9372708.78 0.079 

 
Rack 7 

70/30 No 46.446 62130.995 0.986 
70/30 Yes 1885.324 16551543.82 -1.038
80/20 No 46.645 55290.557 0.993 
80/20 Yes 1885.324 16551543.82 -1.038

 
Rack 8 

70/30 No 70.711 148246.431 0.992 
70/30 Yes 2133.422 26405897.6 -0.515
80/20 No 70.766 149922.959 0.992 
80/20 Yes 2133.422 26405897.6 -0.515

 
Rack 9 

70/30 No 134.751 408264.553 0.976 
70/30 Yes 1639.415 17501719.73 -0.186
80/20 No 136.184 4068378.53 0.976 
80/20 Yes 1639.415 17501719.73 -0.186

 
Rack 10 

70/30 No 117.404 308557.061 0.987 
70/30 Yes 1540.57 18859281.3 -0.141
80/20 No 115.255 303458.405 0.982 
80/20 Yes 1540.57 18859281.3 -0.141

 
Comparison of Table 1 and Table 2 show that the RF 
Regressor has effectively learned from the data and 
consistently performs well across rakes and data 
splits, as evidenced by the higher R² values, often 
approaching or exceeding 0.9; thereby confirming a 
strong correlation between predicted and actual 
values. For example, in Rack 1 with a 70/30 split and 
no cross-validation, the RF Regressor records 0.996 
R², while XGBoost gets 0.994. As against the 
performance of the RF Regressor, the XGBoost 
Regressor shows massive variability in performance-
and wades through the data it learns awfully even 
under similar conditions. Many of the R² values are 
negative or very close to 0-in particular, for the 80/20 
splits-suggesting that XGBoost does not capture the 
underlying patterns well. For example, Rack 10’s R² 
was -0.141 at an 80/20 split with cross-validation for 
XGBoost, while the same scenario for RF Regressor 
resulted in 0.968. 
The two graphs shown in Fig. 2 (a), (b) presents the 
predicted vs. true values of a Random Forest model, 
its performance with and without cross- validation is 
highlighted.  In the first graph Points are blue and 
scattered but their corresponding points seem to lie 
near the ideal fit line but not completely perfect as 
some of them are a little farther, this is because of 
overfitting but not a serious one. In comparison, the 
second graph where the residuals were corrected with 

cross-validation presents green points away from the 
ideal fit line more often and specially at higher values, 
which suggests lower reliability and stochasticity in 
the validation folds.  
 

 
(a) Rack 4 in 70:30 Split ratio 

 
(b) Rack 4 in 80:20 split Ratio 

Figure 2: Scatter Plot between True Values and Predicted 
Values in Random Forest Regressor for Rack 4 

 

(a) Rack 10 in 70:30 Split ratio 

 

(b) Rack 10 in 80:20 split Ratio 

Figure 3: Scatter Plot between True Values and Predicted 
Values in Random Forest Regressor for Rack 10 

This comparison shows the model’s performance 
to cross-validation and the difficulty of maintaining a 
stable level of predictive accuracy across different 
data splits. 
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(a) Rack 3 in 70:30 Split ratio 

 
Rack 3 in 80:20 split Ratio 

Figure 4: Scatter Plot between True Values and Predicted 
Values in XGBoost Regressor for Rack 3 

 

 
Rack 6 in 70:30 Split ratio 

 
Rack 6 in 80:20 split Ratio 

Figure 5: Scatter Plot between True Values and Predicted 
Values in XGBoost Regressor for Rack 6 

 
The two plots above Fig. 5 (a), (b) illustrates the 
comparison between the XGBoost model 
performance with the model which include the cross 
Validation for Rack 6. The left plot shows the results 
when cross-validation is not done while the 
predictions are depicted using blue circles. The 
correct plot includes cross-validation check, and 
predictions are marked in green dots. PredPol: In both 
the plots above, the dotted line line indicates the 
Which indicates the true positive or perfect fit line 
that equates the true values to the predicted values. 

Also, when making predictions without using cross-
validation they seem to be distributed farther and are 
a less accurate representation of the ideal line because 
of this, the line on the right shows how predictions 
with cross-validation look like and demonstrate how 
cross-validation affects the consistency and ability to 
generalize when making predictions. This 
comparative analysis discusses the effect of cross-
validation on the result of the model, in terms of 
accuracy and behavior. 

5 CONCLUSIONS 

This research shows how a Random Forest and XG- 
Boost can be used to identify outliers in a data centres. 
From regression tasks in these models, meaning- ful 
information regarding the performance of different 
types of racks was obtained. More work in the future 
will be towards the analysis and prediction of patterns 
of job assignments using the sensors. Moreover, the 
use of these models to create simulation environments 
should be the focus of future research because it will 
allow better control over data center management. 
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